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Abstract : The object of this present paper is to define and study generalised
statistical convergence for the sequences in any locally convex Hausdorff space X
whose topology is determined by a set @ of continuous seminorms ¢ and their rela-
tion with the nearly convergent sequence space using a bounded modulus function
along with regular and almost positive method.
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1 Introduction and notations

The notion of statistical convergence was introduced by Fast [1] and sub-
sequently has been investigated widely,whose basic idea depends on concept of
density of a certain subset E C N, the set of natural number (see for example
([2, 3]); also for recent works see ([4-8]). Recall that the natural density of F is
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denoted by §(E) and is defined by Freedman and Sember [9] as
1 n
0(E) = lim - ];XE(]C) (L.1)

where xg is the characteristic function of E. A real sequence x = () is said to
be statistical convergent to I, denoted by st-lim z, = I, or xx — [ (stat), if for
every € > 0, the set E = {k <n: |z, — | > €} has natural density zero.

The concept of statistical convergence has been extended by Maddox [10] for
the sequences in any locally convex Hausdorff space X whose topology is deter-
mined by a set () of continuous seminorms ¢ in the following way.

The sequence = = (x) € X is called statistically convergent to [ € X if for all
q € Q and all € > 0,

ntH{k<n:qzr—1)>e€| —0asn— oo (1.2)

where vertical bar denotes the cardinality of the set enclosed, and when this hap-
pens, we write this as

x — 1(S) (1.3)

Let A = (A%) be the sequence of matrices A® = (a,(7)) of complex numbers
C and for a sequence = = () we write

Al(@) =Y ank(i)zx
k=0

if it exists for each n and ¢ > 0. The sequence zx is said to be summable to the
value s by the method A if

lim A’ (z) = s uniformly in i.
n—roo

The method A is conservative [11] if and only if the following conditions hold:

(@) JAl = sup > Jank(i)] < oo

i,20,n>0 1
(i) Jar € C: lim ani(i) = ag uniformly in 4
n—oo
o0
(191) Ja e C: nh_)n;o ;ank (1) = a uniformly in i

The method A is regular, if further ax = 0,a = 1. We write

a(A) = afZak. (1.4)
k=0
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The method A is called co-null if a(A) = 0; otherwise co-regular-
We write

a:k(i) = max(ank(),0), a,, (i) = max(—ank(i),0)

so that
D lank(@D)] =Y afi (i) + 3 ag, ()
k=0 k=0 k=0
and
o0 oo o0
Z ank (i) = Z apy (i) — Z Oy, (1)
k=0 k=0 k=0
The method A is called almost positive if and only if

lim ) " a,, (i) = 0, uniformly in i. (1.5)
k=0

This definition is parallel to the definition for almost positive matrices given in
[12]. Clearly a regular method A is almost positive if and only if

limz |ank ()| = 1 uniformly in i.
k=0

Before we can begin, it is necessary to introduce some most important defi-
nitions and notations.We first propose a density using the concept and axiomatic
definition of lower asymptotic density presented by Freedman and Sember [9)].

Let A = (anx(i)) be almost positive and regular. Then for E C N, we write

3 4(E) = lim inf ir}fZank(z’)xE(k) (1.6)
k

It is easily verified that § 4(E) in (1.6), satisfies all the axioms provided by Freed-
man and Sember [9] to be a lower asymptotic density .So the upper asymptotic
density associated by 0 4(E) is denoted as d 4(E) and is given by

SA(E)=1-08,4(E") =limsup sup»_ ani(i)xe(k) (L.7)
n K3 k

where E' is the complement of E. When the above lower and upper asymptotic
density coincide,we write it as 6 4(E), that is, 0 ,(E) = d4(E) = 6 4(E), then it is
easily seen that,

Sa(E) =lim ) ank(i)x5 (k) (1.8)
k=0

exists uniformly in ¢ and 6 4(F) is said to be a generalised density obtained from
A or just A-density.
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In this case, 0 < J4(F) < 1. Let E. = {k € N : gz, — 1) > €}; q € Q.
Thus using the concept of Maddox [10] on statistical convergence of a sequence
x = (z) € X is said to be A-statistical convergent to | € X provided that for
every € > 0,04(E.) = 0.

In that case we write this as

xp — (A — stat) (1.9)

and we denote S 4 as the set of all A-statistical convergent sequences in X . Now
we write x E—> l to mean that for each € > 0, there exists integer ng > 0 such

that g(z — 1) < e whenever k > ng,k ¢ E.,q € Q.

In the case A = A = (C,1), (the Cesaro matrix of order one), and q(x)=|z|
the A-statistical convergence reduces to usual definition of statistical convergence.
Let W be set of all real sequences x = (z3) € X. For any density 4, let

Ws, = qxr € W : there exist [ € X and E. C N with SA(EG) =0 and zy E—> l}.

Then Ws, is called the space of d4-nearly convergent sequences and if v €
Wi ., then we denote
xp, — 1(d4 — nearly). (1.10)

The above definitions can be considered for real sequence = (zj) by using
the fact g(z) = |z| , in the set F.

Before we state the theorem of Maddox on characterisation of statistical con-
vergence in Hausdorff space we give the following definition.

Recall [10, 13] that a modulus function f : [0,00) — [0, 00) satisfies

i) f(z)=0if and only if z = 0;

i) fz+y) < f(@)+ fy) forz >0,y > 0;
iii) f is increasing;
iv) f is continuous from the right of 0.

A modulus function may be unbounded or bounded; for example: f(x) = aP
where 0 < p < 1 is unbounded, but f(z) = 1-%5 is bounded. Now suppose that we
are given a modulus function f .For (zj) € X we say that « = (z1) € Wa(f) if

and only if there exist [ € X such that
limZank(i)f(q(xk —1)) = 0 uniformly in i, ¢€ Q. (1.11)
k=0

When (1.11) holds we write
xp = L(WA(S)). (1.12)
We also represent (1.11) as f(g(zr — 1)) — 0(A). The sequences which satisfy

(1.12), we call them as W4 (f)-convergent sequences.
Maddox [10] proved the following theorem.
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Theorem 1.1 ([10]). Let f be a bounded modulus function. A sequence x € X is
statistically convergent to Il € X if and only if

LS Flalee 1) 50 (n )
k=1

and for all ¢ € Q.

2 Main Results

Now we shall first prove a theorem to generalize the above result of Maddox,
and then we shall correlate it to nearly convergent sequences in any locally con-
vex Hausdorff space X whose topology is determined by a set @) of continuous
seminorms q.

Theorem 2.1. Let f be a bounded modulus function and let A = (ani(i)) be
reqular and almost positive. Then for x = (z1),l € X, x, — [(A-stat) if and only

if
fla(ze = 1)) = 0(A) (2.1)

Proof. Suppose that zj — I(A-stat), that is, lim, Y p,ank(i)xe. (k) = 0 uni-
formly in ¢ for xy,l € X where E. = {k € N : g(x, — 1) > €}.
Now since A is almost positive, (2.1) is equivalent to:

h};ni at (i) f(g(zy —1)) =0, uniformly in . (2.2)
k=0
Now
> an (@) f (gl = 1)
k=0

=Y af (@) f(alar = D)xe. (k) + Y alf (D) f gl = 1)xp (k)
k=0

=0
<sup f {Za,tk.u)m(k)} + {Za:kmx,;;(k)} 5
k=0 k=0

—0asn —ooand e — 0
uniformly in 4.
Conversely let

Zank(i)f(q(xk —1l))—>0asn— o0
k=0
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uniformly in 7. Now

> af (i) flalme = 1) = ab () falak — 1)xe, (k)
k=0

As> 22, a:;k(i)f(q(mk—l)) — 0 as n — oo uniformly in i, s0 > o, a:;k (D)xe. (k) —
0 as n — oo uniformly in ¢, i.e.,

d4(E.) =0.
Hence zj, — [(A-stat). O

Corollary 2.2. Let A = (ank(i)) be reqular and almost positive. Then xy — 0(A-
stat) if and only if

. = . |$k| . ..
lim Ak (2 = 0 uniformly in 1.
Proof. Taking f(x) = 1—T— and ¢(x) = |z| in Theorem 2.1 with { = 0 we obtain
x
the corollary. O

We now establish an important relation for §4-nearly convergent sequences,
with Wa(f)- convergent sequences over certain class of matrices in our next the-
orem.

Theorem 2.3. Let f be a bounded modulus function. Let A = (ank(i)) be co-

ank(i)fak

reqular and B = (W) = (buk (7)) be almost positive. Then for x = (zy),l €
X, xx — l(0p—nearly ) if and only if f(q(xx — 1)) — o(B).

Proof. Necessity: By hypothesis, B is regular and almost positive. Let z) —
l(0p—nearly), i.e., there exists a set E. C N such that E—) I and 6g(E) = 0.

We have, as B is almost positive,
0=0p(Ec) =limsup sup Y _ b (i)xe, (k)
n [ k=0

= lim sup supr:k(i)XEe (k). (2.3)
n % k=0

As xy, E.> [, then for € > 0, there exists ng € N such that

gz —1) <e¢, k>ng,k ¢ E.. (2.4)
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Write
1=xp. (k) + xg (k) = xE.(F) + Xg' g (k) + Xpne (F)

where G = {k € N|q(xy — 1) > €}. So we have

S bh () fla(ar — 1))
k=0

=2 B (i) (gl ~ D)x +Zb‘ e = D) ()
k=0
+ 305,60 flaer — D)x g g (k)
k=0
=D > > (2.5)
1 2 3

Now by (2.3) and since f(q(zx —1)) < sup f for z; € X as f is bounded

lim sup supz = limsup sup Z b () f(g(xe — 1) xe. (k)
n [ k=0

< sup f{hrn sup supz b (i)xe. (k)} = 0. (2.6)
' k=0

Again using (2.4) for the second sum, we get

hmsup supz = hmsup Supzb )f(a(zy — l))XE;mG(k)

k=0
= hmsup sup Z b ) fg(x, — l))XEgmG(k)
T k>no
+ lim sup sup Z b:k(i)f(Q(Ik - l))XE;mG(k)
n 2 k<n()
< f(e)limsup sup Z bh XE ‘e (k)
n [ k>no
+sup f {hmbup sup Z b ()X g7 ﬂG(k)}
i k<ng

< f(e )hmsup supr

v k=0

+sup f {hm sup sup Z b } . (2.7)

i k<ng
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The first term in (2.7) refers to just f(e) and the last term to zero. Therefore

limsup su < f(e). 2.8
 SUp ip%: f(e) (2.8)
Now
lim sup supz = lim sup Supr Vf(qg(xe = D)X g ne (k)
n (2 k=0

< f(e )hm sup Supzbnk XE e (k)
b k=0

< f(e)limsup sup Z b (D) x g ()
n K3 k=0

< f(e )hmbup bupr

v k=0

- 1o). (2.9)
As € is arbitrary and f(e) — 0 as e — 07, from (2.5)-(2.9), it follows that

hmsup supz bnk flg(zr, —1)) =0
v k=0

which ensures

hmsup supzbnk flq(zy —1)) = 0.
v k=0

Sufficiency: Define
E,={ke N :q(xp—1)>a>0}.
So
>0 flalan =) > Zb* alex = D)xe, (k) = f(a) Dbl ()xe, (k)
k=0 k=0

Now
o0

ank 1)XE, ( f(l ) 2 Zb;rk(i)f(Q(ﬂfk —1))—0

as n — oo uniformly in ¢ (by hypothes1s). Hence for o > 0,

05(Ey) = hmsup Supzbnk )X E. (k)
v k=0

= 0. (2.10)
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Let
Ei={keN:qlx—1)>1}
Egz{k’EN:q(xk—l)Z;}
1
Ej—{k'eN:q(xk—l)>j}.
By (2.10) a a
0p(F1) =dp(Ee) =---=0.
Hence ) )
éB(El) = éB(Ez) =---=1L

NotethatE;DEQD---DE}D~--. Choose
nmeB ={keN:qlx—1) <1}.

Since

35(Ey) = liminf inf 37 bF, (1)x 0 () = 1
k=0

choose integer vy > 1y, 15 € Eé = {k eEN:qlap—1)< %} such that for n > vy

N =

Z by (i)XE; (k) >
k=0

Similarly, there exists v3 > 9,13 € E;, such that for n > v3

[SCRR )

oo
+ .
> bk (D)x g (k) >
k=0
Continuing in the same manner, there exist v; > v;_; € EJ/ such that for n > v;

> b () > S—=
k=0 ’

J
Let
G={neN:1<n<npy v(yjgnguj+1AneEj,j:1,2,...)}
={neN: 1§n§1/1}U§°;1{n6E;\1/jSngyj+1}.
Claim 1:

65(G) = liminf inf Y b, (i)xa(k) = 1. (2.11)
k=0
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Since G D E; v j

> bi(xa (k) > D bk ()X (k)
k=0 k=0

= liminf inf » b (I)xc(k) > liminf inf > b ()xp (k) =
k=0 k=0 !

Also -
liminf inf Y " bf (i)xa(k) < 1.
" k=0

It follows that the claim (2.11) is established.
Claim 2: If E =G’ then

Tn — I and §5(E) = 0. (2.12)

By (2.11)

05(E) =1—3g(E') =1—-35(G) =0.
Let ¢ > 0, we choose a positive integer j (keep it fixed) such that
vi <n<wv;y; and n ¢ E, then n € [v;,v;11] N G which implies that
the definition of G. Consequently

< e If
¢ Ej by

1
q(z, —1) < 3 <e. (2.13)

Now we consider the case when n € [V, Vj1r41],k € N and n ¢ E. Proceeding
as above it can be shown that if v, <n <vji 441 and n ¢ E then
1 1
gz, — 1) < — < 7 < e (2.14)

As (2.14) holds for every k € N, it follows from (2.13) and (2.14) that
g(zn—1)<eforn>n;andn ¢ E

which ensures (2.12). So sufficiency follows. O

T

By taking f(z) = Ttz

corollary.

and ¢(x) = |x| in Theorem 2.3, we obtain the following

Corollary 2.4. Let A= (an(i)) be coregular and B = (M) = (bpk(2)) be

a(A)

almost positive. Then xy, — l(dg-nearly) if and only if

- —1
ank(i)u — 0 as n — oo uniformly in i.
Pt 1+ |z, —
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Theorem 2.5. Let f be a bounded modulus function with v = (xy),l € X. Let
A = (ank(t)) be regular and almost positive. Then Sa = Wa(f)=Ws,.

Proof. The proof follows immediately from Theorem 2.1 and Theorem 2.3. O
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