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Abstract : The object of this present paper is to define and study generalised
statistical convergence for the sequences in any locally convex Hausdorff space X
whose topology is determined by a set Q of continuous seminorms q and their rela-
tion with the nearly convergent sequence space using a bounded modulus function
along with regular and almost positive method.
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1 Introduction and notations

The notion of statistical convergence was introduced by Fast [1] and sub-
sequently has been investigated widely,whose basic idea depends on concept of
density of a certain subset E ⊆ N , the set of natural number (see for example
([2, 3]); also for recent works see ([4–8]). Recall that the natural density of E is
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denoted by δ(E) and is defined by Freedman and Sember [9] as

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k) (1.1)

where χE is the characteristic function of E. A real sequence x = (xk) is said to
be statistical convergent to l, denoted by st-lim xk = l, or xk → l (stat), if for
every ϵ > 0, the set E = {k ≤ n : |xk − l| ≥ ϵ} has natural density zero.

The concept of statistical convergence has been extended by Maddox [10] for
the sequences in any locally convex Hausdorff space X whose topology is deter-
mined by a set Q of continuous seminorms q in the following way.

The sequence x = (xk) ∈ X is called statistically convergent to l ∈ X if for all
q ∈ Q and all ϵ > 0,

n−1 |{k ≤ n : q(xk − l) ≥ ϵ}| → 0 as n → ∞ (1.2)

where vertical bar denotes the cardinality of the set enclosed, and when this hap-
pens, we write this as

xk → l(S) (1.3)

Let A = (Ai) be the sequence of matrices Ai = (ank(i)) of complex numbers
C and for a sequence x = (xk) we write

Ai
n(x) =

∞∑
k=0

ank(i)xk

if it exists for each n and i ≥ 0. The sequence x is said to be summable to the
value s by the method A if

lim
n→∞

Ai
n(x) = s uniformly in i.

The method A is conservative [11] if and only if the following conditions hold:

(i) ∥A∥ = sup
i,≥0,n≥0

∞∑
k=0

|ank(i)| < ∞

(ii) ∃ ak ∈ C : lim
n→∞

ank(i) = ak uniformly in i

(iii) ∃ a ∈ C : lim
n→∞

∞∑
k=0

ank(i) = a uniformly in i

The method A is regular, if further ak = 0, a = 1. We write

α(A) = a−
∞∑
k=0

ak. (1.4)
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The method A is called co-null if α(A) = 0; otherwise co-regular.
We write

a+nk(i) = max(ank(i), 0), a−nk(i) = max(−ank(i), 0)

so that
∞∑
k=0

|ank(i)| =
∞∑
k=0

a+nk(i) +
∞∑
k=0

a−nk(i)

and
∞∑
k=0

ank(i) =

∞∑
k=0

a+nk(i)−
∞∑
k=0

a−nk(i)

The method A is called almost positive if and only if

lim
n

∞∑
k=0

a−nk(i) = 0,uniformly in i. (1.5)

This definition is parallel to the definition for almost positive matrices given in
[12]. Clearly a regular method A is almost positive if and only if

lim
n

∞∑
k=0

|ank(i)| = 1 uniformly in i.

Before we can begin, it is necessary to introduce some most important defi-
nitions and notations.We first propose a density using the concept and axiomatic
definition of lower asymptotic density presented by Freedman and Sember [9].

Let A = (ank(i)) be almost positive and regular. Then for E ⊆ N , we write

δA(E) = lim inf
n

inf
i

∑
k

ank(i)χE(k) (1.6)

It is easily verified that δA(E) in (1.6), satisfies all the axioms provided by Freed-
man and Sember [9] to be a lower asymptotic density .So the upper asymptotic
density associated by δA(E) is denoted as δA(E) and is given by

δA(E) = 1− δA(E
′
) = lim sup

n
sup
i

∑
k

ank(i)χE(k) (1.7)

where E
′
is the complement of E. When the above lower and upper asymptotic

density coincide,we write it as δA(E), that is, δA(E) = δA(E) = δA(E), then it is
easily seen that,

δA(E) = lim
n

∞∑
k=0

ank(i)χE(k) (1.8)

exists uniformly in i and δA(E) is said to be a generalised density obtained from
A or just A-density.
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In this case, 0 ≤ δA(E) ≤ 1. Let Eϵ = {k ∈ N : q(xk − l) ≥ ϵ}; q ∈ Q.
Thus using the concept of Maddox [10] on statistical convergence of a sequence
x = (xk) ∈ X is said to be A-statistical convergent to l ∈ X provided that for
every ϵ > 0, δA(Eϵ) = 0.

In that case we write this as

xk → l(A− stat) (1.9)

and we denote SA as the set of all A-statistical convergent sequences in X . Now
we write xk −−→

Eϵ

l to mean that for each ϵ > 0, there exists integer n0 > 0 such

that q(xk − l) < ϵ whenever k ≥ n0, k /∈ Eϵ, q ∈ Q.
In the case A = A = (C, 1), (the Cesaro matrix of order one), and q(x)=|x|

the A-statistical convergence reduces to usual definition of statistical convergence.
Let W be set of all real sequences x = (xk) ∈ X. For any density δA, let

WδA =

{
xk ∈ W : there exist l ∈ X and Eϵ ⊆ N with δA(Eϵ) = 0 and xk −−→

Eϵ

l

}
.

Then WδA is called the space of δA-nearly convergent sequences and if x ∈
WδA , then we denote

xk → l(δA − nearly). (1.10)

The above definitions can be considered for real sequence x = (xk) by using
the fact q(x) = |x| , in the set Eϵ

Before we state the theorem of Maddox on characterisation of statistical con-
vergence in Hausdorff space we give the following definition.

Recall [10, 13] that a modulus function f : [0,∞) → [0,∞) satisfies

i) f(x) = 0 if and only if x = 0;

ii) f(x+ y) ≤ f(x) + f(y) for x ≥ 0, y ≥ 0;

iii) f is increasing;

iv) f is continuous from the right of 0.

A modulus function may be unbounded or bounded; for example: f(x) = xp

where 0 < p < 1 is unbounded, but f(x) = x
1+x is bounded. Now suppose that we

are given a modulus function f .For (xk) ∈ X we say that x = (xk) ∈ WA(f) if
and only if there exist l ∈ X such that

lim
n

∞∑
k=0

ank(i)f(q(xk − l)) = 0 uniformly in i, q ∈ Q. (1.11)

When (1.11) holds we write
xk → l(WA(f)). (1.12)

We also represent (1.11) as f(q(xk − l)) → 0(A). The sequences which satisfy
(1.12), we call them as WA(f)-convergent sequences.

Maddox [10] proved the following theorem.
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Theorem 1.1 ([10]). Let f be a bounded modulus function. A sequence x ∈ X is
statistically convergent to l ∈ X if and only if

1

n

n∑
k=1

f(q(xk − l)) → 0 (n → ∞)

and for all q ∈ Q.

2 Main Results

Now we shall first prove a theorem to generalize the above result of Maddox,
and then we shall correlate it to nearly convergent sequences in any locally con-
vex Hausdorff space X whose topology is determined by a set Q of continuous
seminorms q.

Theorem 2.1. Let f be a bounded modulus function and let A = (ank(i)) be
regular and almost positive. Then for x = (xk), l ∈ X, xk → l(A-stat) if and only
if

f(q(xk − l)) → 0(A) (2.1)

Proof. Suppose that xk → l(A-stat), that is, limn

∑∞
k=0 ank(i)χEϵ(k) = 0 uni-

formly in i for xk, l ∈ X where Eϵ = {k ∈ N : q(xk − l) ≥ ϵ}.
Now since A is almost positive, (2.1) is equivalent to:

lim
n

∞∑
k=0

a+nk(i)f(q(xk − l)) = 0, uniformly in i. (2.2)

Now

∞∑
k=0

a+nk(i)f(q(xk − l))

=
∞∑
k=0

a+nk(i)f(q(xk − l))χEϵ(k) +
∞∑
k=0

a+nk(i)f(q(xk − l))χE′
ϵ
(k)

≤ sup f

{ ∞∑
k=0

a+nk(i)χEϵ(k)

}
+

{ ∞∑
k=0

a+nk(i)χE′
ϵ
(k)

}
f(ϵ)

→ 0 as n → ∞ and ϵ → 0
uniformly in i.

Conversely let

∞∑
k=0

ank(i)f(q(xk − l)) → 0 as n → ∞
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uniformly in i. Now

∞∑
k=0

a+nk(i)f(q(xk − l)) ≥
∞∑
k=0

a+nk(i)f(q(xk − l))χEϵ(k)

≥ f(ϵ)
∞∑
k=0

a+nk(i)χEϵ
(k)

As
∑∞

k=0 a
+
nk(i)f(q(xk−l)) → 0 as n → ∞ uniformly in i, so

∑∞
k=0 a

+
nk(i)χEϵ(k) →

0 as n → ∞ uniformly in i, i.e.,

δA(Eϵ) = 0.

Hence xk → l(A-stat).

Corollary 2.2. Let A = (ank(i)) be regular and almost positive. Then xk → 0(A-
stat) if and only if

lim
n

∞∑
k=0

ank(i)
|xk|

1 + |xk|
= 0 uniformly in i.

Proof. Taking f(x) =
x

1 + x
and q(x) = |x| in Theorem 2.1 with l = 0 we obtain

the corollary.

We now establish an important relation for δA-nearly convergent sequences,
with WA(f)- convergent sequences over certain class of matrices in our next the-
orem.

Theorem 2.3. Let f be a bounded modulus function. Let A = (ank(i)) be co-

regular and B =
(

ank(i)−ak

α(A)

)
= (bnk(i)) be almost positive. Then for x = (xk), l ∈

X, xk → l(δB−nearly ) if and only if f(q(xk − l)) → o(B).

Proof. Necessity: By hypothesis, B is regular and almost positive. Let xk →
l(δB−nearly), i.e., there exists a set Eϵ ⊆ N such that xk −−→

Eϵ

l and δB(Eϵ) = 0.

We have, as B is almost positive,

0 = δB(Eϵ) = lim sup
n

sup
i

∞∑
k=0

bnk(i)χEϵ(k)

= lim sup
n

sup
i

∞∑
k=0

b+nk(i)χEϵ(k). (2.3)

As xk −−→
Eϵ

l, then for ϵ > 0, there exists n0 ∈ N such that

q(xk − l) < ϵ, k ≥ n0, k /∈ Eϵ. (2.4)



A Generalised Statistical Convergence 693

Write

1 = χEϵ(k) + χE′
ϵ
(k) = χEϵ(k) + χE′

ϵ∩G(k) + χE′
ϵ∩G′ (k)

where G = {k ∈ N |q(xk − l) ≥ ϵ}. So we have

∞∑
k=0

b+nk(i)f(q(xk − l))

=
∞∑
k=0

b+nk(i)f(q(xk − l))χEϵ(k) +
∞∑
k=0

b+nk(i)f(q(xk − l))χE′
ϵ∩G(k)

+
∞∑
k=0

b+nk(i)f(q(xk − l))χE′
ϵ∩G′ (k)

=
∑
1

+
∑
2

+
∑
3

. (2.5)

Now by (2.3) and since f(q(xk − l)) ≤ sup f for xk ∈ X as f is bounded

lim sup
n

sup
i

∑
1

= lim sup
n

sup
i

∞∑
k=0

b+nk(i)f(q(xk − l))χEϵ(k)

≤ sup f{lim sup
n

sup
i

∞∑
k=0

b+nk(i)χEϵ(k)} = 0. (2.6)

Again using (2.4) for the second sum, we get

lim sup
n

sup
i

∑
2

= lim sup
n

sup
i

∞∑
k=0

b+nk(i)f(q(xk − l))χE′
ϵ∩G(k)

= lim sup
n

sup
i

∑
k≥n0

b+nk(i)f(q(xk − l))χE′
ϵ∩G(k)

+ lim sup
n

sup
i

∑
k<n0

b+nk(i)f(q(xk − l))χE′
ϵ∩G(k)

≤ f(ϵ) lim sup
n

sup
i

∑
k≥n0

b+nk(i)χE′
ϵ∩G(k)

+ sup f

{
lim sup

n
sup
i

∑
k<n0

b+nk(i)χE′
ϵ∩G(k)

}

< f(ϵ) lim sup
n

sup
i

∞∑
k=0

b+nk(i)

+ sup f

{
lim sup

n
sup
i

∑
k<n0

b+nk(i)

}
. (2.7)
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The first term in (2.7) refers to just f(ϵ) and the last term to zero. Therefore

lim sup
n

sup
i

∑
2

< f(ϵ). (2.8)

Now

lim sup
n

sup
i

∑
3

= lim sup
n

sup
i

∞∑
k=0

b+nk(i)f(q(xk − l))χE′
ϵ∩G′ (k)

< f(ϵ) lim sup
n

sup
i

∞∑
k=0

b+nk(i)χE′
ϵ∩G′ (k)

≤ f(ϵ) lim sup
n

sup
i

∞∑
k=0

b+nk(i)χE′
ϵ
(k)

< f(ϵ) lim sup
n

sup
i

∞∑
k=0

b+nk(i)

= f(ϵ). (2.9)

As ϵ is arbitrary and f(ϵ) → 0 as ϵ → 0+, from (2.5)-(2.9), it follows that

lim sup
n

sup
i

∞∑
k=0

b+nk(i)f(q(xk − l)) = 0

which ensures

lim sup
n

sup
i

∞∑
k=0

bnk(i)f(q(xk − l)) = 0.

Sufficiency: Define

Eα = {k ∈ N : q(xk − l) ≥ α > 0}.

So

∞∑
k=0

b+nk(i)f(q(xk − l)) ≥
∞∑
k=0

b+nk(i)f(q(xk − l))χEα(k) ≥ f(α)
∞∑
k=0

b+nk(i)χEα(k).

Now
∞∑
k=0

b+nk(i)χEα(k) ≤
1

f(α)

∞∑
k=0

b+nk(i)f(q(xk − l)) → 0

as n → ∞ uniformly in i (by hypothesis). Hence for α > 0,

δB(Eα) = lim sup
n

sup
i

∞∑
k=0

b+nk(i)χEα(k)

= 0. (2.10)
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Let

E1 = {k ∈ N : q(xk − l) ≥ 1}

E2 =

{
k ∈ N : q(xk − l) ≥ 1

2

}
...

Ej =

{
k ∈ N : q(xk − l) ≥ 1

j

}
.

By (2.10)
δB(E1) = δB(E2) = · · · = 0.

Hence
δB(E

′

1) = δB(E
′

2) = · · · = 1.

Note that E
′

1 ⊃ E
′

2 ⊃ · · · ⊃ E
′

j ⊃ · · · . Choose

ν1 ∈ E
′

1 = {k ∈ N : q(xk − l) < 1}.

Since

δB(E
′

1) = lim inf
n

inf
i

∞∑
k=0

b+nk(i)χE
′
1
(k) = 1

choose integer ν2 > ν1, ν2 ∈ E
′

2 =
{
k ∈ N : q(xk − l) < 1

2

}
such that for n > ν2

∞∑
k=0

b+nk(i)χE
′
2
(k) >

1

2
.

Similarly, there exists ν3 > ν2, ν3 ∈ E
′

3 such that for n > ν3

∞∑
k=0

b+nk(i)χE
′
3
(k) >

2

3
.

Continuing in the same manner, there exist νj > νj−1 ∈ E
′

j such that for n > νj

∞∑
k=0

b+nk(i)χE
′
j
(k) >

j − 1

j
.

Let

G = {n ∈ N : 1 ≤ n ≤ ν1 ∨ (νj ≤ n ≤ νj+1 ∧ n ∈ E
′

j , j = 1, 2, . . .)}

= {n ∈ N : 1 ≤ n ≤ ν1} ∪∞
j=1 {n ∈ E

′

j |νj ≤ n ≤ νj+1}.

Claim 1:

δB(G) = lim inf
n

inf
i

∞∑
k=0

b+nk(i)χG(k) = 1. (2.11)
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Since G ⊃ E
′

j ∀ j

∞∑
k=0

b+nk(i)χG(k) >

∞∑
k=0

b+nk(i)χE
′
j
(k)

⇒ lim inf
n

inf
i

∞∑
k=0

b+nk(i)χG(k) > lim inf
n

inf
i

∞∑
k=0

b+nk(i)χE
′
j
(k) = 1.

Also

lim inf
n

inf
i

∞∑
k=0

b+nk(i)χG(k) ≤ 1.

It follows that the claim (2.11) is established.

Claim 2: If E = G
′
then

xn −→
E

l and δB(E) = 0. (2.12)

By (2.11)

δB(E) = 1− δB(E
′
) = 1− δB(G) = 0.

Let ϵ > 0, we choose a positive integer j (keep it fixed) such that 1
j < ϵ. If

νj ≤ n ≤ νj+1 and n /∈ E, then n ∈ [νj , νj+1] ∩ G which implies that n /∈ Ej by
the definition of G. Consequently

q(xn − l) <
1

j
< ϵ. (2.13)

Now we consider the case when n ∈ [νj+k, νj+k+1], k ∈ N and n /∈ E. Proceeding
as above it can be shown that if νj+k ≤ n ≤ νj+k+1 and n /∈ E then

q(xn − l) <
1

j + k
<

1

j
< ϵ. (2.14)

As (2.14) holds for every k ∈ N , it follows from (2.13) and (2.14) that

q(xn − l) < ϵ for n ≥ nj and n /∈ E

which ensures (2.12). So sufficiency follows.

By taking f(x) =
x

1 + x
and q(x) = |x| in Theorem 2.3, we obtain the following

corollary.

Corollary 2.4. Let A = (ank(i)) be coregular and B =
(

ank(i)−ak

α(A)

)
= (bnk(i)) be

almost positive. Then xk → l(δB-nearly) if and only if

∞∑
k=0

bnk(i)
|xk − l|

1 + |xk − l|
→ 0 as n → ∞ uniformly in i.
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Theorem 2.5. Let f be a bounded modulus function with x = (xk), l ∈ X. Let
A = (ank(i)) be regular and almost positive. Then SA = WA(f) = WδA .

Proof. The proof follows immediately from Theorem 2.1 and Theorem 2.3.

Acknowledgement : The authors are thankful to the referees for their comments
and suggestions on the manuscript.

References

[1] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.

[2] J.A. Fridy, On Statistical Convergence, Analysis 5 (1985) 301–313.

[3] T. Salat, On statistical convergent sequences of real numbers, Math. Slovaca
30 (2) (1980) 139–150.

[4] S.A. Mohiuddine, Q.M. Danish Lohani, On generalized statistical convergence
in intuitionistic fuzzy normed space, Chaos, Solitons and Fractals 42 (2009)
1731–1737.

[5] S.A. Mohiuddine, A. Alotaibi, M. Mursaleen, Statistical convergence of dou-
ble sequences in locally solid Reisz spaces, Abstact and Applied Analysis,
Volume 2012 (2012), Article ID 719729, 9 pages.

[6] S.A. Mohiuddine, M.A. Alghamdi, Statistical summability through a lacunary
sequence in locally solid Riesz spaces, Journal of Inequalities and Applications
2012, 2012:225.

[7] S.A. Mohiuddine, M. Aiyub, Lacunary statistical convergence in random 2-
normed Spaces, Appl. Math. Inf. Sci. 6 (3) (2012) 581–585.

[8] S.A. Mohiuddine, E. Savas, Lacunary statistically convergent double se-
quences in probabilistic normed spaces, Ann. Univ. Ferrara 58 (2012) 331–339

[9] A.R. Freedman, J.J. Sember, Densities and Summability, Pacific J. Math. 95
(1981) 293–305.

[10] I.J. Maddox, Statistical convergence in a locally convex space, Math. Proc.
Camb. Phil. Soc. 104 (1988) 141–145.

[11] M. Stieglitz, Eine Verallgemeinerung des Begriffs der Fastkonvergenz, Math.
Japon. 18 (1973) 53–70.

[12] S. Simons, Banach limits, Infinite matrices and sublinear functionals, J. Math.
Anal. Appl. 26 (1969) 640–655.

[13] I.J. Maddox, Sequence space defined by a modulus, Math. Proc. Cambridge
Philos. Soc. 100 (1986) 161–166.



698 Thai J. Math. 12 (2014)/ G. Das et al.

(Received 8 November 2012)
(Accepted 26 March 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th


