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1 Introduction

Metric projection operators in Hilbert spaces and Banach spaces play an im-
portant role in several fields of mathematics such as functional analysis, optimiza-
tion theory, fixed point theory, nonlinear programming, game theory, variational
inequality and complementarity problem. (see, for example, [1, 2]). In 1994,
Alber [3] proposed the generalized projections from Hilbert spaces to uniformly
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convex and uniformly smooth Banach spaces. Moreover, Alber [1] presented some
applications of the generalized projections to approximately solving variational in-
equalities and von Neumann intersection problem in Banach spaces. In 2005, Li [2]
extended the generalized projection operator from uniformly convex and uniformly
smooth Banach spaces to reflexive Banach spaces and studied some properties of
the generalized projection operator with applications to solve the variational in-
equality in Banach spaces. Later, Wu and Huang [4] introduced a new generalized
f -projection operator in Banach spaces. They extended the definition of the gen-
eralized projection operators introduced by [3] and proved some properties of the
generalized f -projection operator. Fan et al. [5] presented some basic results for
the generalized f -projection operator, and discussed the existence of solutions and
approximation of the solutions for generalized variational inequalities in noncom-
pact subsets of Banach spaces.

In this paper, unless otherwise specified, I stands for an identity mapping.
The mapping T is said to be a strict pseudo-contraction if there exists a constant
0 ≤ k < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ D(T ).

In this case, T may be called as k-strict pseudo-contraction. We use F (T ) to
denote the set of fixed point of T (i.e. F (T ) = {x ∈ D(T ) : Tx = x}). T is said
to be a quasi-strict pseudo-contraction if the set of fixed point F (T ) is nonempty
and if there exists a constant 0 ≤ k < 1 such that

‖Tx− p‖2 ≤ ‖x− p‖2 + k‖x− Tx‖2, ∀x ∈ D(T ) and p ∈ F (T ).

There are several attempts to establish an iteration method to find a fixed
point of some well-known nonlinear mappings, for instant, nonexpansive mapping.
We note that Mann’s iterations [6] have only weak convergence even in a Hilbert
space (see e.g., [7]). Nakajo and Takahashi [8] modified the Mann iteration method
so that strong convergence is guaranteed, later well known as a hybrid projection
method. Since then, the hybrid method has received rapid developments. For the
details, the readers are referred to papers [9, 12, 20, 22, 21, 19, 17, 16, 15, 18, 13,
11, 14, 10] and the references therein.

In 2007, Takahashi et al. [18] studied a strong convergence theorem by the
hybrid method for a family of nonexpansive mappings in Hilbert spaces as follows:
x0 ∈ H , C1 = C and x1 = PC1

x0, and let





yn = αnxn + (1 − αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1

x0, n ∈ N,

(1.1)

where 0 ≤ αn ≤ a < 1 for all n ∈ N and {Tn} is a sequence of nonexpansive map-

pings of C into itself such that
∞⋂
n=1

F (Tn) 6= ∅. They proved that if {Tn} satisfies

some appropriate conditions, then {xn} converges strongly to P⋂
∞

n=1
F (Tn)x0.
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In 2011, Saewan and Kumam [24] introduced a new hybrid projection method
based on modified Mann iterative scheme by the generalized f -projection operator
for a countable family of relatively quasi-nonexpansive mappings and the solutions
of the system of generalized mixed equilibrium problems. Later, they [25] also
studied the new hybrid Ishikawa iteration process by the generalized f -projection
operator for finding a common element of the fixed point set for two countable
families of weak relatively nonexpansive mappings and the set of solutions of the
system of generalized Ky Fan inequalities in a uniformly convex and uniformly
smooth Banach space.

Recently, Li et al. [27] studied the following hybrid iterative scheme for a
relatively nonexpansive mapping by using the generalized f -projection operator in
Banach spaces as follows:





x0 ∈ C, C0 = C,

yn = J−1 (αnJxn + (1− αn) JTxn) ,

Cn+1 = {w ∈ Cn : G (w, Jyn) ≤ G (w, Jxn)} ,
xn+1 = Πf

Cn+1
x0, n ≥ 1.

Under some appropriate assumptions, they obtained strong convergence theorems
in Banach spaces.

Motivated and inspired by the work mentioned above, in this paper, we es-
tablish the significant inequality related to quasi strict f -pseudo contractions in
the framework of Hilbert spaces. By using the ideas of metric f -projection, we
propose an iterative shrinking metric f -projection method for finding a common
fixed point of two quasi strict f - pseudo contractions. Moreover, we also provide
some applications of the main theorem as well as other related results.

2 Preliminaries

In this section, we provide some definitions and some relevant lemmas which
are useful to prove in the next section. Most of them are known others are not
hard to find and understand the proof. Throughout this paper, we will use the
notation ⇀ for weak convergence and → for strong convergence.

Lemma 2.1 (Takahashi [28]). Let {an} be a sequence of real numbers. Then,

lim
n→∞

an = 0 if and only if for any subsequence {ani
} of {an}, there exists a sub-

sequence
{
anij

}
of {ani

} such that lim
j→∞

anij
= 0.

Let H be a real Hilbert space and C be nonempty, closed and convex subset
of H . Let (·, ·)f : C ×H → (−∞,+∞] be a functional defined as follows (see [27]
(see also [4])):

(y, x)f := ‖y‖2 − 2 〈y, x〉+ ‖x‖2 + 2ρf (y) = ‖y − x‖2 + 2ρf (y) (2.1)
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where y ∈ C, x ∈ H , ρ is positive number and f : C → (−∞,+∞] is proper,
convex and lower semicontinous. From the definitions of (·, ·)f and f , it is easy to
see the following properties:

(1) (y, x)f is convex and continuous with respect to x when y is fixed;

(2) (y, x)f is convex and lower semicontinuous with respect to y when x is fixed.

Definition 2.2 (Li et al. [27] (see also [4])). Let H be a real Hilbert space and

C be nonempty, closed and convex subset of H. We say that P
f
C : H → 2C is a

metric f -projection operator if

P
f
Cx =

{
u ∈ C

∣∣∣∣ (u, x)f = inf
ξ∈C

(ξ, x)f

}
, ∀x ∈ H.

Lemma 2.3 (Li et al. [27, Lemma 3.1(ii)]). Let H be a real Hilbert space and let

∅ 6= C ⊂ H. Then for every x ∈ H, x̂ = P
f
Cx if and only if

〈x̂ − y, x− x̂〉+ ρf(y)− ρf(x̂) ≥ 0, ∀y ∈ C.

Lemma 2.4 (Li et al. [27, Lemma 3.2]). Let H be a real Hilbert space, let C be

a nonempty closed convex subset of H, and let x ∈ H, x̂ = P
f
Cx. Then

‖y − x̂‖2 + (x̂, x)f 6 (y, x)f , ∀y ∈ C. (2.2)

Lemma 2.5 (Deimling [29]). Let H be a real Hilbert space and f : H → R∪{+∞}
be a lower semicontinuous convex functional. Then there exists z ∈ H and α ∈ R

such that

f(x) ≥ 〈x, z〉+ α, ∀x ∈ X. (2.3)

Due to the properties of f , we have the motivation and ideas to create a new
type of mappings which is general and covers a quasi-strict pseudo-contraction as
follows.

Definition 2.6. Let H be a real Hilbert space and f : H → R ∪ {+∞} be a

proper a lower semicontinuous convex funtional, a mapping T with domain D(T )
and range R(T ) in H is called quasi strict f -pseudo-contraction if the set of fixed

point F (T ) is nonempty and if there exists a constant 0 ≤ k < 1 such that for each

p ∈ F (T )

(p, Tx)f 6 (p, x)f + k
(
(x, Tx)f − 2ρf (p)

)
, ∀x ∈ D(T ). (2.4)

It is obvious from above definition that (2.4) equivalent to

‖p− Tx‖2 ≤ ‖p− x‖2 + k‖x− Tx‖2 + 2kρ (f(x)− f(p)) , ∀x ∈ C and p ∈ F (T ).
(2.5)
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Definition 2.7. A mapping T : C → C is said to be closed if for any sequence

{xn} ⊂ C with xn → x and Txn → y, then Tx = y.

Example 2.1 ([23, Example 9]). Let T : H → H. be a mapping defined by

Tx = 3
2x for all x ∈ H. Then, F (T ) = {x ∈ H : Tx = x} = {0} and T is closed

and quasi-strict ‖·‖2-pseudo contraction.

Example 2.2 (Saewan and Kumam [24, Example 1.5]). Let X = R
3 be provided

with the norm ‖(x1, x2, x3)‖ =
√
x2
1 + x2

2 +
√
x2
2 + x2

3.

This is smooth strictly convex Banach space and C = {x ∈ R
3|x2 = 0, x3 = 0}

is a closed and convex subset of X. It is a simple computation; we get

PC(1, 1, 1) = (1, 0, 0), ΠC(1, 1, 1) = (2, 0, 0). (2.6)

We set ρ = 1 is positive number and define f : C → R ∪ {+∞} by

f(x) =

{
2 + 2

√
5, x < 0;

−2− 2
√
5, x ≥ 0.

Then, f is proper, convex, and lower semicontinuous. Simple computations show

that

Πf
C(1, 1, 1) = (4, 0, 0). (2.7)

Lemma 2.8 ([23, Lemma 15]). Let C be a nonempty closed convex subset of a

real Hilbert space H and T : C → C be a quasi strict f -pseudo-contraction. Then

the fixed point set F (T ) of T is closed and convex.

The following lemma provides the significant inequality related to two quasi
strict f -pseudo-contractions in the framework of Hilbert spaces.

Lemma 2.9. Let C be a nonempty closed convex subset of a real Hilbert spaces

H. Let S, T : C → C be two quasi strict f -pseudo contractions such that Ω :=
F (T ) ∩ F (S) 6= ∅. Then

‖x− Tx‖2 + ‖x− Sx‖2

≤ 2

1− kT
〈x− p, x− Tx〉+ 2

1− kS
〈x− p, x− Sx〉

+ 2ρ

(
kT

1− kT
+

kS

1− kS

)
(f(xn)− f(p))

(2.8)

for all x ∈ C and p ∈ Ω.

Proof Let x ∈ C and p ∈ Ω. Since T is a quasi strict f -pseudo-contraction, we
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have

‖p− Tx‖2 ≤ ‖p− x‖2 + kT ‖x− Tx‖2 + 2kTρ(f(x)− f(p))

⇔‖p− x‖2 + 2 〈p− x, x− Tx〉+ ‖x− Tx‖2 (2.9)

≤ ‖p− x‖2 + kT ‖x− Tx‖2 + 2kTρ (f(x)− f(p))

⇔ (1− kT ) ‖x− Tx‖2 ≤ 2 〈x− p, x− Tx〉+ 2kTρ (f(x) − f(p))

⇔‖x− Tx‖2 ≤ 2

1− kT
〈x− p, x− Tx〉+ 2kTρ

1− kT
(f(x)− f(p)) .

Similarly, we can show that

‖x− Sx‖2 ≤ 2

1− kS
〈x− p, x− Sx〉+ 2kSρ

1− kS
(f(x)− f(p)) . (2.10)

It follows from (2.9) and (2.10) that we obtain

‖x− Tx‖2 + ‖x− Sx‖2

≤ 2

1− kT
〈x− p, x− Tx〉+ 2

1− kS
〈x− p, x− Sx〉

+ 2ρ

(
kT

1− kT
+

kS

1− kS

)
(f(xn)− f(p)).

This completes the proof.

3 Main result

In this section, an iterative shrinking metric f -projection method is provided
in order to find a common fixed point of two quasi strict f -pseudo-contractions.

Theorem 3.1. Let H be a real Hilbert space, C a nomempty closed convex subset

of H, let S and T be closed and quasi strict f -pseudo-contractions from C into

itself. Suppose that Ω := F (T ) ∩ F (S) 6= ∅. Define a sequence {xn} in C by the

following algorithm:




x0 ∈ H, chosen arbitrarily,

C1 = C,

x1 = P
f
C1

x0,

Cn+1 =




z ∈ Cn

∣∣∣∣∣∣∣∣

‖xn − Txn‖2 + ‖xn − Sxn‖2

≤ 2
1−kT

〈xn − z, xn − Txn〉+ 2
1−kS

〈xn − z, xn − Sxn〉

+ 2ρ
(

kT

1−kT
+ kS

1−kS

)
(f(xn)− f(z))





,

xn+1 = P
f
Cn+1

x0.

(3.1)

Then, the sequence {xn} converges strongly to P
f
Ωx0.



An Iterative Shrinking Metric f -Projection Method ... 75

Proof The proof is divided into six steps.

Step 1. Show that Cn is closed and convex for all n ≥ 1.
For n = 1, C1 = C is closed and convex. Assume that Ci is closed and convex for
some i ∈ N. For z ∈ Ci+1, we have

‖xi − Txi‖2 + ‖xi − Sxi‖2

≤ 2
1−kT

〈xi − z, xi − Txi〉+ 2
1−kS

〈xi − z, xi − Sxi〉

+ 2ρ
(

kT

1−kT
+ kS

1−kS

)
(f(xi)− f(z)).

It is not hard to see that the continuity and linearity of 〈·, xi − Txi〉 and 〈·, xi − Sxi〉
together with the lower semicontinuity and convexity of f , allow Ci+1 to be closed
and convex. Then, for all n ≥ 1, Cn is closed and convex.

Step 2. Show that Ω ⊂ ⋂∞
n=1 Cn := D.

It is obvious that Ω := F (T ) ∩ F (S) ⊂ C = C1. Suppose that Ω ⊂ Ci for
some i ∈ N. For any p ∈ Ω, we have p ∈ Ci and by Lemma 2.9 we obtain

‖xi − Txi‖2 + ‖xi − Sxi‖2

≤ 2
1−kT

〈xi − p, xi − Txi〉+ 2
1−kS

〈xi − p, xi − Sxi〉

+ 2ρ
(

kT

1−kT
− kS

1−kS

)
(f(xi)− f(p)).

This means that p ∈ Ci+1. By mathematical induction, Ω ⊂ Cn for all n ≥ 1.
Therefore Ω ⊂ ⋂∞

n=1 Cn := D 6= ∅.

Step 3. Show that {xn} is bounded and the lim
n→∞

(xn, x0)f exists.

Since f : X → R is a convex and lower semicontinuous mapping, applying
Lemma 2.5, we see that there exist z ∈ H and α ∈ R such that

f(y) ≥ 〈y, z〉+ α, ∀y ∈ H.

It follows that

(xn, x0)f = ‖xn‖2 − 2〈xn, x0〉+ ‖x0‖2 + 2ρf(xn)

≥ ‖xn‖2 − 2〈xn, x0〉+ ‖x0‖2 + 2ρ〈xn, z〉+ 2ρα

= ‖xn‖2 − 2〈xn, x0 − ρz〉+ ‖x0‖2 + 2ρα

≥ ‖xn‖2 − 2‖x0 − ρz‖‖xn‖+ ‖x0‖2 + 2ρα

= (‖xn‖ − ‖x0 − ρz‖)2 + ‖x0‖2 − ‖x0 − ρz‖2 + 2ρα.

(3.2)
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Since xn = P
f
Cn

x0, it follows from (3.2) that

‖x0‖2 − ‖x0 − ρz‖+ 2ρα ≤ (‖xn‖ − ‖x0 − ρz‖)2 + ‖x0‖2 − ‖x0 − ρz‖+ 2ρα

≤ (xn, x0)f =
(
P

f
Cn

(x0), x0

)
f

= inf
ξ∈Cn

(ξ, x0)f

≤ (u, x0)f

for each u ∈ Ω. This implies that {xn} and (xn, x0)f are bounded. By the fact
that xn+1 ∈ Cn+1 ⊂ Cn and Lemma 2.4 we obtain

‖xn+1 − xn‖2 + (xn, x0)f ≤ (xn+1, x0)f .

Since ‖xn+1 − xn‖2 ≥ 0,
{
(xn, x0)f

}
is nondecreasing. Therefore, the limit of

{
(xn, x0)f

}
exists.

Step 4. Show that xn → p as n → ∞, where p = P
f
Dx0.

Let {xni
} ⊂ {xn}. From the boundedness of {xni

} there exists
{
xnij

}
⊂ {xni

}
such that

xnij
⇀ p as j → ∞. (3.3)

Write x̃j := xnij
, it is easy to see that p ∈ C̃j where C̃j := Cnij

. Note that

(x̃j , x0)f =
(
P

f

C̃j

(x0), x0

)
f
= min

ξ∈C̃j

(ξ, x0)f ≤ (p, x0)f (3.4)

On the other hand, since x̃j ⇀ p, so x̃j − x0 ⇀ p− x0 and then by weakly lower

semicontinuity of ‖·‖2 and f we obtain

‖p− x0‖2 ≤ lim inf
j→∞

‖x̃j − x0‖2 (3.5)

and

f(p) ≤ lim inf
j→∞

f(x̃j). (3.6)

Combine (3.5) and (3.6), we obtain

(p, x0)f = ‖p− x0‖2 + 2ρf(p) ≤ lim inf
j→∞

‖x̃j − x0‖2 + 2ρlim inf
j→∞

f(x̃j)

≤ lim inf
j→∞

(
‖x̃j − x0‖2 + 2ρf(x̃j)

)
(3.7)

= lim inf
j→∞

(x̃j , x0)f .
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It follows from (3.4) and (3.7), we have

(p, x0)f ≤ lim inf
j→∞

(x̃j , x0)f ≤ lim sup
j→∞

(x̃j , x0)f ≤ (p, x0)f

and then

lim
j→∞

(x̃j , x0)f = (p, x0)f .

Next, we consider

lim sup
j→∞

‖x̃j − x0‖2 = lim sup
j→∞

(
(x̃j , x0)f − 2ρf(x̃j)

)

≤ lim sup
j→∞

(x̃j , x0)f + lim sup
j→∞

(−2ρf(x̃j))

= (p, x0)f − 2ρ lim inf
j→∞

f(x̃j) ≤ (p, x0)f − 2ρf(p) (3.8)

= ‖p− x0‖2.

Combine (3.5) and (3.8), we obtain

‖p− x0‖2 ≤ lim inf
j→∞

‖x̃j − x0‖2 ≤ lim sup
j→∞

‖x̃j − x0‖2 ≤ ‖p− x0‖2

and then

lim
j→∞

‖x̃j − x0‖2 = ‖p− x0‖2. (3.9)

Note that

f(x̃j) =
1

2ρ

(
(x̃j , x0)f − ‖x̃j − x0‖2

)
.

Then we have

lim sup
j→∞

f(x̃j) =
1

2ρ
lim sup
j→∞

(
(x̃j , x0)f − ‖x̃j − x0‖2

)
=

1

2ρ

(
(p, x0)f − ‖p− x0‖2

)

= f(p). (3.10)

Combine (3.6) and (3.10), we obtain

f(p) ≤ lim inf
j→∞

f(x̃j) ≤ lim sup
j→∞

f(x̃j) = f(p)

and then

lim
j→∞

f(xnij
) = lim

j→∞
f(x̃j) = f(p).

By Lemma 2.1, it implies that

lim
n→∞

f (xn) = f (p) . (3.11)
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On the other hand, we note that

‖x̃j − p‖2 = ‖(x̃j − x0)− (p− x0)‖2 = ‖x̃j − x0‖2 − 2 〈x̃j − x0, p− x0〉+ ‖p− x0‖2

It follows from (3.3) and (3.9), we obtain

lim
j→∞

‖x̃j − p‖2 = lim
j→∞

(
‖x̃j − x0‖2 − 2 〈x̃j − x0, p− x0〉+ ‖p− x0‖2

)

= lim
j→∞

‖x̃j − x0‖2 − 2 lim
j→∞

〈x̃j − x0, p− x0〉+ ‖p− x0‖2

= ‖p− x0‖2 − 2 〈p− x0, p− x0〉+ ‖p− x0‖2

= 0.

Therefore xnij
= x̃j → p as j → ∞. This implies by Lemma 2.1 that

xn → p as n → ∞.

Thus,
ωw(xn) = {p} .

It is easy to show that p ∈ Cn for all n ≥ 1. Hence p ∈
∞⋂

n=1
Cn =: D. Since

xn = P
f
Cn

x0, so by Lemma 2.3 we have

〈xn − y, x0 − xn〉+ ρf(y)− ρf(xn) ≥ 0, ∀y ∈ D,

letting n → ∞, so we obtain

〈p− y, x0 − p〉+ ρf(y)− ρf(p) ≥ 0, ∀y ∈ D,

which implies that p = P
f
Dx0.

Step 5. Show that p ∈ Ω.
Firstly, we prove that {Txn} and {Sxn} are bounded. Indeed, taking v ∈ Ω =

F (T ) ∩ F (S) and then by (2.9) we have

‖v‖2 − 2 ‖v‖ ‖Txn‖+ ‖Txn‖2 = (‖v‖ − ‖Txn‖)2 ≤ ‖v − Txn‖2

≤ ‖v − xn‖2 + kT ‖xn − Txn‖2 + 2kTρ (f(xn)− f(v))

≤ ‖v − xn‖2 + kT

(
2

1− kT
〈xn − v, xn − Txn〉+

2kTρ

1− kT
(f(xn)− f(v))

)

+ 2kTρ (f(xn)− f(v))

≤ ‖v − xn‖2 +
2kT

1− kT
〈xn − v, xn − Txn〉+ 2kTρ

(
kT

1− kT
+ 1

)
(f(xn)− f(v))

≤ ‖v − xn‖2 +
2kT

1− kT
‖xn − v‖ ‖xn‖+

2kT
1− kT

‖xn − v‖ ‖Txn‖+
2kTρ

1− kT
(f(xn)− f(v)) .
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By a simple calculation we get

‖Txn‖2 ≤
(
‖v − xn‖2 +

2kT
1− kT

‖xn − v‖ ‖xn‖ − ‖v‖2 + 2kTρ

1− kT
(f(xn)− f(v))

)

+

(
2kT

1− kT
‖xn − v‖+ 2 ‖v‖

)
‖Txn‖

≤ M + M̃ ‖Txn‖ = M +
1

2

(
2M̃ ‖Txn‖

)

≤ M +
1

2

(
M̃2 + ‖Txn‖2

)
= M +

1

2
M̃2 +

1

2
‖Txn‖2,

whereM := sup
{
‖v − xn‖2 + 2kT

1−kT
‖xn − v‖ ‖xn‖ − ‖v‖2 + 2kT ρ

1−kT
(f(xn)− f(v))

∣∣∣ n ∈ N

}

and
M̃ := sup

{
2kT

1−kT
‖xn − v‖+ 2 ‖v‖

∣∣∣ n ∈ N

}
. So, we have

‖Txn‖2 ≤ 2M + M̃2

for all n ∈ N. Therefore, {Txn} is bounded. By the same argument, {Sxn} is also
bounded. Moreover, we note that

‖xn+1 − xn‖ ≤ ‖xn+1 − p‖+ ‖p− xn‖ → 0 as n → ∞.

Thus, by the fact that xn+1 = P
f
Cn+1

x0 ∈ Cn+1 and (3.11), we obtain

‖xn − Txn‖2 + ‖xn − Sxn‖2

≤ 2
1−kT

〈xn − xn+1, xn − Txn〉+ 2
1−kS

〈xn − xn+1, xn − Sxn〉

+ 2ρ
(

kT

1−kT
+ kS

1−kS

)
(f(xn)− f(xn+1)).

This means that

‖xn − Txn‖ → 0and‖xn − Sxn‖ → 0 as n → ∞.

Next, we have that

‖Txn − p‖ ≤ ‖Txn − xn‖+ ‖xn − p‖ → 0 as n → ∞.

That is Txn → p as n → ∞. It follows from the closedness of T , we obtain Tp = p,
thus p ∈ F (T ). Similarly, p ∈ F (S). Therefore, p ∈ F (T ) ∩ F (S) = Ω.

Step 6. Show that p = P
f
Ωx0.

Notice by step 2 that Ω ⊂ D, so we have P
f
Ωx0 ∈ D and then by Step 5 it

yields

(p, x0)f =
(
P

f
Dx0, x0

)
f
= inf

ξ∈D
(ξ, x0)f

≤
(
P

f
Ωx0, x0

)
f
= inf

ζ∈Ω
(ζ, x0)f

≤ (p, x0)f .
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This shows that
(
P

f
Ωx0, x0

)
f
= (p, x0)f . It follows from the uniqueness we have

p = P
f
Ωx0. Then {xn} converges strongly to p = P

f
Ωx0. This completes the proof.

4 Deduced theorems and Applications

In this section, some applications of the main theorem are provided in order
to find some fixed points or common fixed points. Furthermore, it can be applied
to find zeros of some monotone operators as well.

If S = T , then kT = kS =: k and by Theorem 3.1 we obtain the following
corollary.

Corollary 4.1. Let C, H and T be the same as in Theorem 3.1. Suppose that

F (T ) 6= ∅. Define a sequence {xn} in C by the following algorithm:





x0 ∈ H, chosen arbitrarily,

C1 = C,

x1 = P
f
C1

x0,

Cn+1 =
{
z ∈ Cn

∣∣∣ ‖xn − Txn‖2 ≤ 2
1−k

〈xn − z, xn − Txn〉+ 2kρ
1−k

(f(xn)− f(z))
}
,

xn+1 = P
f
Cn+1

x0.

Then, the sequence {xn} converges strongly to P
f
Ωx0.

If f = ‖ · ‖2, then (x, y)‖·‖2 = ‖x− y‖2 + 2ρ‖x‖2 for all (x, y) ∈ C × H and

P
f
Cn

x0 = P
‖·‖2

Cn
x0 for all n ∈ N then by Theorem 3.1, we obtain the following

corollary.

Corollary 4.2. Let C and H be the same as in Theorem 3.1, let T and S be

two closed and quasi strict ‖·‖2-pseudo-contractions from C into itself such that

Ω := F (T ) ∩ F (S) 6= ∅. Define a sequence {xn} in C by the following algorithm:





x0 ∈ H, chosen arbitrarily,

C1 = C,

x1 = P
‖·‖2

C1
x0,

Cn+1 =




z ∈ Cn

∣∣∣∣∣∣∣∣

‖xn − Txn‖2 + ‖xn − Sxn‖2

≤ 2
1−kT

〈xn − z, xn − Txn〉+ 2
1−kS

〈xn − z, xn − Sxn〉

+ 2ρ
(

kT

1−kT
+ kS

1−kS

) (
‖xn‖2 − ‖z‖2

)





,

xn+1 = P
‖·‖2

Cn+1
x0.

Then, the sequence {xn} converges strongly to P
‖·‖2

Ω x0.
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If f is a constant function say f = a ∈ R, then (x, y)a = ‖x− y‖2 + 2ρa and
not hard to see that T coincide with a quasi strict a-pseudo-contraction. Thus by
Theorem 3.1, we obtain the following corollary.

Corollary 4.3. Let C and H be the same as in Theorem 3.1, let T and S be

two closed and quasi strict a-pseudo-contractions from C into itself such that Ω :=
F (T ) ∩ F (S) 6= ∅. Define a sequence {xn} in C by the following algorithm:





x0 ∈ H, chosen arbitrarily,

C1 = C,

x1 = P a
C1

x0,

Cn+1 =

{
z ∈ Cn

∣∣∣∣∣
‖xn − Txn‖2 + ‖xn − Sxn‖2

≤ 2
1−kT

〈xn − z, xn − Txn〉+ 2
1−kS

〈xn − z, xn − Sxn〉

}
,

xn+1 = P a
Cn+1

x0.

Then, the sequence {xn} converges strongly to P a
Ωx0.

If f = a = 0, then Corollary 4.3 reduces to the following corollary.

Corollary 4.4. Let C and H be the same as in Theorem 3.1, let T and S be

two closed and quasi strict pseudo-contractions from C into itself such that Ω :=
F (T ) ∩ F (S) 6= ∅. Define a sequence {xn} in C by the following algorithm:





x0 ∈ H, chosen arbitrarily,

C1 = C,

x1 = PC1
x0,

Cn+1 =

{
z ∈ Cn

∣∣∣∣∣
‖xn − Txn‖2 + ‖xn − Sxn‖2

≤ 2
1−kT

〈xn − z, xn − Txn〉+ 2
1−kS

〈xn − z, xn − Sxn〉

}
,

xn+1 = PCn+1
x0.

Then, the sequence {xn} converges strongly to PΩx0.

Recall that a mapping A : D(A) ⊂ H → H is said to be monotone if, for each
x, y ∈ D(A), the following inequality holds:

〈x− y,Ax−Ay〉 ≥ 0.

A is said to be r-inverse strongly monotone if there exists a positive real number
r such that

〈x − y,Ax−Ay〉 ≥ r‖Ax −Ay‖2, ∀x, y ∈ D(A).

A is said to be r-quasi inverse strongly monotone if A−1(0) = {z ∈ D(A) : Az =
0} 6= ∅ and there exists a positive real number r such that for each p ∈ A−1(0),
the following inequality holds:

〈x− p,Ax〉 ≥ r‖Ax‖2, ∀x ∈ D(A).
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Without loss of generality we can assume that the constant r ∈
(
0, 12

]
since if

A is r̂-quasi inverse strongly monotone (or r̂-inverse strongly monotone), then we
can find r ∈

(
0, 12

]
such that r̂ ≥ r and then r̂‖Ax‖2 ≥ r‖Ax‖2 (or r̂‖Ax−Ap‖2 ≥

r‖Ax −Ap‖2) for all r̂ > 0 (i.e., A is r-quasi inverse strongly monotone).
Next, A mapping A : C → H is said to be r-quasi inverse strongly f -monotone

if A−1(0) = {z ∈ D(A) : Az = 0} 6= ∅ and there exists a positive real number
r ∈

(
0, 12

]
such that for each p ∈ A−1(0), the following inequality holds:

〈x − p,Ax〉+
(
1
2 − r

)
ρ(f(x)− f(p)) ≥ r‖Ax‖2, ∀x ∈ D(A),

where ρ is positive number and f : C → (−∞,+∞] is proper, convex and lower
semicontinuous.

Finally, we provide some applications of the main theorem to find a common
zero point problems of a closed and two quasi inverse strongly monotone operators
and via an iterative shrinking metric f -projection method in the framework of
Hilbert spaces.

Theorem 4.5. Let C, H be the same as in Theorem 3.1, and A,B : H → H be

rA and rB-quasi inverse strongly f -monotone and closed operators, respectively,

such that p ∈ Ω := A−1(0) ∩ B−1(0) 6= ∅. Define a sequence {xn} in C by the

following algorithm:





x0 ∈ H, chosen arbitrarily,

C1 = C,

x1 = P
f
C1

x0,

Cn+1 =




z ∈ Cn

∣∣∣∣∣∣∣∣

‖Axn‖2 + ‖Bxn‖2

6 1
rA

〈xn − z, Axn〉+ 1
rB

〈xn − z,Bxn〉

+ 2ρ
(

1
rA

+ 1
rB

)
(f(xn)− f(z))





,

xn+1 = P
f
Cn+1

x0,

Then, the sequence {xn} converges strongly to P
f
Ωx0.

Proof Since A is rA-quasi inverse strongly f -monotone, we obtain

〈x− p,Ax〉+
(
1
2 − rA

)
ρ(f(x) − f(p)) ≥ rA‖Ax‖2

⇔ 2〈x− p,Ax〉+ (1− 2rA) ρ(f(x) − f(p)) ≥ 2rA‖Ax‖2

⇔ ‖x− p‖2 + ‖Ax‖2 − ‖(I −A)x− p‖2 + (1− 2rA) ρ(f(x)− f(p)) ≥ 2rA‖Ax‖2

⇔ ‖(I −A)x− p‖2 ≤ ‖x− p‖2 + (1− 2rA) ‖(I −A)x− x‖2 + (1− 2rA) ρ(f(x)− f(p)).

Similarly, by the assumption of B we can show that

‖(I −B)x− p‖2 6 ‖x− p‖2+(1− 2rB) ‖(I −B)x− x‖2+(1− 2rB) ρ(f(x)−f(p)).
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Let T := (I − A) and S := (I − B). Then we have T and S are closed and quasi
strict f -pseudo-contractions such that kT = 1−2rA ⇔ 2

1−kT
= 1

rA
and 2

1−kS
= 1

rB
.

By applying Theorem 3.1, we have the desired results.
If f = 0, then Theorem 4.5 reduces to the following corollary.

Corollary 4.6. Let C, H be the same as in Theorem 3.1, and A,B : H → H

be rA and rB-quasi inverse strongly monotone and closed operators, respectively,

such that p ∈ Ω := A−1(0) ∩ B−1(0) 6= ∅. Define a sequence {xn} in C by the

following algorithm:





x0 ∈ H, chosen arbitrarily,

C1 = C,

x1 = PC1
x0,

Cn+1 =

{
z ∈ Cn

∣∣∣∣∣
‖Axn‖2 + ‖Bxn‖2

6
1
rA

〈xn − z, Axn〉+ 1
rB

〈xn − z,Bxn〉

}
,

xn+1 = PCn+1
x0,

Then, the sequence {xn} converges strongly to PΩx0.
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