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1 Introduction and Preliminaries

A multitude of generalizations of the Classical Banach Contraction Principle
[1] are available in the existing literature of metric fixed point theory. The major-
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ity of these generalizations are obtained by improving the underlying contraction
condition (e.g. [2]). In this connection, Chatterjea [3] introduced the notion of
C-contraction as:

Definition 1.1. A mapping T : X → X where (X , d) is a metric space is said to
be a C-contraction if there exists α ∈ (0, 12 ) such that for all x, y ∈ X the following
inequality holds:

d(T x, T y) ≤ α(d(x, T y) + d(y, T x)).

Choudhury [4] generalized C-contraction and introduced a notion of weakly
C-contraction.

Definition 1.2. A mapping T : X → X , where (X , d) is a metric space is said to
be weakly C-contractive (or a weak C-contraction) if for all x, y ∈ X ,

d(T x, T y) ≤ 1

2
[d(x, T y) + d(y, T x)]− φ(d(x, T y), d(y, T x)),

where φ : [0,+∞)2 → [0,+∞) is a continuous function such that φ(x, y) = 0 if
and only if x = y = 0.

Generalization of the above Banach contraction principle has been a heavily
investigated branch research. (see, e.g., [2]).

Browder and Petryshyn introduced the concept of asymptotic regularity of a
self-map at a point in a metric space.

Definition 1.3 ([5]). A self-map T on a metric space (X , d) is said to be asymp-
totically regular at a point x ∈ X if limn→∞ d(T nx, T n+1x) = 0.

Recall that the set O(x0; T ) = {T nx0 : n = 0, 1, 2, . . . } is called the orbit of
the self-map T at the point x0 ∈ X .

Definition 1.4 ([6]). A metric space (X , d) is said to be T -orbitally complete if
every Cauchy sequence contained in O(x; T ) (for some x in X ) converges in X .

Here, it can be pointed out that every complete metric space is T -orbitally
complete for any T , but a T -orbitally complete metric space need not be complete.

Definition 1.5 ([5]). A self-map T defined on a metric space (X , d) is said to
be orbitally continuous at a point z in X if for any sequence {xn} ⊂ O(x; T ) (for
some x ∈ X ), xn → z as n→ ∞ implies T xn → T z as n→ ∞.

Clearly, every continuous self-mapping of a metric space is orbitally continuous,
but not conversely.

Sastry et al. [7] extended the above concepts to two and three mappings and
employed them to prove common fixed point results for commuting mappings. In
what follows, we collect such definitions for two maps.

Definition 1.6. Let S, T be three self-mappings defined on a metric space (X , d).
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1. If for a point x0 ∈ X , there exits a sequence {xn} in X such that x2n+1 =
Sx2n, x2n+2 = T x2n+1, n = 0, 1, 2, . . . , then the set O(x0;S, T ) = {xn :
n = 1, 2, . . . } is called the orbit of (S, T ) at x0.

2. The space (X , d) is said to be (S, T )-orbitally complete at x0 if every Cauchy
sequence in O(x0;S, T ) converges in X .

3. The map T is said to be orbitally continuous at x0 if it is continuous on
O(x0; T ).

4. The pair (S, T ) is said to be asymptotically regular (in short a.r.) at x0 if
there exists a sequence {xn} in X such that x2n+1 = Sx2n, x2n+2 = T x2n+1,
n = 0, 1, 2, . . . , and d(xn, xn+1) → 0 as n→ ∞.

Existence of fixed point in ordered metric spaces was first investigated by Ran
and Reurings [8] who presented its applications to matrix equations. Subsequently,
Nieto and López [9] extended this result for nondecreasing mappings and applied
it to obtain a unique solution for a first order ordinary differential equation with
periodic boundary conditions. Thereafter, several authors obtained many fixed
point theorems in ordered metric spaces. For more details see [10–37] and the
references cited therein.

In this paper we generalize the results of Harjani and Sadarangani [21, 38] (and,
hence, some other related common fixed point results) in two directions. First we
introduce the notion of weakly (ψ,S, C)-contractive condition in metric space and
then the existence and (under additional assumptions) uniqueness of their common
fixed point where mapping S is T -strictly weakly isotone increasing is obtained.
Further, we introduce the notion of generalized weakly (ψ,S, C)-contractive con-
dition in metric space and then establish the existence and uniqueness of their
common fixed point where mapping S is T -strictly weakly isotone increasing, a
pair (S, T ) is asymptotically regular in orbitally complete metric space. We fur-
nish suitable example to demonstrate the validity of the hypotheses of our results.
At the end, as applications of the presented theorems, we get hold of common
fixed point results for generalized contraction of integral type and we prove an
existence theorem for solutions of a system of integral equations.

2 Notation and Definitions

First, we introduce some further notation and definitions that will be used
later.

If (X ,≼) is a partially ordered set then x, y ∈ X are called comparable if x ≼ y
or y ≼ x holds. A subset K of X is said to be totally ordered if every two elements
of K are comparable. If T : X → X is such that, for x, y ∈ X , x ≼ y implies
T x ≼ T y, then the mapping T is said to be non-decreasing.

Definition 2.1. Let (X ,≼) be a partially ordered set and S, T : X → X .

1. [39, 40] The pair (S, T ) is called weakly increasing if Sx ≼ T Sx and T x ≼
ST x for all x ∈ X .
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2. [38–40] The mapping S is said to be T -weakly isotone increasing if for all
x ∈ X we have Sx ≼ T Sx ≼ ST Sx.

3. [42] The mapping S is said to be T -strictly weakly isotone increasing if, for
all x ∈ X such that x ≺ Sx, we have Sx ≺ T Sx ≺ ST Sx.

Remark 2.2.

(1) None of two weakly increasing mappings need be non-decreasing. There exist
some examples to illustrate this fact in [43].

(2) If S, T : X → X are weakly increasing, then S is T -weakly isotone increasing
and hence T -strictly weakly isotone increasing.

(3) S can be T -strictly weakly isotone increasing, while some of these two map-
pings can be not strictly increasing (see the following example).

Example 2.3. Let X = [0,+∞) be endowed with the usual ordering and define
S, T : X → X as

Sx =

{
2x, if x ∈ [0, 1],

3x, if x > 1;
T x =

{
2, if x ∈ [0, 1],

2x, if x > 1.

Clearly, we have x ≺ Sx ≺ T Sx ≺ ST Sx for all x ∈ X , and so, S is T -strictly
weakly isotone increasing; T is not strictly increasing.

Definition 2.4. Let X be a nonempty set. Then (X , d,≼) is called an ordered
metric space if

(i) (X , d) is a metric space,

(ii) (X ,≼) is a partially ordered set.

The space (X , d,≼) is called regular if the following hypothesis holds: if {zn} is a
non-decreasing sequence in X with respect to ≼ such that zn → z ∈ X as n→ ∞,
then zn ≼ z.

3 Common Fixed Points Theorems For Weakly
(ψ,S, C)-Contraction Mappings

We will prove some fixed point theorems for self-mappings defined on a or-
dered complete metric space and satisfying certain weakly (ψ,S, C)-contraction
mappings. To achieve our goal, as in [44], we fixed the set of functions and denote
by

1. Ψ1 the class of functions ψ : [0,+∞) → [0,+∞) a strictly increasing, con-
tinuous function with ψ(t) ≤ 1

2 t for all t > 0 and ψ(0) = 0;
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2. Φ1 the class of functions φ : [0,+∞)2 → [0,+∞) a strictly decreasing,
continuous in each coordinate such that φ(x, y) = 0 if and only if x = y = 0
and φ(x, y) ≤ x+ y for all x, y ∈ [0,+∞).

Definition 3.1. Let (X , d,≼) be a ordered metric space. Two mappings T ,S :
X → X are called a weakly (ψ,S, C)-contraction if

d(T x,Sy) ≤ ψ([d(x,Sy) + d(y, T x)]− φ(d(x,Sy), d(y, T x))), x ≽ y (3.1)

for any x, y ∈ X , ψ ∈ Ψ1 and φ ∈ Φ1.

It is note that the weakly (ψ,S, C)-contractions constitute a strictly larger
class of mappings than weakly C-contractions.

Now, we state and prove our first result.

Theorem 3.2. Let (X ,≼) be a partially ordered set and suppose that there exists
a metric d in X such that (X , d) is a complete metric space. Suppose T ,S :
X → X are two mappings satisfying weakly (ψ,S, C)-contractions conditions for
all comparable x, y ∈ X .

We assume the following hypotheses:

(i) S is T -strictly weakly isotone increasing;

(ii) there exists an x0 ∈ X such that x0 ≺ Sx0;
(iii) S or T is continuous at x0;

Then S and T have a common fixed point. Moreover, the set of common fixed
points of S, T is totally ordered if and only if S and T have one and only one
common fixed point.

Proof. First of all we show that, if S or T has a fixed point, then it is a common
fixed point of S and T . Indeed, let z be a fixed point of S. Now assume d(z, T z) >
0. Put x = y = z in the (3.1) condition, we have

d(T z, z) = d(T z,Sz)) ≤ ψ([d(z,Sz) + d(z, T z)]− φ(d(x,Sz), d(z, T z)))

= d(z, T z)− 1

2
φ(0, d(z, T z))

wherefrom φ(0, d(z, T z)) ≤ 0, which is a contradiction. Thus by the property of φ,
we have d(z, T z) = 0 and so z is a common fixed point of S and T . Analogously,
one can observe that if z is a fixed point of T , then it is a common fixed point of
S and T .

Let x0 be such that x0 ≺ Sx0. We can define a sequence {xn} in X as follows:

x2n+1 = Sx2n and x2n+2 = T x2n+1 for n ∈ {0, 1, . . .}. (3.2)

Since S is T -strictly weakly isotone increasing, we have

x1 = Sx0 ≺ T Sx0 = T x1 = x2 ≺ ST Sx0 = ST x1 = Sx2 = x3,

x3 = Sx2 ≺ T Sx2 = T x3 = x4 ≺ ST Sx2 = ST x3 = Sx4 = x5,
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and continuing this process we get

x1 ≺ x2 ≺ · · · ≺ xn ≺ xn+1 ≺ · · · . (3.3)

Now we claim that for all n ∈ N, we have

d(xn+1, xn+2) ≤ d(xn, xn+1). (3.4)

From (3.3) we have that xn ≺ xn+1 for all n ∈ N. Then from (3.1) with x = x2n−1

and y = x2n, we get

(3.5)

d(x2n, x2n+1)

= d(T x2n−1,Sx2n)
≤ ψ([d(x2n−1,Sx2n) + d(x2n, T x2n−1)]− φ(d(x2n−1,Sx2n), d(x2n, T x2n−1)))

= ψ([d(x2n−1, x2n+1) + d(x2n, x2n)]− φ(d(x2n−1, x2n+1), 0))

≤ ψ(d(x2n−1, x2n+1)− φ(d(x2n−1, x2n+1), 0))

≤ ψ(d(x2n−1, x2n+1))

≤ ψ([d(x2n−1, x2n) + d(x2n, x2n+1)])

≤ 1

2
[d(x2n−1, x2n) + d(x2n, x2n+1)].

Therefore,

d(x2n, x2n+1) ≤ d(x2n−1, x2n) for any n ∈ N.

Similarly, we can prove that d(x2n−1, x2n) ≤ d(x2n−2, x2n−1) for all n ≥ 1.
Therefore, we conclude that (3.4) holds.

Thus {d(xn, xn+1)} is a nondecreasing sequence of nonnegative real numbers.
Consequently, there exists γ ≥ 0 such that

lim
n→∞

d(xn, xn+1) = γ. (3.6)

Next, we prove that
lim

n→∞
d(xn+1, xn) = 0.

Passing to the limit as n→ ∞ in (3.5) we have

γ ≤ lim
n→∞

1

2
d(xn−1, xn+1)) ≤

1

2
(γ + γ),

or

lim
n→∞

d(xn−1, xn+1) = 2γ (3.7)

Passing to the limit as n → ∞ in (3.5) and using (3.6), (3.7) and the continuity
of ψ and φ, we have

γ ≤ ψ(2γ − φ(2γ, 0)) ≤ γ − 1

2
φ(2γ, 0) ≤ γ.
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Hence, we have φ(2γ, 0) = 0, that is, γ = 0, that is,

lim
n→∞

d(xn, xn+1) = 0. (3.8)

Now we prove that {xn} is a Cauchy sequence. To this end, it is sufficient to verify
that {x2n} is a Cauchy sequence. Suppose, on the contrary, that {x2n} is not a
Cauchy sequence. Then there is an ε > 0 such that for an integer 2k there exist
integers 2m(k) > 2n(k) > 2k such that

d(x2n(k), x2m(k)) > ε. (3.9)

For every integer 2k, let 2m(k) be the least positive integer exceeding 2n(k) sat-
isfying (3.9) and such that

d(x2n(k), x2m(k)−1) ≤ ε. (3.10)

Now

ε < d(x2n(k), x2m(k)) ≤ d(x2n(k), x2m(k)−1) + d(x2m(k)−1, x2m(k)).

Then by (3.9) and (3.10) it follows that

lim
k→∞

d(x2n(k), x2m(k)) = ε. (3.11)

Also, by the triangle inequality, we have∣∣d(x2n(k), x2m(k)−1)− d(x2n(k), x2m(k))
∣∣ ≤ d(x2m(k)−1, x2m(k)).

By using (3.11) we get

lim
k→∞

d(x2n(k), x2m(k)−1) = ε. (3.12)

Now by (3.1) we get

d(x2n(k), x2m(k)) (3.13)

≤ d(x2n(k), x2n(k)+1) + d(x2n(k)+1, x2m(k))

≤ d(x2n(k), x2n(k)+1) + d(T x2n(k),Sx2m(k)−1)

≤ d(x2n(k), x2n(k)+1) + ψ([d(x2m(k)−1,Sx2n(k)) + d(x2n(k), T x2m(k)−1)]

− φ(d(x2m(k)−1,Sx2n(k)), d(x2n(k), T x2m(k)−1)))

= d(x2n(k), x2n(k)+1) + ψ([d(x2m(k)−1, x2n(k)+1) + d(x2n(k), x2m(k))])

− φ(d(x2m(k)−1, x2n(k)+1), d(x2n(k), x2m(k))).

Taking into account (3.8) and (3.11) and the continuity of ψ and φ, passing to the
limit as n→ ∞ in the last inequality, we obtain

ε ≤ ψ([ε+ 0]− φ(ε, 0)) ≤ 1

2
ε
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and from the last inequality, φ(ε, 0) ≤ 0. Therefore φ(ε, 0) = 0. From the fact that
φ(x, y) = 0 ⇔ x = y = 0, we have ε = 0, a contradiction. Thus, assumption (3.9)
is wrong. Therefore, {xn} is a Cauchy sequence.

From the completeness of X there exists z ∈ X such that xn → z as n→ ∞. If
T or S is continuous then it is clear that T z = z or Sz = z. Thus, it is immediate
to conclude that T and S have a common fixed point.

Now, suppose that the set of common fixed points of T and S is totally ordered.
We claim that there is a unique common fixed point of T and S. Assume to the
contrary that Su = T u = u and Sv = T v = v but u ̸= v. By supposition, we can
replace x by u and y by v in (3.1) and the property of ψ, we obtain

d(u, v) = d(T u,Sv) ≤ ψ([d(u,Sv) + d(v, T u)]− φ(d(u,Sv), d(v, T u)))
= ψ(2d(u, v)− φ(d(u, v), d(v, u))),

that is,

d(u, v) ≤ d(u, v)− 1

2
φ(d(u, v), d(v, u)) ≤ d(u, v).

This gives us φ(d(u, v), d(v, u)) = 0, and, by definition of φ, d(u, v) = 0, that is,
u = v. This finishes the proof.

Now, we are also able to prove the existence of a common fixed point of two
mappings without using the continuity of S or T . More precisely, we have the
following theorem.

Theorem 3.3. Let (X , d,≼) and S, T : X → X satisfy all the conditions of
Theorem 3.2, except that condition (iii) is substituted by

(iii’) X is regular.
Then the same conclusions as in Theorem 3.2 hold.

Proof. Following the proof of Theorem 3.2, we have that {xn} is a Cauchy sequence
in (X , d) which is orbitally complete at x0. Then, there exists z ∈ X such that

lim
n→∞

xn = z.

Now suppose that d(z,Sz) > 0. From regularity of X , we have x2n ≼ z for all
n ∈ N. Hence, we can apply the considered contractive condition. Then, setting
x = x2n and y = z in (3.1), we obtain:

d(x2n+2,Sz) = d(T x2n+1,Sz)
≤ ψ(d(x2n+1,Sz) + d(z, T x2n+1)]− φ(d(x2n+1,Sz), d(z, T x2n+1)))

= ψ(d(x2n+1,Sz) + d(z, x2n+2)]− φ(d(x2n+1,Sz), d(z, x2n+z))).

Passing to the limit as n→ ∞ and using xn → z, continuities of ψ and φ, we have

d(z,Sz) ≤ 1

2
d(z,Sz)− 1

2
φ(d(z,Sz), 0) ≤ 1

2
d(z,Sz)
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a contradiction. Therefore d(z,Sz) = 0 and thus z = Sz. Analogously, for x = z
and y = x2n, one can prove that T z = z. It follows that z = Sz = T z, that is, T
and S have a common fixed point.

Corollary 3.4. Let (X ,≼) be a partially ordered set and suppose that there exists
a metric d in X such that (X , d) is a complete metric space. Suppose T ,S :
X → X are two mappings satisfying weakly (ψ,S, C)-contractive conditions for all
comparable x, y ∈ X .

We assume the following hypotheses:

(i’) S and T are weakly increasing;

(iii’) X is regular.

Then S and T have a common fixed point. Moreover, the set of common fixed
points of S, T is totally ordered if and only if S and T have one and only one
common fixed point.

4 Common Fixed Points for Generalized Weakly
(ψ,S, C)-Contraction Mappings

In this section, we prove results for generalized weakly (ψ,S, C)-contraction in
ordered metric space. To complete the results, we need the following notion of a
generalized weakly (ψ,S, C)-contraction.

For convenience, we denote by

1. Ψ2 the class of functions ψ : [0,+∞) → [0,+∞) a strictly increasing, con-
tinuous function with ψ(t) ≤ 1

4 t for all t > 0 and ψ(0) = 0;

2. Φ2 the class of functions φ : [0,+∞)4 → [0,+∞) a strictly decreasing, lower
semi-continuous in each coordinate such that φ(x, y, z, t) = 0 if and only if
x = y = z = t = 0 and φ(x, y, z, t) ≤ x+ y+ z+ t for all x, y, z, t ∈ [0,+∞).

Definition 4.1. Let (X , d,≼) be a ordered metric space. Two mappings T ,S :
X → X are called a generalized weakly (ψ,S, C)-contraction if

d(T x,Sy) ≤ ψ([d(x, T x) + d(y,Sy) + d(x,Sy) + d(y, T x)]
− φ(d(x, T x), d(y,Sy), d(x,Sy), d(y, T x))), for x ≽ y (4.1)

for any x, y ∈ X , φ ∈ Φ2 and ψ ∈ Ψ2.

It is note that the generalized weakly (ψ,S, C)-contractions constitute a strictly
larger class of mappings than weakly C-contractions.

Now, we state and prove our first result.

Theorem 4.2. Let (X ,≼) be a partially ordered set and suppose that there exists a
metric d in X such that (X , d) is a complete metric space. Suppose T ,S : X → X
are two mappings satisfying generalized weakly (ψ,S, C)-contractions conditions
for all comparable x, y ∈ X .

We assume the following hypotheses:



738 Thai J. Math. 12 (2014)/ H.K. Nashine

(i) (S, T ) is a.r. at x0 ∈ X ;

(ii) X is (S, T )-orbitally complete at x0;

(iii) S is T -strictly weakly isotone increasing;

(iv) there exists an x0 ∈ X such that x0 ≺ Sx0;

(v) S or T is orbitally continuous at x0.

Then S and T have a common fixed point. Moreover, the set of common fixed
points of S, T is totally ordered if and only if S and T have one and only one
common fixed point.

Proof. First of all we show that, if S or T has a fixed point, then it is a common
fixed point of S and T . Indeed, let z be a fixed point of S. Now assume d(z, T z) >
0. If we use the inequality (4.1), for x = y = z, we have

d(T z, z) = d(T z,Sz)) ≤ ψ([d(z, T z) + d(z,Sz) + d(z,Sz) + d(z, T z)]
− φ(d(z, T z), d(z,Sz), d(z,Sz), d(z, T z)))

=
1

2
d(z, T z)− 1

4
φ(d(z, T z), 0, 0, d(z, T z))

wherefrom φ(d(z, T z), 0, 0, d(z, T z)) ≤ 0, which is a contradiction. Thus by the
property of φ, we have d(z, T z) = 0 and so z is a common fixed point of S and T .
Analogously, one can observe that if z is a fixed point of T , then it is a common
fixed point of S and T .

Since (T ,S) is a.r. at x0 in X , there exists a sequence {xn} in X such that

x2n+1 = Sx2n and x2n+2 = T x2n+1 for n ∈ {0, 1, . . .} (4.2)

and

lim
n→∞

d(xn, xn+1) = 0. (4.3)

If xn0 = Sxn0 or xn0 = T xn0 for some n0, then the proof is finished. So assume
xn ̸= xn+1 for all n.

Since S is T -strictly weakly isotone increasing, we have

x1 = Sx0 ≺ T Sx0 = T x1 = x2 ≺ ST Sx0 = ST x1 = Sx2 = x3,

x3 = Sx2 ≺ T Sx2 = T x3 = x4 ≺ ST Sx2 = ST x3 = Sx4 = x5,

and continuing this process we get

x1 ≺ x2 ≺ · · · ≺ xn ≺ xn+1 ≺ · · · . (4.4)

Now we prove that {xn} is a Cauchy sequence in the metric space O(x0;S, T ).
To this end, it is sufficient to verify that {x2n} is a Cauchy sequence. Suppose,
on the contrary, that {x2n} is not a Cauchy sequence. Then, there exists an
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ε > 0 such that for each even integer 2k there are even integers 2n(k), 2m(k) with
2m(k) > 2n(k) > 2k such that

rk = d(x2n(k), x2m(k)) ≥ ε for k ∈ {1, 2, 3, . . .}. (4.5)

For every even integer 2k, let 2m(k) be the smallest number exceeding 2n(k)
satisfying condition (4.5) for which

d(x2n(k), x2m(k)−2) < ε. (4.6)

From (4.5), (4.6) and the triangular inequality, we have

ε ≤ rk ≤ d(x2n(k), x2m(k)−2) + d(x2m(k)−2, x2m(k)−1) + d(x2m(k)−1, x2m(k))

≤ ε+ d(x2m(k)−2, x2m(k)−1) + d(x2m(k)−1, x2m(k)).

Hence by (4.3), it follows that

lim
k→+∞

rk = ε. (4.7)

Now, from the triangular inequality, we have

| d(x2n(k), x2m(k)−1)− d(x2n(k), x2m(k)) |≤ d(x2m(k)−1, x2m(k)).

Passing to the limit as k → +∞ and using (4.3) and (4.7), we get

lim
k→+∞

d(x2n(k), x2m(k)−1) = ε. (4.8)

On the other hand, we have

d(x2n(k), x2m(k)) (4.9)

≤ d(x2n(k), x2n(k)+1) + d(x2n(k)+1, x2m(k))

≤ d(x2n(k), x2n(k)+1) + d(Sx2n(k), T x2m(k)−1)

≤ d(x2n(k), x2n(k)+1) + ψ([d(x2m(k)−1, T x2m(k)−1) + d(x2n(k), T x2n(k))
+ d(x2m(k)−1, T x2n(k)) + d(x2n(k), T x2m(k)−1)]

− φ(d(x2m(k)−1, T x2m(k)−1), d(x2n(k), T x2n(k)), d(x2m(k)−1, T x2n(k)),
d(x2n(k), T x2m(k)−1)))

= d(x2n(k), x2n(k)+1) + ψ([d(x2m(k)−1, x2m(k)) + d(x2n(k), x2n(k)+1)

+ d(x2m(k)−1, x2n(k)+1) + d(x2n(k), x2m(k))]

− φ(d(x2m(k)−1, x2m(k)), d(x2n(k), x2n(k)+1),

d(x2m(k)−1, x2n(k)+1), d(x2n(k), x2m(k))))

< d(x2n(k), x2n(k)+1) +
1

4
[d(x2m(k)−1, x2m(k)) + d(x2n(k), x2n(k)+1)

+ d(x2m(k)−1, x2n(k)+1) + d(x2n(k), x2m(k))]

− 1

4
φ(d(x2m(k)−1, x2m(k)), d(x2n(k), x2n(k)+1), d(x2m(k)−1, x2n(k)+1),

d(x2n(k), x2m(k))).
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Taking into account (4.3) and (4.7) and the continuity of ψ and φ, passing to the
limit as n→ ∞ in the last inequality, we obtain

ε ≤ ψ([ε+ 0 + ε+ 0]− φ(ε, 0, ε, 0)) ≤ 1

2
ε− 1

4
φ(ε, 0, ε, 0) <

1

2
ε

and from the last inequality, φ(ε, 0, ε, 0) ≤ − 1
2ε ≤ 0. Therefore φ(ε, 0, ε, 0) = 0.

From the fact that φ(x, y, z, t) = 0 ⇔ x = y = z = t = 0, we have ε = 0, a
contradiction. Thus, assumption (4.5) is wrong. Therefore, {xn} is a Cauchy
sequence in the metric space O(x0;S, T ).

Since X is (S, T ,R)-orbitally complete at x0, there exists some z ∈ X such
that xn → z as n→ +∞. Now we show that z is a common fixed point of T and
S. Clearly, if S or T is orbitally continuous then z = Sz or z = T z. Thus, it is
immediate to conclude that T and S have a common fixed point.

Now, suppose that the set of common fixed points of T and S is totally ordered.
We claim that there is a unique common fixed point of T and S. Assume to the
contrary that Su = T u = u and Sv = T v = v but u ̸= v. By supposition, we can
replace x by u and y by v in (4.1) and the property of ψ, we obtain

d(u, v) = d(Su, T v) ≤ ψ([d(v, T v) + d(u,Su) + d(v,Su) + d(u, T v)]
− φ(d(v, T v), d(u,Su), d(v,Su), d(u, T v)))

<
1

2
d(v, u)− 1

4
φ(d(v, T v), d(u,Su), d(v,Su), d(u, T v)),

a contradiction. Hence, u = v. The converse is trivial.

Now, we are also able to prove the existence of a common fixed point of two
mappings without using the continuity of S or T . More precisely, we have the
following theorem.

Theorem 4.3. Let (X , d,≼) and S, T : X → X satisfy all the conditions of
Theorem 4.2, except that condition (iii) is substituted by

(iii’) X is regular.
Then the same conclusions as in Theorem 4.2 hold.

Proof. Following the proof of Theorem 4.2, we have that {xn} is a Cauchy sequence
in (X , d) which is orbitally complete at x0. Then, there exists z ∈ X such that

lim
n→∞

xn = z.

Now suppose that d(z,Sz) > 0. From regularity of X , we have x2n ≼ z for all
n ∈ N. Hence, we can apply the considered contractive condition. Then, setting
x = x2n and y = z in (4.1), we obtain:

d(x2n+2,Sz) = d(T x2n+1,Sz)
≤ ψ([d(x2n+1, T x2n+1) + d(z,Sz) + d(x2n+1,Sz) + d(z, T x2n+1)]

− φ(d(x2n+1, T x2n+1), d(x2n+1,Sz), d(x2n+1,Sz), d(z, T x2n+1)))

= ψ([d(x2n+1, x2n+2) + d(z,Sy) + d(x2n+1,Sz) + d(z, x2n+2)]

− φ(d(x2n+1, x2n+z), d(z,Sz), d(x2n+1,Sz), d(z, x2n+z))).
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Passing to the limit as n→ ∞ and using xn → z, properties of ψ and φ, we have

d(z,Sz) ≤ 1

2
d(z,Sz)− 1

4
φ(0, d(z,Sz), d(z,Sz), 0) ≤ 1

2
d(z,Sz)

a contradiction. Therefore d(z,Sz) = 0 and thus z = Sz. Analogously, for x = z
and y = x2n, one can prove that T z = z. It follows that z = Sz = T z, that is, T
and S have a common fixed point.

Putting S = T in Theorem 4.3, we obtain easily the following result.

Corollary 4.4. Let (X ,≼) be a partially ordered set and suppose that there exists
a metric d in X such that (X , d) is a complete metric space. Suppose T : X → X
is mapping satisfying generalized weakly (ψ, C)-contraction conditions, that is,

d(T x, T y) ≤ ψ([d(x, T x) + d(y, T y) + d(x, T y) + d(y, T x)]
− φ(d(x, T x), d(y, T y), d(x, T y), d(y, T x))),

for all comparable x, y ∈ X , where φ ∈ Φ2 and ψ ∈ Ψ2.

We assume the following hypotheses:

(i) T is a.r. at some point x0;

(ii) X is T -orbitally complete at x0;

(iii) T is orbitally continuous at x0 or X is regular.

Also suppose that T x ≺ T (T x) for all x ∈ X such that x ≺ T x. If there exists an
x0 ∈ X such that x0 ≺ T x0 and the condition{

{xn} ⊂ X is a non-decreasing sequence with xn → z in X ,
then xn ≼ z for all n

holds, then T has a fixed point. Moreover, the set of fixed points of T is totally
ordered if and only if it is singleton.

We illustrate Theorem 4.2 by another example which is obtained by modifying
the one from [45].

Example 4.5. Let the set X = [0,+∞) be equipped with the usual metric d and
the order defined by

x ≼ y ⇐⇒ x ≥ y.

Consider the following self-mappings on X :

T x =

{
1
2x, 0 ≤ x ≤ 1

2 ,

2x, x > 1
2 ,

Sx =

{
1
3x, 0 ≤ x ≤ 1

3 ,

3x, x > 1
3 .
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Take x0 = 1
3 . Then it is easy to show that all the conditions (i)–(iii) of Theorem

4.2 are fulfilled on O(x0;S, T ). Take ψ(t) = t
4 and φ(x, y, z, t) = x+y+z+t

3 with
φ ∈ Φ2 and ψ ∈ Ψ2. Then contractive condition (4.1) takes the form∣∣∣∣12x− 1

3
y

∣∣∣∣ ≤ 1

6

[
1

2
x+

2

3
y +

∣∣∣∣x− 1

3
y

∣∣∣∣+ ∣∣∣∣y − 1

2
x

∣∣∣∣] ,
for x, y ∈ O(x0;S, T ). Using substitution y = tx, t > 0, the last inequality reduces
to

|3− 2t| ≤ 1

6
[3 + 4t+ 2|3− t|+ 3|2t− 1|],

and can be checked by discussion on possible values for t > 0. Hence, all the
conditions of Theorem 4.2 are satisfied and S, T have a common fixed point (which
is 0).

5 Existence of a Common Solution of Integral
Equations

Consider the system of integral equations:{
u(t) =

∫ T

0
K1(t, s, u(s)) ds, t ∈ [0, T ],

u(t) =
∫ T

0
K2(t, s, u(s)) ds, t ∈ [0, T ],

(5.1)

where T > 0 and K1,K2 : [0;T ] × [0;T ] × R → R are continuous functions. The
purpose of this section is to give an existence theorem for a solution of (5.1).

Previously, we consider the space C(I,R)(I = [0, T ]) of continuous functions
defined on I. Obviously, this space with the metric given by:

d(u, v) = max
t∈I

|u(t)− v(t)|, ∀u, v ∈ C(I,R),

is a complete metric space. C(I,R) can also be equipped with the partial order ≼
given by:

u, v ∈ C(I,R), u ≼ v ⇔ u(t) ≤ v(t), ∀ t ∈ I.

Moreover, in [9], it is proved that (C(I,R),≼) is regular.
Consider the mappings T ,S : C(I,R) → C(I,R) defined by

T u(t) =
∫ T

0

K1(t, s, u(s)) ds, for all C(I,R), t ∈ I

Su(t) =
∫ T

0

K2(t, s, u(s)) ds, for all C(I,R), t ∈ I.

Clearly, u is a solution of (5.1) if and only if u is a common fixed point of T and
S.

We shall prove the existence of a common fixed point of T and S under the
certain conditions.
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Theorem 5.1. Suppose that the following hypotheses hold:
(H1) for all t, s ∈ I, u ∈ C(I,R), we have:

K1(t, s, u(t)) ≤ K2

(
t, s,

∫ T

0

K1(s, τ, u(τ)) dτ

)

(H2) for all t, s ∈ I, u ∈ C(I,R), we have:

K2(t, s, u(t)) ≤ K1

(
t, s,

∫ T

0

K2(s, τ, u(τ)) dτ)

)
;

(H3) there exists a continuous function α : I × I → R+, and ψ : R → R+ and

ψ : R+2 → R+ belong to the classes Ψ1 and Φ1 respectively such that

|K1(t, s, x)−K2(t, s, y)| ≤ α(t, s)ψ([d(x,Sy) + d(y, T x)]− φ(d(x,Sy), d(y, T x)))

for all t, s ∈ I and x, y ∈ R such that x ≥ y;

(H4) sup
t∈I

∫ T

0

α(t, s) ds ≤ 1.

Then, the integral equations (5.1) have a solution u∗ ∈ C(I,R).

Proof. Let u ∈ C(I,R). Using (H1), for all t ∈ I, we have

T u(t) =
∫ T

0

K1(t, s, u(s)) ds

≤
∫ T

0

K2

(
t, s,

∫ T

0

K1(s, τ, u(τ)) dτ

)
ds

=

∫ T

0

K2(t, s, T u(s)) ds

= ST u(t).

Similarly, using (H2), for all t ∈ I, we have

Su(t) =
∫ T

0

K2(t, s, u(s)) ds

≤
∫ T

0

K1

(
t, s,

∫ T

0

K2(s, τ, u(τ)) dτ

)
ds

=

∫ T

0

K1(t, s,Su(s)) ds

= T Su(t).

Then, we have T u ≼ ST u and Su ≼ T Su for all u ∈ C(I,R). This implies that
T and S are weakly increasing.
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Now, for all u, v ∈ C(I,R) such that v ≼ u, by (H3) and (H4), we have:

|T u(t)− Sv(t)| ≤
∫ T

0

|K1(t, s, u(s))−K2(t, s, v(s))| ds

≤
∫ T

0

α(t, s)ψ([|u(s)− Sv(s)|+ |v(s)− T u(s)|]

− φ(|u(s)− Sv(s)|, |v(s)− T v(s)|)) ds

≤
∫ T

0

α(t, s)ψ([d(u,Sv), d(v, T u)]− φ(d(u,Sv), d(v, T v))) ds

=

(∫ T

0

α(t, s) ds

)
ψ([d(u,Sv), d(v, T u)]− φ(d(u,Sv), d(v, T v)))

≤ ψ([d(u,Sv), d(v, T u)]− φ(d(u,Sv), d(v, T v))).

Hence, we proved that for all u, v ∈ C(I,R) such that u ≽ v, we have

d(T u,Sv) ≤ ψ([d(u,Sv), d(v, T u)]− φ(d(u,Sv), d(v, T v))).

Now, all the hypotheses of Corollary 3.4 are satisfied. Then, T and S have a
common fixed point u∗ ∈ C(I,R), that is, u∗ is a solution to the integral equations
(5.1).
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[9] J.J. Nieto, R.R. López, Contractive mapping theorems in partially ordered
sets and applications to ordinary differential equations, Order 22 (2005) 223–
239.

[10] M. Abbas, T. Nazir, S. Radenović, Common fixed point of four maps in
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