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1 Introduction

Let A denote the class of functions f of the form

f(z) = z +

∞
∑

n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and satisfy the
normalization condition f(0) = f ′(0)− 1 = 0. Now, we recall that the generalized
Bessel function of the first kind w = wp,b,c is defined as the particular solution of
the second-order linear homogenous differential equation

z2ω′′(z) + bzω′(z) +
[

cz2 − p2 + (1− b)p
]

ω(z) = 0, (1.2)
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where b, p, c ∈ C, which is a natural generalization of Bessel’s equation. This
function has the familiar representation

ω(z) = ωp,b,c(z) =
∞
∑

n=0

(−1)ncn

n!Γ(p+ n+ b+1
2 )

(z

2

)2n+p

, z ∈ C. (1.3)

The differential equation (1.2) permits the study of Bessel, modified Bessel,
spherical Bessel function and modified spherical Bessel functions all together. So-
lutions of (1.2) are referred to as the generalized Bessel function of order p. The
particular solution given by (1.3) is called the generalized Bessel function of the
first kind of order p. Although the series defined above is convergent everywhere,
the function ωp,b,c is generally not univalent in U . It is worth mentioning that, in
particular, when b = c = 1, we reobtain the Bessel function ωp,1,1 = Jp, and for
c = −1, b = 1 the function ωp,1,−1 becomes the modified Bessel function Ip. Now,
consider the function up,b,c defined by the transformation

up,b,c(z) = 2pΓ

(

p+
b+ 1

2

)

z−p/2ωp,b,c(z
1/2).

By using the well-known Pochhammer (or Appell) symbol, defined in terms of the
Euler Gamma function for a 6= 0,−1,−2, ... by

(a)n =
Γ(a+ n)

Γ(a)
=

{

1, if n = 0
a(a+ 1)...(a+ n− 1), if n = 1, 2, 3, ...,

,

we obtain for the function up,b,c the following representation

up,b,c(z) =

∞
∑

n=0

(−c/4)
n

(

p+ (b+1)
2

)

n

zn

n!
, (1.4)

where p + (b + 1)/2 6= 0,−1,−2, .... This function is analytic on C and satisfies
the second-order linear differential equation

4z2u′′(z) + 2 (2p+ b + 1) zu′(z) + czu(z) = 0.

For convenience throughout in the sequel, we use the following notations:

up,b,c = up, k = p+
b+ 1

2
.

Let H be the family of all harmonic functions of the form f = h+ g, where

h(z) = z +

∞
∑

n=2

Anz
n, g(z) =

∞
∑

n=1

Bnz
n, |B1| < 1, (z ∈ U), (1.5)

are in the class A. For complex parameters c1, k1, c2, k2 (k1, k2 6= 0,−1,−2, ...),
we define the functions φ1(z) = zup1

(z) and φ2(z) = zup2
(z) .
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Corresponding to these functions, we introduce the following convolution op-
erator

Ω ≡ Ω

(

k1, c1
k2, c2

)

: H → H

defined by

Ω

(

k1, c1
k2, c2

)

f = f ∗ (φ1 + φ2) = h(z) ∗ φ1(z) + g(z) ∗ φ2(z)

for any function f = h+ g in H .
Letting

Ω

(

k1, c1
k2, c2

)

f(z) = H(z) +G(z),

where

H(z) = z+

∞
∑

n=2

(−c1/4)
n−1

(k1)n−1(n− 1)!
Anz

n, G(z) =

∞
∑

n=1

(−c2/4)
n−1

(k2)n−1(n− 1)!
Bnz

n. (1.6)

Denote by SH the subclass of H that are univalent and sense-preserving in U .

Note that f−B1f
1−|B1|2

∈ SH whenever f ∈ SH . We also let the subclass S0
H of SH

S0
H = {f = h+ g ∈ SH : g′ (0) = B1 = 0} .

The classes S0
H and SH were first studied in [1]. Also, we let K0

H , S∗,0
H and C0

H

denote the subclasses of S0
H of harmonic functions which are, respectively, convex,

starlike and close-to-convex in U . Also, let T 0
H be the class of sense-preserving,

typically real harmonic functions f = h + g in H . For definitions and properties
of these classes, one may refer to ([2] - [18]).

For 0 ≤ γ < 1, let

NH (γ) =

{

f ∈ H : Re

(

f ′ (z)

z′

)

≥ γ, z = reiθ ∈ U

}

,

and

GH(γ) =

{

f ∈ H : Re

{

(

1 + eiα
) zf ′(z)

f(z)
− eiα

}

≥ γ, α ∈ R, z ∈ U

}

,

where

z′ =
∂

∂θ

(

z = reiθ
)

, z′′ =
∂

∂θ
(z′), f ′ (z) =

∂

∂θ
f
(

reiθ
)

, f ′′(z) =
∂

∂θ
(f ′(z)) .

Define
TNH (γ) ≡ NH (γ) ∩ T and TGH(γ) ≡ GH(γ) ∩ T

where T consists of the functions f = h+ g in SH so that h and g are of the form

h(z) = z −

∞
∑

n=2

|An| z
n, g(z) =

∞
∑

n=1

|Bn| z
n. (1.7)
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The classes NH(γ), TNH(γ), GH(γ) and TGH(γ) were initially introduced and
studied, respectively, in ([5], [17]). A function f in GH(γ) is called Goodman-
Rønning-type harmonic univalent functions in U .

Throughout this paper, we will frequently use the notation

Ω (f) = Ω

(

k1, c1
k2, c2

)

f.

The generalized Bessel function is a recent topic of study in Geometric Function
Theory (e.g. see the work of [6]- [9] and [13]). Motivated by results on connections
between various subclasses of analytic and harmonic univalent functions by using
hypergeometric functions (see [3], [4], [10], [12], [14]-[16] and [18] and by work of
Baricz [6]-[9]), we establish a number of connections between the classes GH(γ),
K0

H , S∗,0
H , C0

H and NH(β) by applying the convolution operator Ω.

2 Main Results

In order to establish connections between harmonic convex functions and
Goodman-Rønning-type harmonic univalent functions, we need following results
in Lemma 2.1, Lemma 2.2 and Lemma 2.4.

Lemma 2.1 ([1], [11]). If f = h+ g ∈ K0
H where h and g are given by (1.5) with

B1 = 0, then

|An| ≤
n+ 1

2
, |Bn| ≤

n− 1

2
.

Lemma 2.2 ([17]). Let f = h+ g be given by (1.5). If 0 ≤ γ < 1 and

∞
∑

n=2

(2n− 1− γ) |An|+

∞
∑

n=1

(2n+ 1 + γ) |Bn| ≤ 1− γ, (2.1)

then f is sense-preserving, Goodman-Rønning-type harmonic univalent functions
in U and f ∈ GH(γ).

Remark 2.3. In [17], it is also shown that f = h + g given by (1.4) is in the
family TGH(γ), if and only if the coefficient condition (2.1) holds. Moreover, if
f ∈ TGH(γ), then

|An| ≤
1− γ

2n− 1− γ
, n ≥ 2,

|Bn| ≤
1− γ

2n+ 1 + γ
, n ≥ 1.

Lemma 2.4 ([9]). If b, p, c ∈ C and k 6= 0,−1,−2, ... then the function up satisfies
the recursive relation 4ku′

p(z) = −cup+1(z) for all z ∈ C.
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Theorem 2.5. Let c1, c2 < 0, k1, k2 > 0, (k1, k2 6= 0,−1,−2, ...). If for some
γ(0 ≤ γ < 1) and the inequality

2u′′
p1
(1) + (7− γ)u′

p1
(1) + 2(1− γ)up1

(1) + 2u′′
p2
(1) + (5 + γ)u′

p2
≤ 4(1− γ) (2.2)

is satisfied then Ω
(

K0
H

)

⊂ GH(γ).

Proof. Let f = h+ g ∈ K0
H where h and g are of the form (1.5) with B1 = 0. We

need to show that Ω (f) = H +G ∈ GH (γ), where H and G defined by (1.6) with
B1 = 0 are analytic functions in U .

In view of Lemma 2.2, we need to prove that

P1 ≤ 1− γ,

where

P1 =

∞
∑

n=2

(2n− 1− γ)

∣

∣

∣

∣

(−c1/4)
n−1

(k1)n−1(n− 1)!
An

∣

∣

∣

∣

+

∞
∑

n=2

(2n+ 1 + γ)

∣

∣

∣

∣

(−c2/4)
n−1

(k2)n−1(n− 1)!
Bn

∣

∣

∣

∣

.

In view of Lemma 2.1, we have

P1 ≤
1

2

[

∞
∑

n=2

(n+ 1)(2n− 1− γ)
(−c1/4)

n−1

(k1)n−1(n− 1)!
+

∞
∑

n=2

(n− 1)(2n+ 1 + γ)
(−c2/4)

n−1

(k2)n−1(n− 1)!

]

=
1

2

[

∞
∑

n=2

{2(n− 1)(n− 2) + (7− γ) (n− 1) + 2(1− γ)}
(−c1/4)

n−1

(k1)n−1(n− 1)!

+
∞
∑

n=2

{2(n− 2) + (5 + γ)}
(−c2/4)

n−1

(k2)n−1(n− 2)!

]

=
1

2

[

2

∞
∑

n=0

(−c1/4)
n+1

(k1)n+1(n− 1)!
+ (7− γ)

∞
∑

n=0

(−c1/4)
n+1

(k1)n+1n!
+ 2(1− γ)

∞
∑

n=0

(−c1/4)
n+1

(k1)n+1(n+ 1)!

+2

∞
∑

n=0

(−c2/4)
n+1

(k2)n+1(n− 1)!
+ (5 + γ)

∞
∑

n=0

(−c2/4)
n+1

(k2)n+1n!

]

=
1

2

[

2
(−c1/4)

2

k1(k1 + 1)

∞
∑

n=0

(−c1/4)
n−1

(k1 + 2)n−1(n− 1)!
+ (7 − γ)

(−c1/4)

k1

∞
∑

n=0

(−c1/4)
n

(k1 + 1)nn!

+ 2(1− γ) {up1
(1)− 1}+ 2

(−c2/4)
2

k2(k2 + 1)

∞
∑

n=1

(−c2/4)
n−1

(k2 + 2)n−1(n− 1)!

+ (5 + γ)
(−c2/4)

k2

∞
∑

n=0

(−c2/4)
n

(k2 + 1)nn!

]

=
1

2

[

2
(−c1/4)

2

k1(k1 + 1)
up1+2(1) + (7− γ)

(−c1/4)

k1
up1+1(1) + 2(1− γ) {up1

(1)− 1}
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2
(−c2/4)

2

k2(k2 + 1)
up2+2(1) + (5 + γ)

(−c2/4)

k2
up2+1(1)

]

=
1

2

[

2u′′
p1
(1) + (7− γ)u′

p1
(1) + 2(1− γ)up1

(1) + 2u′′
p2
(1) + (5 + γ)u′

p2
(1)− 2(1− γ).

]

Now P1 ≤ 1− γ follows from the given condition This completes the proof.

Analogous to Theorem 2.5, we next find conditions of the classes S∗,0
H , C0

H

with Gh(γ). However we first need the following result which may be found in [1],
[11].

Lemma 2.6. If f = h + g ∈ S∗,0
H or C0

H where h and g are given by (1.5) with
B1 = 0, then

|An| ≤
(2n+ 1)(n+ 1)

6
, |Bn| ≤

(2n− 1)(n− 1)

6
.

Theorem 2.7. If c1, c2 < 0, k1, k2 > 0, (k1, k2 6= 0,−1,−2, ...). If for some
γ(0 ≤ γ < 1) and the inequality

4u′′′
p1
(1) + 2(14− γ)u′′

p1
(1) + 3(13− 3γ)u′

p1
(1) + 6(1− γ)up1

(1) + 4u′′′
p2
(1)

+2(10 + γ)u′′
p2
(1) + 3(5 + γ)u′

p2
(1) ≤ 12(1− γ) (2.3)

is satisfied, then

Ω(S∗,0
H ) ⊂ GH(γ) and Ω(C0

H) ⊂ GH(γ).

Proof. Let f = h + g ∈ S∗,0
H (C0

H where h and g are given by (1.2) with B1 = 0.
We need to show that Ω (f) = H +G ∈ GH (γ), where H and G defined by (1.6)
with B1 = 0 are analytic functions in U . In view of Lemma 2.2, it is enough to
show that P1 ≤ 1− γ, where

P1 =

∞
∑

n=2

(2n− 1− γ)
(−c1/4)

n−1

(k1)n−1(n− 1)!
|An|+

∞
∑

n=2

(2n+ 1 + γ)
(−c2/4)

n−1

(k2)n−1(n− 1)!
|Bn| .

In view of Lemma 2.6, we have

P1 ≤
1

6

[

∞
∑

n=2

(2n + 1)(n + 1)(2n − 1 − γ)
(−c1/4)

n−1

(k1)n−1(n − 1)!
+

∞
∑

n=2

(2n − 1)(n − 1)(2n + 1 + γ)
(−c2/4)

n−1

(k2)n−1(n − 1)!

]

=
1

6

[

∞
∑

n=2

{4(n − 1)(n − 2)(n − 3) + (28 − 2γ)(n − 1)(n − 2) + (39 − 9γ)(n − 1) + 6(1 − γ)}
(−c1/4)

n−1

(k1)n−1(n − 1)!

+
∞
∑

n=2

{4(n − 2)(n − 3) + (20 + 2γ)(n − 2) + (15 + 3γ)}
(−c2/4)

n−1

(k2)n−1(n − 2)!

]

=
1

6

[{

4
∞
∑

n=0

(−c1/4)
n+1

(k1)n+1(n − 2)!
+ (28 − 2γ)

∞
∑

n=0

(−c1/4)
n+1

(k1)n+1(n − 1)!
+ (39 − 9γ)

∞
∑

n=0

(−c1/4)
n+1

(k1)n+1n!



Connections between various subclasses ... 39

+ 6(1 − γ)
∞
∑

n=0

(−c1/4)
n+1

(k1)n+1(n + 1)!

}

+

{

4
∞
∑

n=0

(−c2/4)
n+1

(k2)n+1(n − 2)!
+ (20 + 2γ)

∞
∑

n=0

(−c2/4)
n+1

(k2)n+1(n − 1)!

+ (15 + 3γ)
∞
∑

n=0

(−c2/4)
n+1

(k2)n+1n!

}]

=
1

6

[{

4u
′′′

p1
(1) + (28 − 2γ)u

′′

p1
(1) + (39 − 9γ)u

′

p1
(1) + 6(1 − γ)

{

up1
(1) − 1

}

+
{

4u
′′′

p2
(1) + (20 + 2γ)u

′′

p2
(1) + (15 + 3γ)u

′

p2
(1)

}

− 6(1 − γ)
]

.

Now P1 ≤ 1− γ follows from the given condition.

In order to determine connection between TNH(β) and GH(γ), we need the
following results in Lemma 2.8 and 2.10.

Lemma 2.8 ([5]). Let f = h+ g where h and g are given by (1.5) with B1 = 0,
and suppose that 0 ≤ β < 1. Then

f ∈ TNH (β) ⇔

∞
∑

n=2

n |An|+

∞
∑

n=2

n |Bn| ≤ 1− β.

Remark 2.9. If f ∈ TNH(β), then |An| ≤
1−β
n and |Bn| ≤

1−β
n , n ≥ 2.

Lemma 2.10. If c < 0 and k > 1, then

∞
∑

n=0

(−c/4)n

(k)n(n+ 1)!
=

−4(k − 1)

c
[up−1(1)− 1] .

Proof. We can write

∞
∑

n=0

(−c/4)n

(k)n(n+ 1)!
=

(k − 1)

(−c/4)

∞
∑

n=0

(−c/4)n+1

(k − 1)n+1(n+ 1)!

=
−4(k − 1)

c
[up−1(1)− 1] .

Theorem 2.11. If c1, c2 < 0, k1, k2 > 1. If for some β(0 ≤ β < 1) and γ(0 ≤
γ < 1) and the inequality

(1− β)

[

2 {up1
(1)− 1}+ (1 + γ)

4(k1 − 1)

c1

[

up1−1(1)− 1−
(−c1/4)

k1 − 1

]

+ 2up2
(1)− (1 + γ)

4(k2 − 1)

c2
[up2−1(1)− 1]

]

≤ 1− γ

is satisfied then
Ω (TNH(β)) ⊂ GH(γ).
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Proof. Let f = h + g ∈ TNH(β) where h and g are given by (1.5). In view of
Lemma 2.2, it is enough to show that P2 ≤ 1− γ, where

P2 =

∞
∑

n=2

(2n− 1− γ)
(−c1/4)

n−1

(k1)n−1(n− 1)!
|An|+

∞
∑

n=1

(2n+ 1 + γ)
(−c2/4)

n−1

(k2)n−1(n− 1)!
|Bn| .

Using Remark 2.9, we have

P2 ≤ (1 − β)

[

∞
∑

n=2

{

2−
(1 + γ)

n

}

(−c1/4)
n−1

(k1)n−1(n− 1)!
+

∞
∑

n=1

{

2 +
(1 + γ)

n

}

(−c2/4)
n−1

(k2)n−1(n− 1)!

]

= (1 − β)

[

2

∞
∑

n=0

(−c1/4)
n+1

(k1)n+1(n+ 1)!
− (1 + γ)

∞
∑

n=0

(−c1/4)
n+1

(k1)n+1(n+ 2)!

+ 2

∞
∑

n=0

(−c2/4)
n

(k2)nn!
+ (1 + γ)

∞
∑

n=0

(−c2/4)
n

(k2)n(n+ 1)!

]

= (1 − β)

[

2 {up1
(1)− 1} − (1 + γ)

(k1 − 1)

(−c1/4)

∞
∑

n=0

(−c1/4)
n+2

(k1 − 1)n+2(n+ 2)!

+ 2up2
(1) + (1 + γ)

(k2 − 1)

(−c2/4)

∞
∑

n=0

(−c2/4)
n+1

(k2 − 1)n+1(n+ 1)!

]

= (1 − β)

[

2 {up1
(1)− 1}+ (1 + γ)

4(k1 − 1)

c1

[

up1−1(1)− 1−
(−c1/4)

k1 − 1

]

+ 2up2
(1)− (1 + γ)

4(k2 − 1)

c2
[up2−1(1)− 1]

]

≤ 1− γ,

by the given hypothesis.

In next theorem, we establish connections between TGH(γ) and GH(γ).

Theorem 2.12. Let c1, c2 < 0, k1, k2 > 0. If for some γ(0 ≤ γ < 1) the inequality

up1
+ up2

≤ 2

is satisfied, then Ω (TGH(γ)) ⊂ GH(γ).

Proof. Making use of Lemma 2.2 and the definition of P2 in Theorem 2.3, we only
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need to prove that P2 ≤ 1− γ. Using Remark 2.3, it follows that

P2 =

∞
∑

n=2

(2n− 1− γ)
(−c1/4)

n−1

(k1)n−1(n− 1)!
|An|+

∞
∑

n=1

(2n+ 1 + γ)
(−c2/4)

n−1

(k2)n−1(n− 1)!
|Bn|

≤ (1− γ)

[

∞
∑

n=2

(−c1/4)
n−1

(k1)n−1(n− 1)!
+

∞
∑

n=1

(−c2/4)
n−1

(k2)n−1(n− 1)!

]

= (1− γ)

[

∞
∑

n=0

(−c1/4)
n+1

(k1)n+1(n+ 1)!
+

∞
∑

n=0

(−c2/4)
n

(k2)nn!

]

= (1− γ) [up1
(1)− 1 + up2

(1)]

≤ (1− γ),

by the given condition and this completes the proof.

In next theorem, we present conditions on the parameters k1, k2, c1, c2 and
obtain a characterization for operator Ω which maps TGH(γ) on to itself.

Theorem 2.13. If c1, c2 < 0, k1, k2 > 0(k1, k2 6= 0,−1,−2, ...) and γ(0 ≤ γ < 1).
Then

Ω (TGH(γ)) ⊂ TGH(γ),

if and only if,
up1

(1) + up2
(1) ≤ 2

Proof. The proof of above theorem is similar to that of Theorem 2.4. Therefore
we omits the details involved.

References

[1] J . Clunie and T Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci.
Fen. Series A.I. Math. 9 (1984) 3-25.

[2] O.P. Ahuja, Planar harmonic univalent and related mappings, J. Inequal.
Pure Appl. Math. 6 (4) (2005) 1-18.

[3] O.P. Ahuja, Planar harmonic convolution operators generated by hypergeo-
metric functions, Integral Transform Spec. Funct. 18 (3) (2007) 165-177.

[4] O.P. Ahuja, Connections between various subclasses of planar harmonic map-
pings involving hypergeometric functions, Appl. Math. Comput. 198 (1)
(2008) 305-316.

[5] O.P. Ahuja and J.M. Jahangiri, Noshiro-type harmonic univalent functions,
Sci. Math. Jpn. 6 (2) (2002) 253-259.

[6] A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math.
Debrecen. 73 (1-2) (2008) 155-178.



42 Thai J. Math. 13 (2015)/ S. Porwal

[7] A. Baricz, Geometric properties of generalized Bessel functions of complex
order, Mathematica. 48 (71) (1) (2006) 13-18.

[8] A. Baricz, Generalized Bessel functions of the first kind, PhD Thesis, Babes-
Bolyai University, Cluj-Napoca, 2008.

[9] A. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in
Math., Vol. 1994 , Springer-Verlag, 2010.

[10] B.C. Carleson and D.B. Shaffer, Starlike and prestarlike hypergeometric func-
tions, SIAM J. Math. Anal. 15 (1984) 737-745.

[11] P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathemat-
ics, Vol.156, Cambridge University Press, Cambridge, 2004.

[12] S. Miller and P.T. Mocanu, Univalence of Gaussian and confluent hypergeo-
metric functions, Proc. Amer. Math. Soc. 110 (2) (1990) 333-342.

[13] S.R. Mondal and A. Swaminathan, Geometric properties of Generalized
Bessel functions, Bull. Malays. Math. Sci. Soc. (2) 35 (1) (2012) 179-194.

[14] S. Owa and H.M. Srivastava, Univalent and starlike generalized hypergeomet-
ric functions, Canad. J. Math. 39 (1987) 1057-1077.

[15] S. Ponnusamy and F. Rønning, Starlikeness properties for convolution in-
volving hypergeometric series, Ann. Univ. Mariae Curie-Sklodowska L.H.116
(1998) 141-155.

[16] Saurabh Porwal and K.K. Dixit, An Application of Hypergeometric Functions
on Harmonic Univalent Functions, Bull. Math. Anal. Appl. 2 (4) (2010) 97-
105.

[17] T. Rosy, B.A. Stephen, K.G. Subramanian and J.M. Jahangiri, Goodman-
Rønning-type harmonic univalent functions, Kyungpook Math. J. 41 (1)
(2001) 45-54.

[18] S. Ruscheweyh and V. Singh, On the order of starlikeness of hypergeometric
functions, J. Math. Anal. Appl. 113 (1986) 1-11.

(Received 29 November 2012)
(Accepted 17 April 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Main Results

