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1 Introduction

In 2011, Takahashi and Takeuchi [1] introduced the notion of attractive points
of nonlinear mappings in a Hilbert space: let H be a Hilbert space and C be a
nonempty subset of H . Let T be a mapping form C into H . Let A(T ) denote the
set of all attractive points of T , i.e.,

A(T ) = {z ∈ H : ||z − Ty|| ≤ ||z − y||, for all y ∈ C}.

It is known that A(T ) is a closed convex subset of H [1, Lemma 2.3].
In 2012, Takahashi, Wong and Yao [2] introduced the class of normally gener-

alized hybrid mappings in a Hilbert space which covers the classes of generalized
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hybrid, hybrid, nonspreading and nonexpansive mappings. A mapping T : C → H

is called normally generalized hybrid if there exist α, β, γ, δ ∈ R such that
(1) α+ β + γ + δ ≥ 0 ;
(2) α+ β > 0 or α+ γ > 0 ; and
(3) α||Tx−Ty||2+β||x−Ty||2+γ||Tx− y||2+ δ||x− y||2 ≤ 0, for all x, y ∈ C.

Such a mapping T can be called an (α, β, γ, δ)-normally generalized hybrid map-
ping. The authors also proved the attractive point theorem for normally general-
ized hybrid mappings in a Hilbert space.

Theorem 1.1 ([2], Theorem 3.1). Let C be a nonempty subset of a real Hilbert
space H. Let T : C → C be an (α, β, γ, δ)-normally generalized hybrid mapping.
Then A(T ) 6= ∅if and only if there exists x ∈ C such that the sequence {T nx} is
bounded. Additionally, if C is closed and convex, then F (T ) 6= ∅ if and only if
there exists x ∈ C such that the sequence {T nx} is bounded. In particular, a fixed
point is unique in the case of α+ β + γ + δ > 0 on the condition (1).

In this paper, we generalize basic properties of attractive points of nonlinear
mappings in Hilbert spaces to CAT (0) spaces. Moreover, we prove attractive point
theorem for normally generalized hybrid mappings in CAT (0) spaces satisfying (S)
property.

2 Preliminaries

Let H be a Hilbert space and C be a nonempty subset of H . A mapping
T : C → H is called nonexpansive if

||Tx− Ty|| ≤ ||x− y||, for all x, y ∈ C.

In 2008, Kohsaka and Takahashi [3] introduced the class of nonspreading map-
pings in Hilbert spaces. A mapping T : C → H is called nonspreading if

2||Tx− Ty||2 ≤ ||Tx− y||2 + ||Ty − x||2 , for all x, y ∈ C.

In 2010, Takahashi [4] introduced the class of hybrid mappings in Hilbert
spaces. A mapping T : C → H is called hybrid if

3||Tx− Ty||2 ≤ ||x− y||2 + ||Tx− y||2 + ||Ty − x||2 , for all x, y ∈ C.

In 2010, Kocourek, Takahashi and Yao [5] introduced the class of generalized
hybrid mappings in Hilbert spaces. A mapping T : C → H is called generalized
hybrid if there exist α, β ∈ R such that for any x, y ∈ C,

α||Tx− Ty||2 + (1− α)||x − Ty||2 ≤ β||Tx− y||2 + (1 − β)||x− y||2.

We can see that any (1, 0), (2, 1) and (
3

2
,
1

2
)-generalized hybrid mappings are

nonexpansive, nospreading and hybrid mappings, respectively. Moreover, If α +
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β = −γ − δ = 1, then an (α, β, γ, δ)-normally generalized hybrid mapping is a
generalized hybrid mapping.

Let (X, d) be a metric space. A geodesic path (or a geodesic) joining x to y in
X is a mapping c from a closed interval [0, ℓ] ⊆ R to X such that c(0) = x, c(ℓ) = y

and d(c(s), c(t)) = |s − t| for all s, t ∈ [0, ℓ]. In particular, the mapping c is an
isometry and d(x, y) = ℓ. The image of c is called geodesic segment joining x and
y which when unique is denoted by [x, y]. We denote the unique point z ∈ [x, y]
such that d(x, z) = αd(x, y) and d(y, z) = (1 − α)d(x, y) by (1 − α)x ⊕ αy, where
0 ≤ α ≤ 1.

A metric space (X, d) is called a geodesic space if any two points of X are
joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one
geodesic segment joining x and y for each x, y ∈ X .

A geodesic triangle △(x1, x2, x3) in a geodesic space (X, d) consists of three
points in X (the vertices of △) and a geodesic segment between each pair of
points (the edges of △). A comparison triangle for △(x1, x2, x3) in (X, d) is
a triangle △̄(x1, x2, x3) := △(x̄1, x̄2, x̄3) in the Euclidean plane R2 such that
dR2(x̄i, x̄j) = d(xi, xj) for all i, j ∈ {1, 2, 3}.

A geodesic space X is called a CAT (0) space if all geodesic triangles of appro-
priate size satisfy the following comparison axiom.

Let △ be a geodesic triangle in X and let △̄ be a comparison triangle in R2.
Then the geodesic triangle △ is said to satisfy the CAT (0) inequality if for all
x, y ∈ △ and all comparison points x̄, ȳ ∈ △̄,

d(x, y) ≤ dR2(x̄, ȳ).

It is well known that any complete simply connected Riemannian manifold of
nonpositive sectional curvature is a CAT (0) space. Other examples include Pre-
Hilbert spaces, R-trees (see [6]), Euclidean buildings (see [7]), the complex Hilbert
ball with a hyperbolic metric (see [8]), and many others.

If x, y1, y2 are points in a CAT (0) space and if y0 is the midpoint of the geodesic
segment [y1, y2], then the CAT (0) inequality implies the so-called (CN) inequality
of Bruhat and Tits [9], i.e.,

d2(x, y0) ≤
1
2d

2(x, y1) +
1
2d

2(x, y2)−
1
4d

2(y1, y2).

It is known that a uniquely geodesic space is a CAT (0) space if and only if it
satisfies the (CN) inequality (see [6] for more details).

The following results are important to our work.

Lemma 2.1 ([6]). Let X be a CAT(0) space, x1, x2, y1, y2 ∈ X and α ∈ [0, 1].
Then

d(αx1 ⊕ (1− α)y1, αx2 ⊕ (1 − α)y2) ≤ αd(x1, x2) + (1 − α)d(y1, y2).

From the above lemma, it is easy to see that for any x, y, z ∈ X and α ∈ [0, 1],

d(αx ⊕ (1− α)y, z) ≤ αd(x, z) + (1− α)d(y, z).
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Lemma 2.2 ([10]). Let X be a CAT(0) space, x, y, z ∈ X and α ∈ [0, 1]. Then

d2(αx ⊕ (1− α)y, z) ≤ αd2(x, z) + (1 − α)d2(y, z)− α(1− α)d2(x, y).

Lemma 2.3 ([6]). Let C be a closed convex subset of a complete CAT(0) space
X. For any x ∈ X there exists a unique point p ∈ C such that

d(x, p) = inf
y∈C

d(x, y).

The mapping PC : X → C defined by PCx = p is called the metric projection from
X onto C.

In 2008, Kirk and Panyanak [11] specialized Lim’s concept [12] of△-convergence
in a general metric space to a CAT (0) space and showed that many results in Ba-
nach space involving weak convergence have precise analogs in this setting.

Let {xn} be a bounded sequence in a CAT (0) space (X, d). For any x ∈ X ,
we set

r(x, {xn}) := lim sup
n→∞

d(x, xn).

The asymptotic radius of {xn} is given by

r({xn}) := inf
x∈X

r(x, {xn}).

The asymptotic center of {xn} is given by

A({xn}) := {x ∈ X : r(x, {xn}) = r({xn})}.

It is known from [13] that in a CAT (0) space, A({xn}) consists of exactly one
point. A sequence {xn} in X is said to △-converge to x ∈ X if A({xnk

}) = {x}
for every subsequence {xnk

} of {xn}. In this case, we write △− lim
n→∞

xn = x. The

uniqueness of asymptotic center implies that CAT (0) space X satisfies Opial’s
property, i.e., for a given sequence {xn} in X such that {xn} △-converges to x

and for any y ∈ X with y 6= x, one has

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

We also know the following results.

Lemma 2.4 ([11]). Every bounded sequence in a complete CAT(0) space always
has a △-convergent subsequence.

Now, we recall the concept of Banach limit which plays a major role in our
results. Let ℓ∞ be the Banach space of bounded sequences with supremum norm.
Let µ be an element of the dual metric space (ℓ∞)∗ of the space ℓ∞. We denote
by µ(f) the value of µ at f = (x1, x2, x3, ...) ∈ ℓ∞. We denote by µn(xn) the
value µ(f). A linear functional µ is called a mean if µ(e) = ||µ|| = 1, where
e = (1, 1, 1, ...). A mean µ is called a Banach limit on ℓ∞ if µn(xn+1) = µn(xn),
where µn(xn+1) = µn(x2, x3, x4, ...). We know that there exist a Banach limit
on ℓ∞ (see [14] for more details). If µ is a Banach limit on ℓ∞, then for any
(x1, x2, x3, ...) ∈ ℓ∞,
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lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, ...) ∈ ℓ∞ and lim
n→∞

xn = x ∈ R, then we have

µ(f) = x = µ(xn).

In 2010, Kakavandi and Amini [15] introduced the dual metric space (X∗, D)
for a complete CAT (0) space (X, d) based on the work of Berg and Nikolaev
[16]. We know that CAT (0) inequality and parallelogram identity are equivalent
on a norm linear space. Then Berg and Nikolaev [16] introduced the concept
of quasilinearization which is an inner product-like notion in complete CAT (0)
spaces.

Let
−→
ab denote a pair (a, b) ∈ X × X and it is called a vector. Then the

quasilinearization map 〈·, ·〉 : (X ×X)× (X ×X) → R is defined by

〈
−→
ab,−→uv〉 = 1

2

(

d2(a, v) + d2(b, u)− d2(a, u)− d2(b, v)
)

for any a, b, u, v ∈ X . We say that (X, d) satisfies the Cauchy-Schwarz inequality
if

〈
−→
ab,−→uv〉 ≤ d(a, b)d(u, v)

for all a, b, u, v ∈ X . The authors also proved the following lemma.

Lemma 2.5 ([16], Corollary 3). A geodesically connected space is a CAT(0) space
if and only if it satisfies the Cauchy-Schwarz inequality.

Consider the map Θ : R×X ×X → C(X ;R) defined by

Θ(t, a, b)(x) = t〈
−→
ab,−→ax〉 for all x ∈ X ,

where C(X ;R) is the space of all continuous real-valued functions on X . Then
the Cauchy-Schwarz inequality implies that Θ(t, a, b) is the Lipchitz function with
the Lipchitz semi-norm L(Θ(t, a, b)) = td(a, b) (t ∈ R, a, b ∈ X), where L(ϕ) =

sup
{

ϕ(x)−ϕ(y)
d(x,y) : x, y ∈ X, x 6= y

}

is the Lipchitz semi-norm for any function ϕ :

X → R.
Kakavandi and Amini [15] defined a pseudometric D on R×X ×X by

D((t, a, b), (s, u, v)) = L(Θ(t, a, b)−Θ(s, u, v)).

They also proved the following lemma.

Lemma 2.6 ([15], Lemma 2.1). Let X be a complete CAT(0) space. Let (t, a, b), (s, u, v) ∈

R ×X × X. Then D((t, a, b), (s, u, v)) = 0 if and only if t〈
−→
ab,−→xy〉 = s〈−→uv,−→xy〉,

for all x, y ∈ X.

Therefore, D defines an equivalent relation on R×X×X , where the equivalent
class of (t, a, b) is
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[t
−→
ab] =

{

s−→uv : t〈
−→
ab,−→xy〉 = s〈−→uv,−→xy〉, for all x, y ∈ X

}

.

Let X∗ =
{

[t
−→
ab] : (t, a, b) ∈ R×X ×X

}

. Then (X∗, D) is a metric space and it

is called the dual metric space of (X, d).
In 2013, Kakavandi [17] introduced the concept of (S) property for a complete

CAT (0) space as follows.

Definition 2.7 ([17]). A complete CAT (0) space (X, d) satisfies (S) property if
for any (x, y) ∈ X ×X the exists a point yx ∈ X such that [−→xy] = [−−→yxx].

There are many CAT (0) spaces satisfy the (S) property; for example, Hilbert
spaces [17] and symmetric Hadamard manifolds [17]. Moreover, Kakavandi also
gave the characterization of △-convergence for CAT (0) spaces satisfying the (S)
property as follows.

Lemma 2.8 ([17], Lemma 2.8). Let (X, d) be a complete CAT (0) space, {xn}
be a bounded sequence in X and let x ∈ X. If X satisfies the (S) property, then
△− lim

n→∞

xn = x if and only if lim
n→∞

〈−−→xxn,
−→xy〉 = 0 for all y ∈ X.

In 2008, Kirk and Panyanak [11] introduced a geometric condition on a CAT(0)
space called a four point condition (Q4) .
(Q4) : A CAT (0) space (X, d) is said to satisfy (Q4) condition if for any x, y, p, q ∈
X , one has

d(p, x) < d(x, q) & d(p, y) < d(y, q) ⇒ d(p,m) < d(m, q), for all m ∈ [x, y].

The authors mentioned that this condition holds in many CAT (0) spaces includ-
ing Hilbert spaces and R-trees. Since then this condition has been studied very
deeply by Esṕınola and Fernández-León [18], who proved that any CAT (0) space
of constant curvature satisfies the (Q4) condition but any CAT (0) gluing space
containing two spaces of constant but different curvatures does not.

In 2013, Kakavandi [17] modified the (Q4) condition as follows.
(Q4): A CAT (0) space (X, d) is said to satisfy (Q4) condition if for any x, y, p, q ∈
X , one has

d(p, x) ≤ d(x, q) & d(p, y) ≤ d(y, q) ⇒ d(p,m) ≤ d(m, q), for all m ∈ [x, y].

Since (Q4) implies (Q4), there are some CAT (0) spaces that do not satisfy
(Q4) condition. However, Hilbert spaces, R-trees and every CAT (0) spaces of
constant curvature satisfy the (Q4) condition.

3 Properties of Attractive Points in CAT(0) Spaces

In this section, we collect some properties of attractive points in a CAT (0)
space. First of all, we consider the notion of attractive points of any mapping
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T : C → X , where X is a metric space and C is a nonempty subset of X . The set
of all attractive points of T can be defined analogously to Hilbert spaces, i.e.,

A(T ) = {z ∈ X : d(z, T y) ≤ d(z, y), for all y ∈ C} .

Moreover, in a metric space, a normally generalized hybrid mapping can be defined
in analogous way as follows.

A mapping T : C → X is called normally generalized hybrid if there exist
α, β, γ, δ ∈ R such that

(1) α+ β + γ + δ ≥ 0 ;
(2) α+ β > 0 or α+ γ > 0 ; and
(3) αd(Tx, T y)2 + βd(x, T y)2 + γd(Tx, y)2 + δd(x, y)2 ≤ 0, for all x, y ∈ C.

Lemma 3.1. Let C be a nonempty subset of a complete CAT (0) space (X, d) and
let T be a mapping from C into X. Then, A(T ) is closed. Moreover, if X satisfies
the (Q4) condition, then A(T ) is convex.

Proof. Let {xn} be a sequence in A(T ) such that xn → x ∈ X as n → ∞. For
any n ∈ N and y ∈ C, we have d(xn, T y) ≤ d(xn, y). The continuity of the metric
d allows us to conclude that

lim
n→∞

d(xn, T y) ≤ lim
n→∞

d(xn, y)

d(x, T y) ≤ d(x, y).

This implies that A(T ) is a closed subset of X .

Suppose that X satisfies the (Q4) condition. To show that A(T ) is convex, we let
z1, z2 ∈ A(T ). Then for any y ∈ C, we have d(z1, T y) ≤ d(z1, y) and d(z2, T y) ≤
d(z2, y). It follows that d(m,Ty) ≤ d(m, y) for all m ∈ [z1, z2]. Therefore, A(T ) is
a convex subset of X .

According to the definition of attractive points, for any mapping, a fixed point
need not be an attractive point but except for normally generalized hybrid map-
pings.

Proposition 3.2. Let (X, d) be a complete CAT (0) space. Let C be a nonempty
subset of X. Let T : C → C be an (α, β, γ, δ)-normally generalized hybrid mapping.
Then A(T ) ∩ C = F (T ).

Proof. If z ∈ A(T ) ∩ C, then d(z, T z) ≤ d(z, z). This implies that Tz = z. Then
A(T )∩C ⊆ F (T ). To show that F (T ) ⊆ A(T )∩C, we let z ∈ F (T ). Since T is a
normally generalized hybrid mapping, we have

αd2(Tx, T y) + βd2(x, T y) + γd2(Tx, y) + δd2(x, y) ≤ 0 , for all x, y ∈ C.
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If α+ β > 0, for any y ∈ C, we have

αd2(Tz, T y) + βd2(z, T y) + γd2(Tz, y) + δd2(z, y) ≤ 0.

αd2(z, T y) + βd2(z, T y) + γd2(z, y) + δd2(z, y) ≤ 0

(α+ β)d2(z, T y) ≤ −(γ + δ)d2(z, y)

d2(z, T y) ≤ −
γ + δ

α+ β
d2(z, y)

d2(z, T y) ≤ d2(z, y).

This implies that z ∈ A(T ). We can obtain the similar result in the case of
α+ γ > 0. Therefore, A(T ) ∩C = F (T ).

The following corollary is obtained directly from Lemma 3.1 and Proposition 3.2.

Corollary 3.3. Let (X, d) be a complete CAT (0) space satisfying (Q4) condition.
Let C be a nonempty closed convex subset of X. Let T : C → C be a normally
generalized hybrid mapping. Then F (T ) is a closed convex subset of X.

The following results show that, under some appropriate conditions, the exis-
tence of an attractive point implies the existence of a fixed point. We can prove
the analogous result to Lemma 2.2 of [1] in a CAT (0) space.

Proposition 3.4. Let (X, d) be a CAT (0) space. Let C be a nonempty closed
convex subset of X. Let T : C → C be a mapping with A(T ) 6= ∅. Then, F (T ) 6= ∅.

Proof. Let z ∈ A(T ). Since C is a nonempty closed convex subset of X , from
Lemma 2.3 we can find y = PCz ∈ C, where PC is the metric projection from X

onto C. Since z ∈ A(T ), we have d(z, T y) ≤ d(z, y). Since d(z, y) = inf
x∈C

d(z, x)

and Ty ∈ C, we have Ty = y. Then y ∈ F (T ) and hence F (T ) 6= ∅.

Next, we prove the analogous result to Proposition 10 of [19] in a complete
CAT (0) space satisfying the (Q4) condition.

Proposition 3.5. Let (X, d) be a complete CAT (0) space satisfying the (Q4)
condition. Let C be a closed subset of X. Let T be a continuous mapping from C

into X with A(T ) 6= ∅. Suppose that there exists x0 ∈ C such that T nx0 ∈ C for
all n ≥ 0. If lim

n→∞

d(T nx0, A(T )) = 0, then T has a fixed point x∗ and the sequence

of Picard iterates {T nx0} converges strongly to x∗.

Proof. Firstly, we show that {T nx0} is a Cauchy sequence. Let ǫ > 0. Since
lim
n→∞

d(T nx0, A(T )) = 0, there exists N ∈ N such that

d(T nx0, A(T )) <
ǫ

4
for all n ≥ N .

Then
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inf
z∈A(T )

d(TNx0, z) = d(TNx0, A(T )) <
ǫ

4
.

We can find z ∈ A(T ) such that d(TNx0, z) <
ǫ

2
. Since z ∈ A(T ), for any

m,n ≥ N , we have

d(Tmx0, T
nx0) ≤ d(Tmx0, z) + d(z, T nx0)

≤ d(TNx0, z) + d(TNx0, z)

<
ǫ

2
+

ǫ

2
= ǫ.

Then {T nx0} is a Cauchy sequence. Since C is a closed subset of complete CAT (0)
space X , there exists x∗ ∈ C such that T nx0 → x∗. To complete the proof, we
will show that x∗ ∈ F (T ). Since T is continuous, we can see that

0 = lim
n→∞

d(T nx0, A(T ))

= d( lim
n→∞

T nx0, A(T ))

= d(x∗, A(T )).

This implies that x∗ ∈ A(T ) (the closure of A(T )). By Lemma 3.1, we know that
A(T ) is a closed subset of X . Then x∗ ∈ A(T ) ∩ C. Therefore, x∗ ∈ F (T ).

4 Attractive Point Theorems

In this section we prove the attractive point theorem for normally gener-
alized hybrid mappings in a CAT (0) space satisfying the (S) property. First, we
need the following lemma.

Lemma 4.1. Let C be a nonempty subset of a CAT (0) space X. Let {xn}
be a bounded sequence in C. Let T be a mapping from C into itself such that
d(xn, T xn) → 0. Then,
(1) the sequences {d(xn, y)} and {d(Txn, y)} are bounded for all y ∈ C;
(2) µnd(xn, y) = µnd(Txn, y) for any Banach limit µ on l∞.

Proof. For any n ∈ N and y ∈ C, we have

d(xn, y) ≤ d(xn, x1) + d(x1, y).

Since {xn} is bounded, we see that the sequence {d(xn, y)} is also bounded. Note
that

d(Txn, y) ≤ d(Txn, xn) + d(xn, y).

Since d(xn, T xn) → 0 and {d(xn, y)} is bounded, we see that the sequence {d(Txn, y)}
is bounded. Next, we show that µnd(xn, y) = µnd(Txn, y) for all y ∈ C. By the
triangle inequality, for any y ∈ C, we have

d(xn, y) ≤ d(xn, T xn) + d(Txn, y) (4.1)
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and

d(Txn, y) ≤ d(Txn, xn) + d(xn, y). (4.2)

Since d(xn, T xn) → 0, by applying a Banach limit µ to both sides of (4.1) and
(4.2), we see that

µnd(xn, y) = µnd(Txn, y).

Now, we can prove the attractive point theorem for normally generalized hy-
brid mappings in a CAT (0) space satisfying the (S) property.

Theorem 4.2. Let X be a complete CAT (0) space which satisfies the (S) property
and let C a nonempty subset of X. Let T : C → C be an (α, β, γ, δ)-normally
generalized hybrid mapping with lim

n→∞

d(T n+1x, T nx) = 0 for all x ∈ C. Then

A(T ) 6= ∅ if and only if there exists x ∈ C such that the sequence {T nx} is
bounded. Additionally, if C is closed and convex, then F (T ) 6= ∅ if and only if
there exists x ∈ C such that the sequence {T nx} is bounded. Moreover, a fixed
point is unique in the case of α+ β + γ + δ > 0 on the condition (1).

Proof. Suppose that z ∈ A(T ). Then d(z, Tx) ≤ d(z, y) for all x ∈ C. We see
that

d(T nx, Tmx) ≤ d(T nx, z) + d(z, Tmx)

≤ d(z, x) + d(z, x)

= 2d(z, x).

Then {T nx} is bounded for some x ∈ X .

To prove the converse, suppose that there exists x ∈ C such that the sequence
{T nx} is bounded. For any n ∈ N, put xn := T nx. By Lemma 2.4, there exists a
subsequence {xnk

} of {xn} such that △− lim
k→∞

xnk
= z for some z ∈ X .

Claim 1. We will show that µkd(xnk
, T y) ≤ µkd(xnk

, y), for all y ∈ C.

Since 0 = lim
n→∞

d(T n+1x, T nx) = lim
n→∞

d(Txn, xn) and the sequence {xn} is bounded,

d(Txnk
, xnk

) → 0 and the sequence {xnk
} is bounded. By Lemma 4.1, for all

y ∈ C, we have
(1) the sequences {d(xnk−1, y)} and {d(xnk

, y)} are bounded ;
(2) µnd(xnk−1, y) = µnd(xnk

, y) for any Banach limit µ on l∞.

Since T is an (α, β, γ, δ)-normally generalized hybrid mapping,

αd2(Tx, T y) + βd2(x, T y) + γd2(Tx, y) + δd2(x, y) ≤ 0, for all x, y ∈ C.
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If α+ β > 0, for all x, y ∈ C, we have

αd2(xnk
, T y) + βd2(xnk−1, T y) + γd2(xnk

, y) + δd2(xnk−1, y) ≤ 0.

By applying a Banach limit µ, we have

(α+ β)µkd
2(xnk

, T y) ≤ −(γ + δ)µkd
2(xnk

, y).

Since α+ β + γ + δ ≥ 0 and α+ β > 0, we see that

µkd
2(xnk

, T y) ≤
−(γ + δ)

α+ β
µkd

2(xnk
, y)

≤ µkd
2(xnk

, y).

We can obtain the similar result in the case of α+ γ > 0. Therefore,

µkd(xnk
, T y) ≤ µkd(xnk

, y) (4.3)

for all y ∈ C.

Claim 2. We will show that z ∈ A(T ).

Since X satisfies the (S) property and △ − lim
k→∞

xnk
= z, we have from Lemma

2.8 that

lim
k→∞

(

d2(xnk
, z)− d2(xnk

, y) + d2(z, y)
)

= 0, for all y ∈ X .

Then, for all y ∈ X , we have

µk

(

d2(xnk
, z)− d2(xnk

, y) + d2(z, y)
)

= 0. (4.4)

By (4.3), for all y ∈ X , we have

−µkd(xnk
, y) ≤ −µkd(xnk

, T y).

By adding µk

(

d2(xnk
, z) + d2(xnk

, y) + d2(z, y)
)

to both sides of the above in-
equality, we get

µk

(

d2(xnk
, z) + d2(xnk

, y) + d2(z, y)
)

− µkd
2(xnk

, y) ≤ µk

(

d2(xnk
, z) + d2(xnk

, y) + d2(z, y)
)

−µkd
2(xnk

, T y)

d2(z, T y) + µk

(

d2(xnk
, z)− d2(xnk

, y) + d2(z, y)
)

≤ d2(z, y) +

µk

(

d2(xnk
, z)− d2(xnk

, T y) + d2(z, T y)
)

.

By (4.4), we have

d2(z, T y) ≤ d2(z, y)

d(z, T y) ≤ d(z, y).

Therefore, z ∈ A(T ).
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Additionally, suppose that C is a closed convex subset of X . By Proposition
3.4, A(T ) 6= ∅ implies F (T ) 6= ∅. Therefore, F (T ) 6= ∅ if and only if {T nx} is
bounded for some x ∈ C. Moreover, if α+β+γ+ δ+ > 0 and p1, p2 ∈ F (T ), then

αd2(Tp1, T p2) + βd2(p1, T p2) + γd2(Tp1, p2) + δd2(p1, p2) ≤ 0

αd2(p1, p2) + βd2(p1, p2) + γd2(p1, p2) + δd2(p1, p2) ≤ 0

(α+ β + γ + δ)d2(p1, p2) ≤ 0

d2(p1, p2) ≤ 0.

This implies that d(p1, p2) = 0 and hence p1 = p2. This completes the proof.
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