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Abstract : In this paper, Student Activity Problems are defined. The problems
are about joint activities among n ≥ 2 schools. There are p > n different activity
rooms and each school provide p students to join the activities. In each day, each
student has to join an activity with a condition that in each room there are n
students from n different schools. It is required that each student participate all
p activities in p days and each has a chance to work only once with every student
from other schools. An algorithm is proposed for such arrangement and a related
theorem is also given.
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1 Student Activity Problems

There are some studies involving with arrangements or partitions of students
(or elements of sets) with some conditions. Studies on the well known Steiner triple
systems, see [1] and [2] for examples, and on Kirkman school girl problems, see [1],
[2], [3], and [4], provide some questions and answers for some arrangements. There
still are varieties of interesting arrangements that have not been investigated.
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In this paper we define Student Activity Problems (SAP ). The problems are
about arranging joint activities for students from n ≥ 2 schools. Each school pro-
vide p > n students to participate p different activities. The schools provide p
rooms for the p activities. In each day each student shall join an activity with a
condition that in each room there are n students from n different schools. Each
student is required to participate all p activities in p days with the condition that
each must have a chance to work only once with every student from other schools.

For example, let S1, S2, and S3 be sets of 4 students from schools s1, s2, and
s3 respectively:

S1 = {1, 2, 3, 4}
S2 = {5, 6, 7, 8}
S3 = {9, 10, 11, 12}

Let r1, r2, r3, r4 be four different activity rooms. For each of the four days
Day1, Day2, Day3, and Day4, in each room 3 students from the three different
schools shall come to do a joint activity. Let R1, R2, R3, R4 be sets of students
in r1, r2, r3, r4 respectively. For Day 1, one possible way to arrange students is as
follow:

R1 = {1, 5, 9}
R2 = {2, 6, 10}
R3 = {3, 7, 11}
R4 = {4, 8, 12}

In Figure 1.1, we provide arrangements for Day 1, Day 2, Day 3, and Day 4
such that the conditions of SAP are satisfied. That is, each student participate all
4 activities in 4 days, and each has a chance to work only once with every student
from other schools.

Day1 Day2 Day3 Day4
R1 1 5 9 2 7 12 3 8 10 4 6 11
R2 2 6 10 1 8 11 4 7 9 3 5 12
R3 3 7 11 4 5 10 1 6 12 2 8 9
R4 4 8 12 3 6 9 2 5 11 1 7 10

Figure 1.1

In section 2, we provide two cases on SAP . An algorithm for the arrangements
of the two cases and for some other general cases are given in section 3. In section
4, we propose a related theorem for the algorithm.

2 Two cases on Student Activity Problems

Consider the following case when n = 4 with p = 5. Let S1, S2, S3, and S4 be
sets of 5 students from 4 schools s1, s2, s3, and s4 respectively:
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S1 = {1, 2, 3, 4, 5}
S2 = {6, 7, 8, 9, 10}
S3 = {11, 12, 13, 14, 15} (2.1)

S4 = {16, 17, 18, 19, 20}

Let r1, r2, r3, r4, and r5 are five activity rooms. For each of of the five days,
in each room four students from four different schools come to do a joint activ-
ity. Let R1, R2, R3, R4, and R5 be sets of students in rooms r1, r2, r3, r4, and r5
respectively. For the first day Day1, one way to arrange students is as follow:

R1 = {1, 6, 11, 16}
R2 = {2, 7, 12, 17}
R3 = {3, 8, 13, 18}
R4 = {4, 9, 14, 19}
R5 = {5, 10, 15, 20}

It takes five days for each student to participate all five activities. One possible
arrangement for each room in five days is as follow:

Day1 Day2 Day3
R1 1 6 11 16 5 9 13 17 4 7 15 18
R2 2 7 12 17 1 10 14 18 5 8 11 19
R3 3 8 13 18 2 6 15 19 1 9 12 20
R4 4 9 14 19 3 7 11 20 2 10 13 16
R5 5 10 15 20 4 8 12 16 3 6 14 17

Day4 Day5
R1 3 10 12 19 2 8 14 20
R2 4 6 13 20 3 9 15 16
R3 5 7 14 16 4 10 11 17
R4 1 8 15 17 5 6 12 18
R5 2 9 11 18 1 7 13 19

Figure 2.1
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Another example is when n = 6 with p = 7. Let S1, S2, S3, S4, S5, S6 be sets
of 7 students of six schools s1, s2, s3, s4, s5, s6 respectively.

S1 = {1, 2, 3, 4, 5, 6, 7}
S2 = {8, 9, 10, 11, 12, 13, 14}
S3 = {15, 16, 17, 18, 19, 20, 21}
S4 = {22, 23, 24, 25, 26, 27, 28}
S5 = {29, 30, 31, 32, 33, 34, 35}
S6 = {36, 37, 38, 39, 40, 41, 42}

One of possible arrangements is shown in Figure 2.2

Day1 Day2
R1 1 8 15 22 29 36 7 13 19 25 31 37
R2 2 9 16 23 30 37 1 14 20 26 32 38
R3 3 10 17 24 31 38 2 8 21 27 33 39
R4 4 11 18 25 32 39 3 9 15 28 34 40
R5 5 12 19 26 33 40 4 10 16 22 35 41
R6 6 13 20 27 34 41 5 11 17 23 29 42
R7 7 14 21 28 35 42 6 12 18 24 30 36

Day3 Day4
R1 6 11 16 28 33 38 5 9 20 24 35 39
R2 7 12 17 22 34 39 6 10 21 25 29 40
R3 1 13 18 23 35 40 7 11 15 26 30 41
R4 2 14 19 24 29 41 1 12 16 27 31 42
R5 3 8 20 25 30 42 2 13 17 28 32 36
R6 4 9 21 26 31 36 3 14 18 22 33 37
R7 5 10 15 27 32 37 4 8 19 23 34 38
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Day5 Day6
R1 4 14 17 27 30 40 3 12 21 23 32 41
R2 5 8 18 28 31 41 4 13 15 24 33 42
R3 6 9 19 22 32 42 5 14 16 25 34 36
R4 7 10 20 23 33 36 6 8 17 26 35 37
R5 1 11 21 24 34 37 7 9 18 27 29 38
R6 2 12 15 25 35 38 1 10 19 28 30 39
R7 3 13 16 26 29 39 2 11 20 22 31 40

Day7
R1 2 10 18 26 34 42
R2 3 11 19 27 35 36
R3 4 12 20 28 29 37
R4 5 13 21 22 30 38
R5 6 14 15 23 31 39
R6 7 8 16 24 32 40
R7 1 9 17 25 33 41

Figure 2.2

One can try the arrangements similar to the tables in Figure 1.1, Figure 2.1,
and Figure 2.2 and could find out quickly that without proper algorithm the ar-
rangement could be quite labourious.

In section 3 we provide an algorithm that can be used in arrangements for
some general cases.

3 An algorithm for some general cases

Next, we explain an algorithm that is used for the two cases when n = 4 with
p = 5, and n = 6 with p = 7 in section 2. After that it will become easier in using
and proving the algorithm for some other general values of n’s and p’s.

For the case when n = 4 with p = 5. For Day1, according to (2.1) we can
readily choose the first elements of S1, S2, S3, and S4 to work in room r1, i.e.

R1 = {1, 6, 11, 16}

We can choose the second elements of S1, S2, S3, and S4 to work in room r2, i.e.

R2 = {2, 7, 12, 17}

Similarly, we can obtain

R3 = {3, 8, 13, 18}
R4 = {4, 9, 14, 19}
R5 = {5, 10, 15, 20}.

Writing the above arrangement in the table form, we have Figure 3.1.
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Day1
R1 1 6 11 16
R2 2 7 12 17
R3 3 8 13 18
R4 4 9 14 19
R5 5 10 15 20

Figure 1:

Consider students 1, 2, 3, 4, 5 in Figure 2.1, i.e. the students in the first col-
umn of the arrangement of all five days. We can express the arrangements for the
students 1, 2, 3, 4, 5 in circular forms:

Figure 2:

From Figure 2, we can see that the arrangement on Day 2 can be obtained
from Day 1 by shifting each student on Day 1 counterclockwise to the next room
(having one step shifting). Also, we can obtain the arrangement on Day 3 from
Day 2 by shifting each student on Day 2 counterclockwise to the next room. Sim-
ilarly, we can obtain the arrangements of Day 4, and Day 5.

Consider the students 6, 7, 8, 9, 10 in the Figure 2.1, i.e. the students in the
second columns of the arrangements of all five days.

We can express the arrangements for the students 6, 7, 8, 9, 10 in circular forms:



Algorithm and theorem on student activity problems 25

Figure 3:

From Figure 3, we can see that the arrangement on Day 2 can be obtained
from Day 1 by shifting each student on Day 1 counterclockwise to the next second
room (having two step shifting). By having two step shifting successively we can
have the arrangements of students 6, 7, 8, 9, 10 for Day 3, Day 4, and Day 5.

Consider students 11, 12, 13, 14, 15 in Figure 2.1, i.e. the students in the third
column of the arrangements of all five days.

We can express the arrangements for the students 11, 12, 13, 14, 15 in circular
forms:

Figure 4:

From Figure 4, we can see that the arrangement on Day 2 can be obtained
from Day 1 by shifting each student on Day 1 counterclockwise to the next third
room (having three step shifting). By having three step shifting successively we
can have the arrangement of students 11, 12, 13, 14, 15 for Day 3, Day 4, and Day
5.

For the students 16, 17, 18, 19, 20 in Figure 2.1, i.e. students in the fourth
column of the arrangements of all five days. Similarly, starting from Day 1, by
shifting each student counterclockwise to the next fourth room (having four step
shifting) we can successively obtain the arrangement for Day 2, Day 3, Day 4, and
Day 5, see Figure 5
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Figure 5:

For the case n = 6 with p = 7, similar to the case n = 4 with p = 5, we can
readily obtain the arrangement for Day 1 as in Figure 2.2. Also, by expressing the
arrangements of Day 1 in circular forms, we can obtain the arrangements of Day
2 from Day 1 by shifting counterclockwise the elements in the first, second, third,
. . . , sixth columns of Day 1 to the next room, the next second room, the next
third room, . . . , the next sixth room respectively. Repeating the above process
successively and we can obtain the arrangements for Day 3, Day 4, . . . , Day 7
respectively.

We can verify directly that the arrangements in Figure 2.1 and Figure 2.2 sat-
isfy all conditions of SAP . In fact, in next section, we show that similar algorithm
can work for some other general values of n and p.

4 Sufficient conditions for the use of the algo-
rithm

In section 3, we have shown an algorithm that can be applied for the case
when n = 4 with p = 5, and the case when n = 6 with p = 7. Similar algorithm
can be readily used for the case n = 2 with p = 3. That is, if

S1 = {1, 2, 3}
S2 = {4, 5, 6}

be sets 3 students from 2 schools with p = 3. We can obtain the arrangement as
in Figure 6

Day 1 Day 2 Day 3
R1 1 4 3 5 2 6
R2 2 5 1 6 3 4
R3 3 6 2 4 1 5

Figure 6:
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We have seen that the arrangement in Figure 2.1, Figure 2.2, and Figure 6 are
based on the same algorithm, but we note that for the case n = 3 with p = 4 the
arrangements in Figure 1.1 are not from the algorithm.

Next, we propose the algorithm in general form, and after that we provide
a related theorem for the algorithm. For refering, this algorithm shall be called
School Activity Algorithm(SAA).

Let s1, s2, . . . , sn be n schools and ai1, ai2, . . . , aip be p students from school si.
Let S1, S2, . . . , Sn be the sets of students from schools s1, s2, . . . , sn respectively.
That is

S1 = {a11, a12, a13, . . . , a1p}
S2 = {a21, a22, a23, . . . , a2p}
S3 = {a31, a32, a33, . . . , a3p}

...

Sn = {an1, an2, an3, . . . , anp}

According to a condition of SAP , one possible arrangement for Day 1 can be
as follow:

Day 1
R1 a11 a21 a31 . . . an1
R2 a12 a22 a32 . . . an2
R3 a13 a23 a33 . . . an3
...

...
...

... . . .
...

Rp a1p a2p a3p . . . anp

Figure 7:
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As in the examples in section 3, we can express the arrangements on Day 1 of
Figure 7 in circular forms:

Figure 8:

We can obtain the arrangement on Day 2 from Day 1 by shifting counterclock-
wise the students in the first, second, third, . . . , (n − 1)th column of Day 1 in
Figure 7 to the next room, the next second room, the next third room, . . . , the
next (n− 1)th room respectively, see Figure 4.4.

Day 2
R1 a1p a2,p−1 . . . an2
R2 a11 a2p . . . an3
R3 a12 a21 . . . an4
...

...
... . . .

...
Rp a1,p−1 a2,p−2 . . . an1

Figure 4.4
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Repeating the process successively, we can obtain the arrangements for Day
3, Day 4, . . . , and Day p respectively, see Figure 4.5.

Day 3
R1 a1,p−1 a2,p−3 . . . an3
R2 a1p a2,p−2 . . . an4
R3 a11 a2,p−1 . . . an5
...

...
... . . .

...
Rp a1,p−2 a2,p−4 . . . an2

99K

Day p
R1 a12 a23 . . . anp
R2 a13 a24 . . . an1
R3 a14 a25 . . . an2
...

...
... . . .

...
Rp a11 a22 . . . an,p−1

Figure 4.5

Next, we propose Theorem 4.1 that provide sufficient conditions by which the
algorithm can be used.

Theorem 4.1. Let n ≥ 2 be number of schools each of which provide p > n stu-
dents to participate p joint activities. For any prime number p > n, the algorithm
SAA provide arrangements that satisfy all conditions of SAP .

Proof. Let S1, S2, . . . , Sn be sets of p students from n schools as defined earlier in
this section. Consider the arrangement of students aij ’s in Day 1 in Figure 7 and
Figure 8. Next, consider Figure 4.6 that show the numbers of step shiftings of
each column of students in shifting from one room to another room in accordance
with the algorithm SAA.

Numbers of step shiftings on Day i’s after shifting from Day 1
a1i a2i a3i ani

Day 1 0 0 0 . . . 0
Day 2 1 2 3 . . . n
Day 3 2 4 6 . . . 2n
Day 4 3 6 9 . . . 3n

...
...

...
... . . .

...
Day p p− 1 2(p− 1) 3(p− 1) . . . n(p− 1)

Figure 4.6
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To simplify the proof, Figure 4.6 is rewritten and shown in Figure 4.7.

Numbers of step shiftings on Day i’s after shifting from Day 1
a1i a2i a3i ani

Day 1 0 0 0 . . . 0
Day 2 1.1 1.2 1.3 . . . 1.n
Day 3 2.1 2.2 2.3 . . . 2.n
Day 4 3.1 3.2 3.3 . . . 3.n

...
...

...
... . . .

...
Day p (p− 1).1 (p− 1).2 (p− 1).3 . . . (p− 1)n

Figure 4.7

According to the conditions of SAP , it is required that no pairs of students
shall appear together twice in the arrangement. We claim that the algorithm used,
with the condition that p is prime number, do not allow any pair of students to
appear together twice. Since any pair of students in different columns (different
schools) shift with different step shiftings in circular manner, should any pair of
students appear together for the second time in the arrangement, their differences
in step shiftings must be equal to some multiple of p. This could not happen
because, from Figure 4.7 with n < p, we can see that all differences of step shiftings
of Day 2, Day 3, Day 4, . . . , Day p are not multiple of p. Therefore, any pair of
students in all R1, R2, . . . , Rp of Day 1 shall has no chance to work together again in
all of the following days. Next, consider the arrangement in R1, R2, . . . , Rp of Day
2. With similar reasons we can conclude that no pair of students in R1, R2, . . . , Rp

of Day 2 shall has no chance to work together again in all of the following days.
Next, consider the arrangement in R1, R2, . . . , Rp of Day 3. Again with similar
reasons we can conclude that no pairs of students in R1, R2, . . . , Rp of Day 3
shall have no chance to work together in the following days. Follow the same
reasons, finally, we conclude that no pair of students work together more than
one time. Also, since each day a student work with (n − 1) students from other
(n−1) schools, therefore after p days each student shall has a chance to work with
p(n− 1) students, i.e. all students from other schools. Therefore the conditions of
SAP are satisfied and so the theoem is proved.

From the theorem, we note that the condition that p is prime is a sufficient
condition, that is the arrangement is possible when treated with the algorithm.

For examples, when n = 3, 5, 7 which are prime numbers, the theorem predict
that the arrangements for these cases are possible when the algorithm is used. We
have seen some cases of the arrangements in Figure 6, Figure 2.1, and Figure 2.2.

Also from the theorem, we note that the algorithm can be used for any integer
n such that 2 ≤ n < p.

For example, when p = 7, the arrangement in Figure 2.2 can also work for
all n = 2, 3, 4, 5, 6. Suppose p = 7 with n = 4, from Figure 2.2 we can have the
required arrangement by consider, on each Day i arrangement, only students in
column 1, column 2, column 3, and column 4.

If p is not prime the arrangements that satisfy the conditions of SAP may
still be possible for some cases. For example, the arrangements in Figure 1.1 are
for the case when n = 3 with p = 4, but we can see that the arrangements are
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not from the algorithm SAA we use for the cases when p are prime numbers. The
studies for the cases when p are not prime are open for further investigations.
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