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1 Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respec-
tively. Let C' be a nonempty closed convex subset of H. The hierarchical problem
is of finding & € Fiz(T) such that

(St — 2,2 —%) <0, Vze Fiz(T), (1.1)
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where S, T are two nonexpansive mappings and Fiz(T') to denote the fixed points
set of T, that is Fix(T) = {& € C : Tx = x}. Recently, this problem has been
studied by many authors (see,[1]-[16]).
Now, we briefly recall some historic results which relate to the problem (1.1).
For solving the problem (1.1), in 2006, Moudafi and Mainge [3] first introduced
an implicit iterative algorithm:

15 = 8Q(@1,s) + (L= 8)[ES(wr,5) + (1 = )T (21,5)] (1.2)

and proved that the net {z; s} defined by (1.2) strongly converges to z; as s — 0,
where z; satisfies 2;=projriz(p,)Q(z¢), where P;:C — C' is a mapping defined by

Pi(z)=tS(z)+ (1 —t)T(x),Yx € C,t € (0,1),
or, equivalently, x; is the unique solution of the quasivariational inequality:

0€ (I —Q)xt + Npinp,)(Tt),

where the normal cone to Fiz(P;), Npiy(p,) is defined as follows:

‘ ] {ue H:{y—x,u) <0}, ifxe Fiz(P),
Nria(p) 4 = { 0, otherwise.

Moreover, as t — 0, the net {z:} in turn weakly converges to the unique
solution z of the fixed point equation z.,= projoQ(z) or, equivalently, x ., is
the unique solution of the variational inequality:

0€e(lI—Q)xoo + Na(rs)-

Recall that a mapping f : C — C' is said to be contractive if there exists a
constant v € (0,1) such that

| fz — fyll <~llz —yll, Vo,yeC.

A mapping T : C — C is called nonexpansive if
[Te =Tyl < |z —yll, Vz,yeC.

A mapping T is said to be k-strict pseudo-contractive if there exists k € [0, 1) such
that

IT2 — Tyl < |l — y|> + klI(I = T)x — (I - T)y|%,Va,y € D(T).  (13)

Note that the class of k-strict pseudo-contraction strictly includes the class of
nonexpansive mappings. We see that, if S : C' — C defined by Six = kx + (1 —
k)Tx for all x € C where T is k-strict pseudo-contractive then Sy is nonexpansive
mapping [17].

In this paper, motivate by Kangtunkarn and Suantai [18], we introduce a
mapping for finding a common fixed point of T is a A-strict pseudo-contractive
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mapping and {T;}¥; a finite family of k;-strict pseudo-contractive mappings of
C into itself. For each n € N, and j = 1,2,...,N, let o} = (a7 a7 ag?) e
[0,1] x[0,1] x[0,1] with /"7 + a4 +a? = 1. We define the mapping S, : C — C
as follows:

Un,O = I
Upi = o' T1Upo+ah Uno + a3 I
U2 = o ’TolUpn1+ay?Uny + oy I
Ups = a’T3Up 0+ ah’Uns + a3’
)
Usno1 = oV Ty Upn_o+adN U y_o + a7
Sy = Unn=aPNTnUnn-1+ay Upno1+ay™NI. (1.4)

Motivated and inspired by the results in the literature, in this paper, we con-
sider a general hierarchical problem of finding 2* € F(T') such that, for any n > 1,

(Spx™ — 2",z —2*) <0,Vz € F(Sy), (1.5)

where S,, is the S-mapping defined by (1.4) and S, is a nonexpansive mapping
defined in Lemma 2.1.

Algorithm 1.1. Let C be a nonempty closed convex subset of a real Hilbert space
H and let T is a A-strict pseudo-contractive mapping with Sxx = Az + (1 — \)Tz
and {T;}N., be a finite family of k;-strictly pseudo-contractive mapping of C' into
itself. Let f : C' — C be a contraction with coefficient v € (0,1). For any xo € C,
let {x,} be the sequence generated by

xn+1 = an‘s’nxn + (1 - an)S)\(an(xn) + (1 - Bn)mn); V?’L Z 07 (16)

where {a, },{Bn} are two real numbers in (0,1) and S, is the S—mapping defined
by (1.4).

We show that an explicit iterative algorithm which converges strongly to a
solution z* of the general hierarchical problem (1.5).

2 Preliminaries

In this section, we collect and give some definition and useful lemmas that will
be used for our main results in the next section.

Lemma 2.1. [17] Let T : C — C be a k-strictly pseudo-contraction. Defined
Sy:C = C by Sye =X e+ (1 —XNTx for each x € C. Then, as X € [k, 1], Sy is
nonezpansive mapping and F(T) = F(Sy).



702 Thai J. Math. 12 (2014)/ 1. Inchan and T. Gadeewong

Lemma 2.2. In a real Hilbert space H, there holds the inequality
L lz+yll? < =l +2(y, 2 +y) and |z =yl = |l2]* = 2(z, y) + lyl|*, Yo,y € H.
2. |[tw+(1=t)yl* = tlz)>+ A= t)[lylI* —t(1—t) [z —yl?, Vt € [0,1], Yz, y € H.

81 caml|? = Yo g villwl|P = Y07 gl — ] for Yok i = 1,04 €
[0,1],Vi € {0,1,2, ..., m}.

Definition 2.3. [18] Let C' be nonempty conver subset of real Banach space. Let

{T:}Y| be a finite family of k;-strictly pseudo-contractive mapping of C into itself.

i J o

For each j =1,2,....N, let aj = (), ad), ) € T x I x I where o, o, € T =
[0,1] and o] + o + o, = 1. We define the mapping S : C — C as follows:

U = I
Ui = aiTiUy+adUy+ail
Uy = aiToU; +adUp + a3l
Us = o3T3Us +asUs + a3l
Uv-1 = o "Tn1Un o+ ad 'Un_g+ay T
S = Uv=aYTyUn_1+ad Uy 1 +d1.

This mapping is called S — mapping generated by T1,...,Tn and a1,a9,...,aN.

Lemma 2.4. [9] Let C be a nonempty closed convex subset of a real Hilbert space
H and S : C — C be a self-mapping of C. If S is a k-strict pseudo-contraction
mapping, then S satisfies the Lipschitz condition

1+k
1Sz = Syl < me*yHa Va,y € C.

Lemma 2.5. [19] Let {s,} be a sequence of nonnegative real number satisfying
Sn41 =1 —an)sp +0n+1n, Yn>0

where {a, } is a sequence in (0,1) and {6,} is a sequence such that
1.5 ay = o0,

2. limsup,,_,.. 2= <0 or 300 10,] < oo,

o
8. 3t Il < o0

Then lim,,_, ¢, = 0.

Lemma 2.6. [18] Let C be a nonempty closed convex subset of real Hilbert space.
Let {T;} N, be a finite family of k;-strictly pseudo-contractive mapping of C into C

with ﬂf\il F(T;) # 0 and k = max{k; : i =1,2,..., N} and let a; = (o, oy, 02) €
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IxIxI,j=1,2,3,...,N, wherel = [071],a{+aé+a§ = 1,04{,0% € (k,1) for all
j=1,2,...,N—1and oy € (k,1),a) € (k,1],0 € (k,1] for all j =1,2,...,N.
Let S be the mapping generated by T1,...,Tn and ay,qs,...,ay. Then F(S) =
ﬂﬁvzl F(T;) and S is a nonexpansive mapping.

Lemma 2.7. [20] A real Hilbert space H salisfies Opial’s condition, i.e, for any
sequence {x,} C H with x, — x, the inequality

liminf ||z, — z|| < liminf ||z, — yl,
n—oo n—oo
holds for each y € H with x # y.

Lemma 2.8. [21] Let C be a nonempty closed convex subset of a real Hilbert
and T : C — C be a nonexpansive mapping. Then T is demi-closed on Ci.e.,if
r, ~x€C and x, — Tx, — 0, then x = Tx.

3 Main Results

In this section, we prove strong convergence of algorithm (1.6) and solving a
common solution of a general hierarchical problems and fixed point problems of
finite family of strict pseudo-contractive mappings. First, we can prove the lemmas
that will be used in the main theorem.

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H, let {T;}N.; be a finite family of k;-strictly pseudo-contraction of C into itself
for some k; € [0,1) and k = max{k; : i =1,2,..., N} with ﬂfil F(T;) # 0. Let
S, be the S-mapping generated by T1,T5,...,Tn and aln),aén), . ,ag\?), where
a;n) = (a7 a7 0y e Ix I x [T =[0,1],a77 +ay? +a%? =1 and k < a <
oz?’j,ozg’j <b<lforalk<c< aT’N <1,k< ozg’N <d<1,k< ozg’j <e<l1
forall j =1,2,....N and 3°0, |a}th — a7 < 00,3257 |asg ™ — a7 < oo
for all j ={1,2,3,...,N}. Then for all z € H,Y .~ | ||Snt12 — Spz|| < oo.

Proof. For each x € C' and n € N, we have

[Uns102 = Upazl| = Jai™ ' Tz + (1 - o™ e) — o' Tz + (1 - o)z
- ||a?+1’1T1x—a?+1’1x —a?’lTlx—i—a?’lmH
(03— 0Ty — (0™ — g )a

lai ™ — || The — 2 (3.1)
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and for n € N, and for k € {2,3,..., N}, we have

IN

IN

IN

[Un+1,57 — Un ||
||05?+LkaUn+1,k—1x + OénH’k nt+1,k—1T + ag“ ok

n,k n,k
" " TpUp o1+ g Uy o1 + @y’ x||

n+1,k n+1,k n,k
laf TuUnt1k—12 + g r—al TkUmk,lx —aytz
n+1,k n,k
+as, Ups1h—12 — oy Uy 12|

n+1,k n+1,k n+1,k
[l " TpUpg1 -1 — TWUp -1z + oy " ThUp -1
n+1,k n,k
_al TkUn,k_LJ? + (043 — g’ )

||Oé7f+1’k(TkUn+1,k—1I —TwUpg—12) + (Oé?H’k —ay’ )TkUn k—1T
—i—(ozg“’]’C

||Oén+1’k(TkUn+1 k—1T — TkUn k— 1213) + (O/lﬂ_l k Oé?’k)

n+1 kU

T+ ag i1 h1L — g Uy z|

n,k n+1,k n.k
—az")r + ay nt1,k—17 — Qg Up 12|

n+1,k n+1,k
XTpUp p—17 + (o —ay )x + oy Unt1 k-1
1
i kU x4 ayth kU 1x—a2’kUn7k_1x||

||Oln+1 k(TkUn+1,k—1$ - TkUn go12) + (T — el h)
XTyUn g2 + (5 T = i)z + b T (U g
~Unp-12) + (a5 ™" — 0 "YU, 12|

nH k”TkUn+1 k12 — TpUp rz|| + |afh ok Oé;l’k|||TkUn,k71xH

+| 5T — oo

+a§+1 NUnt1p-12 = Uppr|| + lab ™ — ab* || U o1z
T U1 g1 = ThUp gz + [T — ¥ | T Uy g2
+ay T U1 g1 — Upporz]| + |1 — aftoF

—ay 1 o M| Un gzl + Jog T — o ||

afth ki o 1Uns1.46-12 = Upprz]| + o T — o M| T U o1 2|
+ay ™t k||Un+1,k—1x — Upo—1l| + (Joi"

—ay T P g U gz + Lo T — ||

]-+k n+1k_

7||Un+1k 12 = Up p—12]| + |y oV || TUn o1

1—

1+k
A ||Un+1k 1 — Up gzl + (laph — afthF
Hlap* —a?“”“nuvnk sal] + o T — gkl

2
T | Un+1h—-12 = Un—rzl| + ot — o (1T U a2

n,k n+1,k
H|Un—az]) + o™ = a3 ™| ([Un 1z + ) (32)
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By (3.1) and (3.2), we have

HSn+1I — Spz|| = ||Un+1,N$ - Un,NﬂCH
2
< % 1Unt1,N—12 = Up n—12]| + [ TN — o PN (1 TN Un, v 12|
1,N N
HUn,n—12l) + oy TN — o N |(1Un v 12 + [|z])
2 2
< m mHUn-&-l,N—%If - Un,N—QxH
+|a?+l'N71 - a?’N71|(||TN71Un,N72ZH + [|Un,N—22]|)
1,N—1 JN—1
ot Nt —ap |[||Un,N72w||+Hx|n)
Hap N — o N (1IN Un, v—12] + [|Un, v—12])
1,N N
Hag TN — o N (|Un v 12l + 2]
2 2 N 2 N-—j 41,5 .
= (125) Wosniwoze = Unweasl+ 3 (725) 1ol = af 173U ol
j=N-1
N 9 N—j y )
HlUn g1z + 3 (ﬁ) o519 — a3 | (|Un 12| + [l2])
j=N-1
9 N-1 N 2 N—j 41 )
n N n,
< (725) Wenae—tasl+ X (725) 0 - o T U el
j=2
N 9 N—j oy )
HUnj—rzl) + ) (—1 = k) lag ™ — af?|([Unj 1)) + [l])
j=2

2 N—-1 11 1 N 2 N—j
— n+1, n,
- (1—k) o —on H'TwiZHJrJZ_Q(lfk)

ntlj _  nj S 2 \V
+|af — P (I T Un 12l + Un ozl + 2l + > Tk
j=2

Hag ™ — a7 (|Un jo12]| + |l])).

This implies by assumption we have that

o0
> [I1Sn12 — Snall < oo

n=1
This complete the proof. O

Lemma 3.2. Let C' be a nonempty closed convex subset of a real Hilbert space
H, let {T;}N., be a finite family of k;-strictly pseudo-contraction of C into itself
for some k; € [0,1) and k = max{k; : i = 1,2,..., N} with (X, F(T;) # 0. Let
S, be the S-mapping generated by T1,Ts,...,Tn and aln),aén)7 . ,ag\?), where
a;-n) = (a7, a7 a7y e I x I x I,T=10,1],a}? +ab? +al? =1 and satisfy
conditions:
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(1) k<_a§a?’j,a§’j <b<1 for allk<c§a§l’N <1,k §ag’N <d<1,k<
ay? <e<1 foralj=1,2,...,N

(2) oy lat? —af| < 00,3007, a5 —aj] < 00,3007, a5 —af| < oo for all
j=1{1,2.3,...,N}.
Then for all x € H,lim,_, ||Spx — Sz|| = 0.

Proof. Let x € C and for each n € N, from the definition of S mapping and
Lemma 2.4, we have

|Upiz — Uhz|| = ||a;“1T1Un70x + ag’lUn’ox + ag’lx — (el Upz + adUpz + aéx)”

,1 1 1
< ot — gl Tazl + oz — agfllz] + |z — aglllzl.

From boundedness and condition (2) we have

n— o0
Next, consider
Un,ox — Usz|| = Ha?’zTgUn,lx + aS’QUn,la: + a;’Zx — (@2 TaUrz + a3Urz + o3x)||

< Ho/ll’QTzUnylac — oe’f’szle + Oé?’QTQle + ch’2Un’11‘ + ozg’Qac
—(a%Tgle—i-a%Ulz—i—agx)H

< laP? (ToUp iz — ToUra) || + [|(e? = ad)(@)]| + ()2 — of)(T2Ura)|
+||Oc;’2Un711‘ — a3Us ||

< o ToUn iz — ToUra|| + i = ofl|z]| + o] — o || To U]
+a3? |Uppz — Urz| + |ab? — ad||Urz||

1+k
< P 0 10 - il 4 Jo? — el + Jo}? — aFITaU1al

+ay?|Unaz — Uizl + |ag? — || Ur].
From boundedness, condition (2) and equation (3.3), we have

lim Uy 2 — Usal| = 0. (3.4)

Similarly of the proof, we have

li_)m |Upn. vz — Unz| = 0. (3.5)
Since ||Spz — Sz| = ||Uy,yx — Unz||, we have
lim || Spx — Sz|| = 0. (3.6)
n—oo

This complete the proof. O
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Theorem 3.3. Let C' be a nonempty closed convexr subset of a real Hilbert space
H, let T be a A-strictly pseudo-contractive mapping and {Ti}f\[:l be a finite family
of k;-strictly pseudo-contractive mappings of C into itself for some k; € [0,1) and
k = max{k; : i = 1,2,..., N} which ﬂf\[:l F(T;) # 0. Let S,, be the S-mapping
generated by Ty, Ty, ..., T and af, oy, ...,af where aff = (oz?’j,oz;’j,ozg’j) clx
IxI,T=101),a}7 +ay’ +ay? =1 and k < a < a}?,ay? <b<1 for all
j=1,2,.,N-lLk<c<aPVN <lLk<ap <d<lk<ay? <e<1 forall
j=1,2,..N. Assume that set Q of solution of general hierarchical problem (1.5)
is nonempty. For a mapping f : C — C is a contraction with v € (0,1), sequence
{an}, {Bn} are two real number in (0,1) and assume that the following condition
hold:

(1) limy, o0 @y = 0 and lim,, o g—: =0,
(2) 2:;1 Bn = 00,

(3) limn%ooi L _1

Qn Qn—1

‘:07 andhmnﬂmi|1_%|:0
(4) Toilad ™ —ai!| < 00, 3207 oyt —a | < oo for allj = {1,2,3,..., N},

(5) Yol lai? —al| < 00,302 an — o] < 00, 30 |af — o] < oo for all
j={1,2,3,...,N}.

Then the sequence {x,} in (1.6) solve the following variational inequality:

zeN
{ (I = f)z,z—3)>0, Vo eQ. (3.7)

Proof. From (1.6), let y, = By f(xn) + (1 — Bp)x, and x* € Q we have

|41 — 7] |anSpan + (1 — ) Skyn — z*
< an”‘snmn - x*H + (1 - an)”Skyn - x*”
< ol — 2T+ (1= an)llyn — 27 (3-8)
Consider,
lyn — 2| = [IBaf(@n) + (1 = Bn)zn — 27|

IN

1Bnllen — ™[ + £ (@) = ™| + (1 = Bn)[[&n — 27
(1= (@ =MBp)llen — || + (") — 2. (3.9)

From (3.8) and (3.9), we have

[Znt — 2" < anllan — 2"+ (1= an)[(1 = X =)Bn)lwn — 2™ + [If (=7) — =7[]
< anflen =27+ (1= an)llzn — 2"+ (1 = an)l| f(z7) — 27
= lzn =27+ (1 = an)|[f(z") — 27
< max{|lzo — 27|, [ f(27) — 7|}
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Then {z,} and {y,} are bounded and hence {f(x,)}, {Snzn}, {Sryn} are also.

Now we consider

1Yn — yn—1ll = 1Bnf(2n) = Buf(@n-1) + Bnf(xn-1) = Ba1f(@n_1) + (1 — Bn)rn
—(1=B)rn-1+ (1= Bu)rn-1— (1= Bu-1)Tn1l
< Buyll#n = @n1ll + [Bn = Ba—alll f(@n-2) Il + (1 = Bu)llan — 2
+ wn - ﬁnflmxnflll
=1 -1 =7Bu)llzn — zn-1ll + B = Bl f(@n-0)|l + [lzn-1l])-

From definition of {x,,} and nonexpansiveness of S,,, we have

Hansnxn + (1 - Oén)skyn — ap-1Sn—-1Tn—-1+ (1 - Oln—l)s/\yn—lll

lon — 2n_1]
= Hansnxn — anSnTn—1+ anSnTn—1 — An—_15nTn—1 + Ap—-1SnTn—-1

—0n—1Sn—1%Zn—1+ (1 —on)Sayn—1 + (1 — @n)Sx¥yn—1 — (1 — 0n—1)Sxyn—1||

< O‘nHzn - Inle + |an — an—1||Snxn—1| + O4n71HSnIn71 - Snflfnfl‘l
+(1 = ap)llyn = yn—1ll + lon — an—1|[1Sxyn—1|

< anllzn =zl + (1= an) [(1— (1 =7)Bn)lzn — zn-1l
+Bn = Bu—1|(If (@n-)Il + llzn-1ID] + len — an—1](Sn@n—1ll + |Sryn-1l))
+an—1||Sntn—1 — Sn—1Zn—1]|

< Jan+ (1 —an)d =1 =3B len — tn—1ll + |Bn — Ba-1l(||f(@n-1)|| + lzrn-1l)

Flan — an—1|(ISnzn—1ll + [[Sayn-1l]) + @n-1lISn@n—1 — Sp—12n-1l|
= [1-0 =98 —an)]llzn — zn-1ll + [Bn = Bu-1l(If (@n—-1)]| + zn-1])
‘Han - C‘lnfl‘(HSnxnfln + ”S)\ynfl”) + C‘fn71||Snxn71 - Snflwn71||~

Put M = Sup{\lf(xn—l)ll, [ Sn@n—1l], HSAyn_lll} n > 1, it follows
that

[Znt1 —znl| <1 —(1=7)Bu((1 = an)lllzn — a1l + (180 — Bu1l| + e — an—1|)M

+an—1 H‘S’nxn—l - Sn—l-rn—l ||

Put 0, = [|Spxn—1 — Sp—1Zn—1||, from Lemma 3.1, we have ¥>° 4, < oo,
it follows that

~ e 8. — B 5
lenss Zenll 1= )81 — gy L=ty e = Bucalyy | 1 = Boctl O
Qn Qn Qn Qn Qn

= [I-(0-=7)8n(1—an

)} ”1:” - l‘n71|l

Qn—1
Tn — Tn— Tn — Tpn—
= ) (Il e =il
Qn QAn—1
— Bn— — apn— é
+|6’n 571 1|M+ ‘Oln (679 1‘M+an_1i
Qn [e7%) Qn
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]Ilwn —zn1|

< -0 =9)8n(1—oan)
Qn—1
1 1 n— Qn_ n — Bn— On,
+(7_ ylom—ana| B0 =P 1|+—>M
(e 7% Qp—1 Qn Qn Qn

ln — @n]

= - (=Bl - an)

H1= - anf e (o] -

1 Jan —om—1

A=A =an)\Bnlon an1| Ban on
1 ‘an_anfl‘ 1 |ﬂn_6n71‘ 6n
ra et g e )
From Lemma 2.5, we obtain that
lim 1Znt1 = 2all (3.10)
n—o00 Qg
This implies that
lim ||zp4+1 — zn|| = 0. (3.11)
n—oo
From (1.6) and (3.11), we have that
lim ||z, — Sxyn| = 0. (3.12)
n—oo
It follows that
Yn — Tn = Bn(f(zn) —x4) — 0. (3.13)
It implies that
lyn = Sxynll < llyn — znll + lzn — Sxynll = 0. (3.14)

Since the sequence {z,} and {y,} are also bounded. Thus there exists a
subsequence of {y, }, which is still denoted by {y,, } which converges weakly
to a point & € H. Therefore, & € Fixz(T) by (1.6), we observe that

Tn+l — Tp = an(snxn - xn) + (1 - an)(S)\yn - ?/n) + (1 - O‘n)ﬁn(fxn - xn)v

that is,
n - 4n 1_ n nl_ n
w:([_gn)xn_i_ a <I_S/\)yn+M(I_f)xn-
(7% (679 n
Set zn:(gﬂ%i"*nfor each n > 1, that is
1_ n nl_ n
2n = (I — Sp)an + “(1—&mm+§i——ﬁlu—fmw

n (673
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Using monotonicity of I — Sy and I —S,,, we derive that, for all u € Fix(T),

(zmym —u) = <(I—Sn>awcn—““>+1_:m“I_&)y”_(I_SA)WTL_U>
0T = 83020 — ) + 22O (1 o, )
> (I = Sn)u,an —u) + %:a")“[ S
+%<(1_Swm%—m»
= (I = S)u,an —u) + (S = Sn)u,an —u) + %;%W* P =
+%<(I—Sx)ymxn—f“>'

But, since z, — 0, g—: — 0 and lim,_ || Spu — Sul| = 0, it follows from
the above inequality that

limsup((I — S)u,zp, —u) < 0, Vu e Fiz(T).
n—oo
It suffices to guarantee that wy,(z,) C . As a matter of fact, if we take
any =¥ € wy(Ty), then there exists a subsequence {,,} of {z,} such that
xp; — x*. Therefore, we have

(I = S)u,z* —u) = lim (I — S)u,zn; —u) <0, Vue Fiz(T).

j—00
Note that x* € Fiz(T). Hence x* solves the following problem:

z* € Fix(T)
{ (I = S)u,z* —u) >0, Vu € Fiz(T).

It is obvious that this equivalent to the problem (1.5) by Lemma 3.2, we
have S,, — S uniformly in any bounded set. Thus z* € Q. Let T be the
solution of the variational inequality (3.7), by Lemma 2.7 we have T is
unique. Now, take a subsequence {zy,} of {z,} such that
limsup(( — f)Z,zp, — ) = lim (I — f)Z,xn, — T).
n—oo 1—00

Without loss of generality, we can assume that x,, — z*. Then z* € Q.
Therefore, we have

limsup((I — f)Z,zp, —2) = (({ — f)z,2* =) > 0.

n—oo

This completes the proof. O
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Theorem 3.4. Let C' be a nonempty closed convexr subset of a real Hilbert space
H, let T be a A-strictly pseudo-contractive mapping and {Ti}fvzl be a finite family
of k;-strictly pseudo-contractive mappings of C into itself for some k; € [0,1) and
k = max{k; : i = 1,2,..., N} which ﬂf\[:l F(T;) # 0. Let S,, be the S-mapping
generated by Ty, Ty, ..., T and af, oy, ...,af where aff = (a?’j,ag’j,ag’j) clx
IxI,T=101),a}7 +ay’ +ay? =1 and k < a < a}?,ay? <b<1 for all
j=1,2,.,N-lLk<c<aPVN <lLk<ap <d<lk<ay? <e<1 forall
i =1,2,..N. Assume that set Q of solution of generalized hierarchical problem
(1.5) is nonempty. For a mapping f : C — C is a contraction with v € (0,1),
sequence {a,},{Bn} are two real number in (0,1) and assume that the following
condition hold:

(1) limy, o0 ap = 0 and lim,,_, % =0,

(2) Zzozl ﬂn = o0,

(3) limy, oo | — L

Qn QAn—1

|=0 andlimnﬁmi|1—%|:0,
1,5 \J 1,5 2J .
(4) >0, laft T—af?| < o0, >0, lad T —al | < oo forallj = {1,2,3,...,N},

(5) Zzo:l |0¢T’j —a{| <00,y |ozg’j —oé| <00,y |oz§’j —a§| < oo for all
]:{1,2,3,...,]\7},

(6) there exists a constant d > 0 such that ||z — Sxz| > pDist(x, F(Sy)), where

Dist(xz, F(Sy)) = inf |lz—y|.
@ F(S) = inf flz =yl

Then the sequence {x,} difined by (1.6) converges strongly to a point T € Fix(T),
which solve the variational inequality problem (3.7).

Proof. From (1.6), we have
Tpi1 — T = Qn(SnTn — SnT) + an(SnZ — ) + (1 — ap) (Sayn — 7).
Thus we have

[EE

lltn (Snn — Sn&) + (1 — an)(Sayn — 2)||? + 200 (Sn& — &, Tpi1 — &)

(1 — an)|Sayn — Z||? + an||Snn — SnZ||? + 200 (Sn% — &, 21 — &) (3.15)
(1= an)llyn — &> + anllzn — &)1* + 200 (Sn& — & Tni1 — &).

INININ

Now we consider

(1= Bn)(@n — &) + Bn(fon — f2) + Bn(fT — 3)|2

(1 = Bn)(@n — &) + Bu(fon — f2)|12 + 2Bn(fT — &, yn — )

(1= Bn)llwn — &> + Bull(Ffon — f2)|1? + 2Bn (f& — &,yn — &)  (3.16)
(1= Bo)llzn — 21 + BnV?llzn — &)1 + 2Bn (fE — &, yn — &)

[1— (1= 7*)Ba]llzn — &1 + 2Bn(fF — &, yn — 7).

llyn — &2

IAIA A
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Substituting (3.16) into (3.15), we get

lzn41 _4%”2
= anlen =& + (1 —an)[1 = (1 =*)Bn]len — 2|
+2Bn(1 — an){(fZ — Z,yn — Z) + 2an (SnT — T, Tp4+1 — I)
= [1=(1=2?)8a(1 —an)]llzn — &> + 280 (1 — an)(fF — & yn — &)
20 (SnZ — &, Tpt1 — T)
(1= (1=7%)Bn(1 — an)]llzn — 21> + (1 —~7)Ba(l — an)

><{ L (snfz_fz,xn+1_gz>}.(3.17)
1—~2

Qn

TS0 —an)  Ba

By Theorem 3.3, we note that every weak cluster point of the sequence
{z,} is in Q. Since y, — x,, — 0, then every weak cluster point of {y,} is
also in . Consequently, since Z = projo(f), we easily have

limsup(fz — Z,y, — &) < 0. (3.18)

n—oo

On the other hand, we observe that
(SnT—T,p1—T) = <Sni‘_i‘7pr0jFia:(Sx)xn+l_i‘>+<sni‘_i‘7xn+l_pr0jFim(S,\)xn+1>

Since 7 is a solution of the problem(1.5) and projriz(s,)Tn+1 € Fiz(Sy),
we have

<Sn-fi' - i'7p740jFiz‘(S/\)xn+1 - 'i‘> S 0.

Thus it follows that

(Sn@ = T,2n41 — %) < (S — T, Tpt1 — Projpiz(sy)Tnt1)
< [|SnZ — Hanrl - pTOij(sA)an H
= ||SpZ — Z|| X Dist(xp41, Fiz(Sy))

o~ -
< ;HSM—SUHH%H — S\xpa-

We note that

[Zn+1 — Sxznll + [Sazn — SxTni1]
|| Snn — Sxxn|l + (1 — an)[[Sayn — Saznll + [|[Tnr1 — 24|

|Tnt1 — Saznitl|

an||Snzn — Sxxnll + lYn — zoll + |T041 — 20|

INIA A IA

anHSnfL'n - S)\xn” + ﬁn”fxn - xn“ + ||xn+1 - $n||
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Hence we have

On (G % — & aps — ) < 0‘3<1||55; #([|Snin — Saz H)
- -z, 1— R - — S\
/Bn n n+ Bn P n n+n n
1 L
+an (311803 = all e — ]
2
— 1
+%M 2118n7 — 7| ).
Bn Qn P
From Theorem 3.3 we have lim,,_,oo lznti=zall _ g Ang then, we note that

{%Hsni’ = Z|[| Span — Sxaall}, {%Hsnj — ||| frn — anll}, and {%Hsni’ — [}
are all bounded. Hence it follows from (1) and the above inequality that

lim sup %<Sn5c — T, xpe1 — ) < 0.
n—oo n
Finally, by (3.17) and Lemma 2.5, we conclude that the sequence {x,,}
converges strongly to a point & € Fix(Sy) = Fiz(T). This completes the
proof. O
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