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1 Introduction

In recent times, fixed point theory has developed rapidly in partially ordered
metric spaces. An early result in this direction was established by Turinici in or-
dered metrizable uniform spaces [1]. Application of fixed point results in partially
ordered metric spaces were made subsequently, for example, by Ran and Reurings
[2] to solving matrix equations and by Nieto and Rodŕiguez-López [3] to obtain so-
lutions of certain partial differential equations with periodic boundary conditions.
Some more recent references in which new fixed point results have been obtained
in such spaces are noted in [4–10].

Coupled fixed point problems constitute a special category of problems in fixed
point theory. In their paper Bhaskar and Lakshmikantham [11] established a cou-
pled contraction mapping principle in partially ordered metric spaces for mapping
having mixed monotone property. An application of their result to differential
equations has also been given in the same work. This result was further general-
ized to coupled coincidence point theorems in [12] and [13] under two separate sets
of sufficient conditions. Several other coupled fixed and coincidence point results
were proved in works like those noted in references [14–22].

Common fixed point results for commuting mappings in metric spaces were
deduced by Jungck [23]. The concept of commuting has been weakened in various
directions and in several ways over the years. One such notion which is weaker than
commuting is the concept of compatibility introduced by Jungck [24]. In common
fixed point problems, this concept and its generalizations have been used exten-
sively. References [25–30] are some examples of such works. Recently, in [13] the
concept of compatibility has been introduced in the context of coupled coincidence
point problems. Further coupled coincidence point results using compatibility has
been obtained in [17].

In this paper we establish three coupled coincidence point theorems for an
arbitrary family of mappings {Fα : X × X −→ X : α ∈ Λ} with a mapping
g : X → X where (X, d) is a metric space with a partial ordering. We have used a
control function. Khan et al. [31] initiated the use of a control function in metric
fixed point theory, which they called an Altering distance function. This function
and its generalizations have been used in fixed and coincidence point problems in
a large number of works, some of these works are in [17, 30, 32–35].

Our results extend some existing results.

2 Mathematical Preliminaries

Let (X, ≼) be a partially ordered set and F : X −→ X. The mapping F is
said to be nondecreasing if for all x1, x2 ∈ X, x1 ≼ x2 implies F (x1) ≼ F (x2) and
nonincreasing if for all x1, x2 ∈ X, x1 ≼ x2 implies F (x1) ≽ F (x2).

Definition 2.1 ([11]). Let (X,≼) be a partially ordered set and F : X×X −→ X.
The mapping F is said to have the mixed monotone property if F is monotone
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nondecreasing in its first argument and is monotone nonincreasing in its second
argument, that is, if

x1, x2 ∈ X, x1 ≼ x2 =⇒ F (x1, y) ≼ F (x2, y), for all y ∈ X

and
y1, y2 ∈ X, y1 ≼ y2 =⇒ F (x, y1) ≽ F (x, y2), for all x ∈ X.

Definition 2.2 ([12]). Let (X,≼) be a partially ordered set and F : X×X −→ X
and g : X −→ X. We say that F has the mixed g- monotone property if

x1, x2 ∈ X, gx1 ≼ gx2 =⇒ F (x1, y) ≼ F (x2, y), for all y ∈ X

and

y1, y2 ∈ X, gy1 ≼ gy2 =⇒ F (x, y1) ≽ F (x, y2), for all x ∈ X.

Definition 2.3 ([11]). An element (x, y) ∈ X×X, is called a coupled fixed point
of the mapping F : X ×X −→ X if

F (x, y) = x and F (y, x) = y.

Definition 2.4 ([12]). An element (x, y) ∈ X×X, is called a coupled coincidence
point of the mappings F : X ×X −→ X and g : X −→ X if

F (x, y) = gx and F (y, x) = gy.

Definition 2.5 ([13]). The mappings g and F , where g : X −→ X and F :
X ×X −→ X, are said to be compatible if

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0

and
lim

n→∞
d(gF (yn, xn), F (gyn, gxn)) = 0,

whenever {xn} and {yn} are sequences in X such that limn→∞ F (xn, yn) =
limn→∞ gxn = x and limn→∞ F (yn, xn) = limn→∞ gyn = y, for some x, y ∈ X
are satisfied.

Definition 2.6 ([31]). A function ψ : [0,∞) → [0,∞) is called an altering distance
function if the following properties are satisfied:

(i) ψ is monotone increasing and continuous;

(ii) ψ(t) = 0 if and only if t = 0.

Definition 2.7 (P - property). Let (X, ≼) be a partially ordered set and d be
a metric on X. Then X is said to have P - property if xn −→ x is a nondecreasing
sequence, then xn ≼ x, for all n ≥ 0; and if yn −→ y is a nonincreasing sequence,
then y ≼ yn, for all n ≥ 0.
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Theorem 2.8 ([11]). Let (X, ≼) be a partially ordered set and suppose that
there is a metric d on X such that (X, d) is a complete metric space. Let F :
X ×X −→ X be a continuous mapping having the mixed monotone property on
X. Assume that there exists k ∈ [0, 1) such that for all x ≽ u, y ≼ v,

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)].

If there exist x0, y0 ∈ X such that x0 ≼ F (x0, y0) and y0 ≽ F (y0, x0), then there
exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

Theorem 2.9 ([11]). Let (X, ≼) be a partially ordered set and suppose that
there is a metric d on X such that (X, d) is a complete metric space. Assume
that X has the following property:

(i) if a nondecreasing sequence {xn} −→ x, then xn ≼ x, for all n;

(ii) if a nonincreasing sequence {yn} −→ y, then y ≼ yn, for all n.

Let F : X ×X −→ X be a mapping having the mixed monotone property on X.
Assume that there exists k ∈ [0, 1) such that for all x ≽ u, y ≼ v,

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)].

If there exist x0, y0 ∈ X such that x0 ≼ F (x0, y0) and y0 ≽ F (y0, x0), then there
exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

Theorem 2.10 ([20]). Let (X, ≼) be a partially ordered set and suppose that
there is a metric d on X such that (X, d) is a complete metric space. Let F :
X ×X −→ X be a mapping having the mixed monotone property on X such that
there exist two elements x0, y0 ∈ X with x0 ≼ F (x0, y0) and y0 ≽ F (y0, x0).
Suppose there exist non-negative real numbers α, β and L with α + β < 1 such
that

d(F (x, y), F (u, v)) ≤ α d(x, u) + β d(y, v)

+ L min {d(F (x, y), u), d(F (u, v), x),
d(F (x, y), x), d(F (u, v), u)},

for all x, y, u, v ∈ X for which x ≽ u, y ≼ v. Suppose either

(a) F is continuous or

(b) X has the following properties:

(i) if a nondecreasing sequence {xn} −→ x, then xn ≼ x, for all n ≥ 0;

(ii) if a nonincreasing sequence {yn} −→ y, then y ≼ yn, for all n ≥ 0.

Then there exist x, y ∈ X such that x = F (x, y) and y = F (y, x), that is, F has
a coupled fixed point in X.
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3 Main Results

Theorem 3.1. Let (X, ≼) be a partially ordered set and suppose that there is a
metric d on X such that (X, d) is a complete metric space. Let ϕ : [0, ∞) −→
[0, ∞) be a continuous function with ϕ(t) = 0 if and only if t = 0 and ψ be
an altering distance function. Let g : X → X be a continuous mapping and
{Fα : X×X −→ X : α ∈ Λ} be a family of mappings. Suppose there exists α0 ∈ Λ
such that

(i) Fα0 is continuous,

(ii) Fα0(X ×X) ⊆ g(X) and Fα0 has the mixed g-monotone property on X,

(iii) there exists x0, y0 ∈ X such that gx0 ≼ Fα0(x0, y0) and gy0 ≽ Fα0(y0, x0),

(iv) the pair (g, Fα0) is compatible,

(v) there exists a non-negative real number L such that for all x, y, u, v ∈ X
with gx ≽ gu, gy ≼ gv and α ∈ Λ,

ψ(d(Fα0(x, y), Fα(u, v))) ≤ ψ(max {d(gx, gu), d(gy, gv)})
− ϕ(max {d(gx, gu), d(gy, gv)})
+ L min {d(Fα0(x, y), gu), d(Fα(u, v), gx),

d(Fα0(x, y), gx), d(Fα(u, v), gu)}.

Then there exist x, y ∈ X such that gx = Fα(x, y) and gy = Fα(y, x), for all
α ∈ Λ, that is, g and {Fα : α ∈ Λ} have a coupled coincidence point. Moreover,
any coupled coincidence point of g and Fα0 is a coupled coincidence point of g and
{Fα : α ∈ Λ}.
Proof. First we establish that any coupled coincidence point of g and Fα0

is a
coupled coincidence point of g and {Fα : α ∈ Λ}. Suppose that (w, z) ∈ X×X be a
coupled coincidence point of g and Fα0

. Then gw = Fα0
(w, z) and gz = Fα0

(z, w).
From (v), we have

ψ(d(Fα0(w, z), Fα(w, z))) ≤ ψ(max {d(gw, gw), d(gz, gz)})
− ϕ(max {d(gw, gw), d(gz, gz)})
+ L min {d(Fα0(w, z), gw), d(Fα(w, z), gw),

d(Fα0(w, z), gw), d(Fα(w, z), gw)},

that is,
ψ(d(gw, Fα(w, z))) = 0,

which implies that d(gw, Fα(w, z)) = 0, that is, gw = Fα(w, z).
Again, from (v), we have

ψ(d(Fα0(z, w), Fα(z, w))) ≤ ψ(max {d(gz, gz), d(gw, gw)})
− ϕ(max {d(gz, gz), d(gw, gw)})
+ L min {d(Fα0(z, w), gz), d(Fα(z, w), gz),

d(Fα0(z, w), gz), d(Fα(z, w), gz)},
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that is,

ψ(d(gz, Fα(z, w))) = 0,

which implies that d(gz, Fα(z, w)) = 0, that is, gz = Fα(z, w). Therefore,
gw = Fα(w, z) and gz = Fα(z, w), for all α ∈ Λ, that is, (w, z) ∈ X × X is a
coupled coincidence point of g and {Fα : α ∈ Λ}. Hence, any coupled coincidence
point of g and Fα0 is a coupled coincidence point of g and {Fα : α ∈ Λ}. The
converse part is trivial.

Now it is sufficient to prove that g and Fα0 have coupled coincidence point.
By the condition (iii) there exist x0, y0 ∈ X such that gx0 ≼ Fα0(x0, y0) and
gy0 ≽ Fα0(y0, x0). Since Fα0(X × X) ⊆ g(X), we can choose x1, y1 ∈ X such
that gx1 = Fα0(x0, y0) and gy1 = Fα0(y0, x0). Again we can choose x2, y2 ∈ X
such that gx2 = Fα0(x1, y1) and gy2 = Fα0(y1, x1). Continuing this process we
construct two sequences {xn} and {yn} in X such that

gxn+1 = Fα0(xn, yn) and gyn+1 = Fα0(yn, xn), for all n ≥ 0. (3.1)

We shall prove that for all n ≥ 0,

gxn ≼ gxn+1 (3.2)

and

gyn ≽ gyn+1. (3.3)

Since gx0 ≼ Fα0
(x0, y0), gy0 ≽ Fα0

(y0, x0), gx1 = Fα0
(x0, y0) and gy1 =

Fα0(y0, x0), we have gx0 ≼ gx1 and gy0 ≽ gy1, that is, (3.2) and (3.3) hold for
n = 0.

We presume that (3.2) and (3.3) hold for some n > 0. As Fα0 has the mixed
g-monotone property and gxn ≼ gxn+1, gyn ≽ gyn+1, from (3.1), we have

gxn+1 = Fα0(xn, yn) ≼ Fα0(xn+1, yn),

Fα0
(yn+1, xn) ≼ Fα0

(yn, xn) = gyn+1. (3.4)

Also, for the same reason, we have

Fα0(xn+1, yn) ≼ Fα0(xn+1, yn+1) = gxn+2,

Fα0(yn+1, xn) ≽ Fα0(yn+1, xn+1) = gyn+2. (3.5)

From (3.4) and (3.5), we have that gxn+1 ≼ gxn+2 and gyn+1 ≽ gyn+2. Then by
mathematical induction it follows that (3.2) and (3.3) hold for all n ≥ 0. Therefore,

gx0 ≼ gx1 ≼ gx2 ≼ gx3 ≼ · · · ≼ gxn ≼ gxn+1 ≼ · · · , (3.6)

and

gy0 ≽ gy1 ≽ gy2 ≽ gy3 ≽ · · · ≽ gyn ≽ gyn+1 · · · . (3.7)

Let Rn = max {d(gxn+1, gxn), d(gyn+1, gyn)}.
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Since gxn ≽ gxn−1 and gyn ≼ gyn−1, applying (v) for α = α0 and using (3.1),
we have

ψ(d(gxn+1, gxn)) = ψ(d(Fα0(xn, yn), Fα0(xn−1, yn−1)))

≤ ψ(max {d(gxn, gxn−1), d(gyn, gyn−1)})
− ϕ(max {d(gxn, gxn−1), d(gyn, gyn−1)})
+ L min {d(Fα0(xn, yn), gxn−1), d(Fα0(xn−1, yn−1), gxn),

d(Fα0(xn, yn), gxn), d(Fα0(xn−1, yn−1), gxn−1)}
= ψ(max {d(gxn, gxn−1), d(gyn, gyn−1)})

− ϕ(max {d(gxn, gxn−1), d(gyn, gyn−1)}). (3.8)

Again, since gyn−1 ≽ gyn and gxn−1 ≼ gxn, applying (v) for α = α0 and using
(3.1), we have

ψ(d(gyn, gyn+1)) = ψ(d(Fα0(yn−1, xn−1), Fα0(yn, xn)))

≤ ψ(max {d(gyn−1, gyn), d(gxn−1, gxn)})
− ϕ(max {d(gyn−1, gyn), d(gxn−1, gxn)})
+ L min {d(Fα0(yn−1, xn−1), gyn), d(Fα0(yn, xn), gyn−1),

d(Fα0(yn−1, xn−1), gyn−1), d(Fα0(yn, xn), gyn)}
= ψ(max {d(gyn−1, gyn), d(gxn−1, gxn)})

− ϕ(max {d(gyn−1, gyn), d(gxn−1, gxn)}). (3.9)

From (3.8) and (3.9) and using the monotone property of ψ, we have

ψ(max {d(gxn+1, gxn), d(gyn+1, gyn)})
= max {ψ(d(gxn+1, gxn)), ψ(d(gyn, gyn+1))}
≤ ψ(max {d(gxn, gxn−1), d(gyn, gyn−1)})

− ϕ(max {d(gxn, gxn−1), d(gyn, gyn−1)}),

that is,

ψ(Rn) ≤ ψ(Rn−1)− ϕ(Rn−1). (3.10)

Using a property of ϕ, for all n ≥ 0 we have

ψ(Rn) ≤ ψ(Rn−1),

which, by the monotone property of ψ, implies that

Rn ≤ Rn−1.

Therefore, {Rn} is a monotone decreasing sequence. Hence there exists an r ≥ 0
such that

Rn −→ r as n −→ ∞. (3.11)
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Taking the limit as n→ ∞ in (3.10), using (3.11) and the continuities of ψ and ϕ,
we have

ψ(r) ≤ ψ(r)− ϕ(r),

which is a contradiction unless r = 0. Hence,

Rn −→ 0 as n −→ ∞. (3.12)

Then
lim

n→∞
d(gxn+1, gxn) = 0 (3.13)

and
lim

n→∞
d(gyn+1, gyn) = 0. (3.14)

Next we show that both {gxn} and {gyn} are Cauchy sequences. If possible
suppose that at least one of {gxn} and {gyn} is not a Cauchy sequence. Then
there exists ϵ > 0 and sequences of positive integers {m(k)} and {n(k)} such that
for all positive integers k,

n(k) > m(k) > k,

max {d(gxm(k), gxn(k)), d(gym(k), gyn(k))} ≥ ϵ

and
max {d(gxm(k), gxn(k)−1), d(gym(k), gyn(k)−1)} < ϵ.

Now,

ϵ ≤ max {d(gxm(k), gxn(k)), d(gym(k), gyn(k))}
≤ max {d(gxm(k), gxn(k)−1), d(gym(k), gyn(k)−1)}

+max {d(gxn(k)−1, gxn(k)), d(gyn(k)−1, gyn(k))},

that is,

ϵ ≤ max {d(gxm(k), gxn(k)), d(gym(k), gyn(k))} ≤ ϵ+Rn(k)−1.

Letting k −→ ∞ in the above inequality and using (3.12), we have

lim
k→∞

max {d(gxm(k), gxn(k)), d(gym(k), gyn(k))} = ϵ. (3.15)

Again,

max {d(gxm(k)+1, gxn(k)+1), d(gym(k)+1, gyn(k)+1)}
≤ Rm(k) +max {d(gxm(k), gxn(k)), d(gym(k), gyn(k))}+Rn(k)

and

max {d(gxm(k), gxn(k)), d(gym(k), gyn(k))}
≤ Rm(k) +max {d(gxm(k)+1, gxn(k)+1), d(gym(k)+1, gyn(k)+1)}+Rn(k).
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Letting k −→ ∞ in above inequalities, using (3.12) and (3.15), we have

lim
k→∞

max {d(gxm(k)+1, gxn(k)+1), d(gym(k)+1, gyn(k)+1)} = ϵ. (3.16)

Since n(k) > m(k), gxn(k) ≽ gxm(k) and gyn(k) ≼ gym(k), applying (v) for α = α0

and using (3.1), we have

ψ(d(gxn(k)+1, gxm(k)+1))

= ψ(d(Fα0(xn(k), yn(k)), Fα0(xm(k), ym(k))))

≤ ψ(max {d(gxn(k), gxm(k)), d(gyn(k), gym(k))})
− ϕ(max {d(gxn(k), gxm(k)), d(gyn(k), gym(k))})
+ L min {d(Fα0(xn(k), yn(k)), gxm(k)), d(Fα0(xm(k), ym(k)), gxn(k)),

d(Fα0(xn(k), yn(k)), gxn(k)), d(Fα0(xm(k), ym(k)), gxm(k))}
= ψ(max {d(gxn(k), gxm(k)), d(gyn(k), gym(k))})

− ϕ(max {d(gxn(k), gxm(k)), d(gyn(k), gym(k))})
+ L min {d(Fα0(xn(k), yn(k)), gxm(k)), d(Fα0(xm(k), ym(k)), gxn(k)),

d(gxn(k)+1, gxn(k)), d(gxm(k)+1, gxm(k))}. (3.17)

Again, since n(k) > m(k), gym(k) ≽ gyn(k) and gxm(k) ≼ gxn(k), applying (v) for
α = α0 and using (3.1), we have

ψ(d(gym(k)+1, gyn(k)+1))

= ψ(d(Fα0(ym(k), xm(k)), Fα0(yn(k), xn(k))))

≤ ψ(max {d(gym(k), gyn(k)), d(gxm(k), gxn(k))})
− ϕ(max {d(gym(k), gyn(k)), d(gxm(k), gxn(k))})
+ L min {d(Fα0(ym(k), xm(k)), gyn(k)), d(Fα0(yn(k), xn(k)), gym(k)),

d(Fα0(ym(k), xm(k)), gym(k)), d(Fα0(yn(k), xn(k)), gyn(k))}
= ψ(max {d(gxn(k), gxm(k)), d(gyn(k), gym(k))})

− ϕ(max {d(gxn(k), gxm(k)), d(gyn(k), gym(k))})
+ L min {d(Fα0

(ym(k), xm(k)), gyn(k)), d(Fα0
(yn(k), xn(k)), gym(k)),

d(gym(k)+1, gym(k)), d(gyn(k)+1, gyn(k))}. (3.18)

From (3.17) and (3.18) and using the monotone property of ψ, we have

ψ(max {d(gxn(k)+1, gxm(k)+1), d(gym(k)+1, gyn(k)+1)})
= max {ψ(d(gxn(k)+1, gxm(k)+1)), ψ(d(gym(k)+1, gyn(k)+1))}
≤ ψ(max {d(gxn(k), gxm(k)), d(gyn(k), gym(k))})

− ϕ(max {d(gxn(k), gxm(k)), d(gyn(k), gym(k))})
+ L min {d(Fα0(xn(k), yn(k)), gxm(k)), d(Fα0(xm(k), ym(k)), gxn(k)),

d(gxn(k)+1, gxn(k)), d(gxm(k)+1, gxm(k))}
+ L min {d(Fα0(ym(k), xm(k)), gyn(k)), d(Fα0(yn(k), xn(k)), gym(k)),

d(gym(k)+1, gym(k)), d(gyn(k)+1, gyn(k))}.
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Letting k → ∞ in the above inequality, using (3.13), (3.14), (3.15), (3.16) and the
continuities of ψ and ϕ, we have

ψ(ϵ) ≤ ψ(ϵ)− ϕ(ϵ),

which is a contradiction by virtue of a property of ϕ. Hence both {gxn} and {gyn}
are Cauchy sequences in X. From the completeness of X, there exist x, y ∈ X
such that

lim
n→∞

Fα0
(xn, yn) = lim

n→∞
gxn = x (3.19)

and
lim
n→∞

Fα0(yn, xn) = lim
n→∞

gyn = y. (3.20)

Since the pair (g, Fα0) is compatible, from (3.19) and (3.20), we have

lim
n→∞

d(gFα0(xn, yn), Fα0(gxn, gyn)) = 0 (3.21)

and
lim

n→∞
d(gFα0(yn, xn), Fα0(gyn, gxn)) = 0. (3.22)

For all n ≥ 0, we have

d(gx, Fα0(gxn, gyn)) ≤ d(gx, gFα0(xn, yn)) + d(gFα0(xn, yn), Fα0(gxn, gyn))

and

d(gy, Fα0(gyn, gxn)) ≤ d(gy, gFα0(yn, xn)) + d(gFα0(yn, xn), Fα0(gyn, gxn)).

Taking n −→ ∞ in the above inequalities, using (3.19), (3.20), (3.21), (3.22) and
the continuities of Fα0 and g, we have

d(gx, Fα0(x, y)) = 0 and d(gy, Fα0(y, x)) = 0,

that is,
gx = Fα0

(x, y) and gy = Fα0
(y, x),

that is, (x, y) ∈ X ×X is a coupled coincidence point of the mappings g and Fα0 .
Then by what we have already proved, (x, y) is a coupled coincidence point of g
and {Fα : α ∈ Λ}.

Theorem 3.2. Let (X, ≼) be a partially ordered set and suppose that there is a
metric d on X such that (X, d) is a complete metric space. Assume that X has
the P - property. Let ϕ : [0, ∞) −→ [0, ∞) be a continuous function with ϕ(t) = 0
if and only if t = 0 and ψ be an altering distance function. Let g : X → X be a
monotonic increasing and continuous mapping and {Fα : X ×X −→ X : α ∈ Λ}
be a family of mappings. Suppose there exists α0 ∈ Λ such that

(i) Fα0(X ×X) ⊆ g(X) and Fα0 has the mixed g-monotone property on X,
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(ii) there exists x0, y0 ∈ X such that gx0 ≼ Fα0(x0, y0) and gy0 ≽ Fα0(y0, x0),

(iii) the pair (g, Fα0) is compatible,

(iv) there exists a non-negative real number L such that for all x, y, u, v ∈ X
with gx ≽ gu, gy ≼ gv and α ∈ Λ,

ψ(d(Fα0(x, y), Fα(u, v))) ≤ ψ(max {d(gx, gu), d(gy, gv)})
− ϕ(max {d(gx, gu), d(gy, gv)})
+ L min {d(Fα0(x, y), gu), d(Fα(u, v), gx),

d(Fα0(x, y), gx), d(Fα(u, v), gu)}.

Then there exist x, y ∈ X such that gx = Fα(x, y) and gy = Fα(y, x), for all
α ∈ Λ, that is, g and {Fα : α ∈ Λ} have a coupled coincidence point. Moreover,
any coupled coincidence point of g and Fα0 is a coupled coincidence point of g and
{Fα : α ∈ Λ}.

Proof. We take the same sequences {xn} and {yn} as in the proof of Theorem 3.1.
Then like in the proof of theorem 3.1, we have (3.1), (3.6), (3.7), (3.12), (3.13),
(3.14), (3.19), (3.20), (3.21) and (3.22). Using the P -property of X we have from
(3.6), (3.7), (3.19) and (3.20),

gxn ≼ x and gyn ≽ y,

which, by the monotone property of g, implies that

ggxn ≼ gx and ggyn ≽ gy. (3.23)

Since the pair (g, Fα0) is compatible and g is continuous, by (3.19), (3.20), (3.21)
and (3.22), we have

lim
n→∞

ggxn = gx = lim
n→∞

gFα0(xn, yn) = lim
n→∞

Fα0(gxn, gyn) (3.24)

and

lim
n→∞

ggyn = gy = lim
n→∞

gFα0
(yn, xn) = lim

n→∞
Fα0

(gyn, gxn). (3.25)

Now,
d(Fα0(x, y), gx) ≤ d(Fα0(x, y), ggxn+1) + d(ggxn+1, gx),

that is,

d(Fα0(x, y), gx) ≤ d(Fα0(x, y), gFα0(xn, yn)) + d(ggxn+1, gx).

Taking n −→ ∞ in the above inequality, using (3.24), we have

d(Fα0(x, y), gx) ≤ lim
n→∞

d(Fα0(x, y), gFα0(xn, yn)) + lim
n→∞

d(ggxn+1, gx)

≤ lim
n→∞

d(Fα0(x, y), Fα0(gxn, gyn)).
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Since ψ is continuous and monotone increasing, from the above inequality, we have

ψ(d(Fα0(x, y), gx)) ≤ ψ( lim
n→∞

d(Fα0(x, y), Fα0(gxn, gyn)))

= lim
n→∞

ψ(d(Fα0(x, y), Fα0(gxn, gyn))).

By virtue of (3.23), applying (iv) for α = α0, we have

ψ(d(Fα0(x, y), gx)) ≤ lim
n→∞

[ψ(max {d(gx, ggxn), d(gy, ggyn)})

− ϕ(max {d(gx, ggxn), d(gy, ggyn)})
+ L min {d(Fα0(x, y), ggxn), d(Fα0(gxn, gyn), gx),

d(Fα0(x, y), gx), d(Fα0(gxn, gyn), ggxn)}].

Using (3.24), (3.25) and the properties of ψ, ϕ, we have

ψ(d(Fα0(x, y), gx)) = 0,

which implies that d(Fα0(x, y), gx) = 0, that is, gx = Fα0(x, y).
Again, we have

d(gy, Fα0(y, x)) ≤ d(gy, ggyn+1) + d(ggyn+1, Fα0(y, x)),

that is,

d(gy, Fα0(y, x)) ≤ d(gy, ggyn+1) + d(gFα0(yn, xn), Fα0(y, x)).

Taking n −→ ∞ in the above inequality, using (3.25), we have

d(gy, Fα0(y, x)) ≤ lim
n→∞

d(gy, ggyn+1) + lim
n→∞

d(gFα0(yn, xn), Fα0(y, x))

≤ lim
n→∞

d(Fα0
(gyn, gxn), Fα0

(y, x)).

Since ψ is continuous and monotone increasing, from the above inequality, we have

ψ(d(gy, Fα0(y, x))) ≤ ψ( lim
n→∞

d(Fα0(gyn, gxn), Fα0(y, x)))

= lim
n→∞

ψ(d(Fα0(gyn, gxn), Fα0(y, x))).

By virtue of (3.23), applying (iv) for α = α0, we have

ψ(d(gy, Fα0(y, x))) ≤ lim
n→∞

[ψ(max {d(ggyn, gy), d(ggxn, gx)})

− ϕ(max {d(ggyn, gy), d(ggxn, gx)})
+ L min {d(Fα0(gyn, gxn), gy), d(Fα0(y, x), ggyn),

d(Fα0(gyn, gxn), ggyn), d(Fα0(y, x), gy)}].

Using (3.24), (3.25) and the properties of ψ, ϕ, we have

ψ(d(gy, Fα0(y, x))) = 0,
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which implies that d(gy, Fα0(y, x)) = 0, that is, gy = Fα0(y, x). Hence the
element (x, y) ∈ X×X, is a coupled coincidence point of the mappings g and Fα0 .
By what we have already proved in theorem 3.1, (x, y) is a coupled coincidence
point of g and {Fα : α ∈ Λ}.

The compatibility of the pairs (g, Fα0) and the properties (continuity and
monotonicity) of g which are assumed in Theorem 3.2 have been relaxed in the
next theorem by taking g(X) to be closed in (X, d).

Theorem 3.3. Let (X, ≼) be a partially ordered set and suppose that there is a
metric d on X such that (X, d) is a complete metric space. Assume that X has
the P - property. Let ϕ : [0, ∞) −→ [0, ∞) be a continuous function with ϕ(t) = 0
if and only if t = 0 and ψ be an altering distance function. Let g : X → X be a
mapping such that g(X) is closed in X. Let {Fα : X × X −→ X : α ∈ Λ} be a
family of mappings. Suppose there exists α0 ∈ Λ such that

(i) Fα0(X ×X) ⊆ g(X) and Fα0 has the mixed g-monotone property on X,

(ii) there exists x0, y0 ∈ X such that gx0 ≼ Fα0(x0, y0) and gy0 ≽ Fα0(y0, x0),

(iii) there exists a non-negative real number L such that for all x, y, u, v ∈ X
with gx ≽ gu, gy ≼ gv and α ∈ Λ,

ψ(d(Fα0(x, y), Fα(u, v))) ≤ ψ(max {d(gx, gu), d(gy, gv)})
− ϕ(max {d(gx, gu), d(gy, gv)})
+ L min {d(Fα0(x, y), gu), d(Fα(u, v), gx),

d(Fα0(x, y), gx), d(Fα(u, v), gu)}.

Then there exist x, y ∈ X such that gx = Fα(x, y) and gy = Fα(y, x), for all
α ∈ Λ, that is, g and {Fα : α ∈ Λ} have a coupled coincidence point. Moreover,
any coupled coincidence point of g and Fα0

is a coupled coincidence point of g and
{Fα : α ∈ Λ}.

Proof. We take the same sequences {xn} and {yn} as in the proof of Theorem 3.1.
Then like in the proof of Theorem 3.1, we have (3.1), (3.6), (3.7), (3.12), (3.13),
(3.14), (3.19) and (3.20). Since the metric space (X, d) is complete and g(X) is
closed in X, (3.19) and (3.20) implies that x, y ∈ g(X). Since x, y ∈ g(X), there
exist u, v ∈ X such that x = gu and y = gv. Then from (3.19) and (3.20), we
have

lim
n→∞

Fα0(xn, yn) = lim
n→∞

gxn = x = gu (3.26)

and
lim

n→∞
Fα0(yn, xn) = lim

n→∞
gyn = y = gv. (3.27)

By (3.6), (3.7), (3.26), (3.27) and the P - property of X, we have

gxn ≼ gu and gyn ≽ gv, for all n ≥ 0.
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Then applying (iii) for α = α0, we have

ψ(d(Fα0(u, v), Fα0(xn, yn))) ≤ ψ(max {d(gu, gxn), d(gv, gyn)})
− ϕ(max {d(gu, gxn), d(gv, gyn)})
+ L min {d(Fα0(u, v), gxn), d(Fα0(xn, yn), gu),

d(Fα0(u, v), gu), d(Fα0(xn, yn), gxn)}.

Taking n −→ ∞ in the above inequality, using (3.26), (3.27) and the properties of
ψ and ϕ, we have d(Fα0(u, v), gu) = 0, that is, gu = Fα0(u, v). Then applying
(iii) for α = α0, we have

ψ(d(Fα0(yn, xn), Fα0(v, u))) ≤ ψ(max {d(gyn, gv), d(gxn, gu)})
− ϕ(max {d(gyn, gv), d(gxn, gu)})
+ L min {d(Fα0(yn, xn), gv), d(Fα0(v, u), gyn),

d(Fα0(yn, xn), gyn), d(Fα0(v, u), gv)}.

Taking n −→ ∞ in the above inequality, using (3.26), (3.27) and the properties
of ψ and ϕ, we have d(gv, Fα0(v, u)) = 0, that is, gv = Fα0(v, u). Therefore,
gu = Fα0(u, v) and gv = Fα0(v, u), that is, (u, v) ∈ X × X is a coupled
coincidence point of the mappings g : X −→ X and Fα0 : X × X −→ X. By
what we have already proved, (u, v) is a coupled coincidence point of g and
{Fα : α ∈ Λ}.

Considering {Fα : α ∈ Λ} = {F} in Theorems 3.1 and 3.2, we have the
following corollaries respectively.

Corollary 3.4. Let (X, ≼) be a partially ordered set and suppose that there is a
metric d on X such that (X, d) is a complete metric space. Let ϕ : [0, ∞) −→
[0, ∞) be a continuous function with ϕ(t) = 0 if and only if t = 0 and ψ be an
altering distance function. Let g : X → X and F : X ×X −→ X be two mappings
such that

(i) g and F are continuous,

(ii) F (X ×X) ⊆ g(X) and F has the mixed g-monotone property on X,

(iii) there exists x0, y0 ∈ X such that gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0),

(iv) the pair (g, F ) is compatible,

(v) there exists a non-negative real number L such that for all x, y, u, v ∈ X
with gx ≽ gu, gy ≼ gv,

ψ(d(F (x, y), F (u, v))) ≤ ψ(max {d(gx, gu), d(gy, gv)})
− ϕ(max {d(gx, gu), d(gy, gv)})
+ L min {d(F (x, y), gu), d(F (u, v), gx),

d(F (x, y), gx), d(F (u, v), gu)}.
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Then there exist x, y ∈ X such that gx = F (x, y) and gy = F (y, x), that is, g
and F have a coupled coincidence point in X.

Corollary 3.5. Let (X, ≼) be a partially ordered set and suppose that there is a
metric d on X such that (X, d) is a complete metric space. Assume that X has
the P - property. Let ϕ : [0, ∞) −→ [0, ∞) be a continuous function with ϕ(t) = 0
if and only if t = 0 and ψ be an altering distance function. Let g : X → X and
F : X ×X −→ X be two mappings such that

(i) g is monotonic increasing and continuous,

(ii) F (X ×X) ⊆ g(X) and F has the mixed g-monotone property on X,

(iii) there exists x0, y0 ∈ X such that gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0),

(iv) the pair (g, F ) is compatible,

(v) there exists a non-negative real number L such that for all x, y, u, v ∈ X
with gx ≽ gu, gy ≼ gv,

ψ(d(F (x, y), F (u, v))) ≤ ψ(max {d(gx, gu), d(gy, gv)})
− ϕ(max {d(gx, gu), d(gy, gv)})
+ L min {d(F (x, y), gu), d(F (u, v), gx),

d(F (x, y), gx), d(F (u, v), gu)}.

Then there exist x, y ∈ X such that gx = F (x, y) and gy = F (y, x), that is, g
and F have a coupled coincidence point in X.

Example 3.6. Let X = [0, ∞). Then (X, ≤) is a partially ordered set with
the natural ordering of real numbers. Let d(x, y) = |x− y|, for x, y ∈ X. Then
(X, d) is a complete metric space.

Let g : X → X be given by gx = x2, for all x ∈ X. Also, consider

F : X ×X → X, F (x, y) =

{
1

3
(x2 − y2), if x ≥ y,

0, if x ≤ y,

which obeys the mixed g-monotone property. Let {xn} and {yn} be two sequences
in X such that

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = a, lim
n→∞

F (yn, xn) = lim
n→∞

gyn = b.

Then obviously, a = 0 and b = 0.
Now, for all n ≥ 0, gxn = x2n, gyn = y2n, while

F (xn, yn) =

{
1

3
(x2n − y2n), if xn ≥ yn,

0, if xn ≤ yn,
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and

F (yn, xn) =

{
1

3
(y2n − x2n), if yn ≥ xn,

0, if yn ≤ xn.

Then it follows that

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0

and
lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0.

Hence, the pair (g, F ) is compatible in X.
Let x0 = 0 and y0 = c(> 0) be two points in X. Then

g(x0) = g(0) = 0 = F (0, c) = F (x0, y0)

and

g(y0) = g(c) = c2 ≥ c2

3
= F (c, 0) = F (y0, x0).

Let ψ, ϕ : [0, ∞) −→ [0, ∞) be defined as follows:

ψ(t) = t2, ϕ(t) =
5

9
t2.

Then ψ and ϕ have the properties mentioned in corollaries 3.4 and 3.5. We now
verify the inequality (v) of corollaries 3.4 and 3.5. We take x, y, u, v ∈ X such
that gx ≥ gu and gy ≤ gv, that is, x2 ≥ u2 and y2 ≤ v2.

Let M = max{d(gx, gu), d(gy, gv)} = max{
∣∣x2 − u2

∣∣ , ∣∣y2 − v2
∣∣}. Then M ≥

|x2−u2| = x2−u2 and M ≥ |y2−v2| = v2−y2. The following are the four possible
cases.

Case 1: x ≥ y and u ≥ v. Then

d(F (x, y), F (u, v)) = d
(x2 − y2

3
,
u2 − v2

3

)
=

∣∣∣∣ (x2 − y2)− (u2 − v2)

3

∣∣∣∣
=

∣∣∣∣ (x2 − u2) + (v2 − y2)

3

∣∣∣∣ = (x2 − u2) + (v2 − y2)

3
≤ 2

3
M.

Case 2: x < y and u < v. Then

d(F (x, y), F (u, v)) = d(0, 0) = 0 ≤ 2

3
M.

Case 3: x ≥ y and u ≤ v. Then

d(F (x, y), F (u, v)) = d
(x2 − y2

3
, 0
)
=
x2 − y2

3
=
u2 + x2 − y2 − u2

3

=
(u2 − y2) + (x2 − u2)

3
≤ (v2 − y2) + (x2 − u2)

3
≤ 2

3
M.
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Case 4: The case “x < y and u > v” is not possible. Under this condition
x2 < y2 and u2 > v2. Then by the condition y2 ≤ v2, we have x2 < y2 ≤ v2 < u2,
which contradicts that x2 ≥ u2.

In all above cases, for any L ≥ 0,

ψ(d(F (x, y), F (u, v))) ≤ 4

9
M2 =M2 − 5

9
M2

≤ ψ(max {d(gx, gu), d(gy, gv)})
− ϕ(max {d(gx, gu), d(gy, gv)})
+ L min {d(F (x, y), gu), d(F (u, v), gx),

d(F (x, y), gx), d(F (u, v), gu)}.

Hence the required conditions of Corollaries 3.4 and 3.5 are satisfied and it is seen
that (0, 0) is a coupled coincidence point of g and F .

Remark 3.7. Considering ψ to be the identity mapping and ϕ(t) = (1− k) t with
0 < k < 1 in Corollaries 3.4 and 3.5, we have the generalizations of Theorems 2.1
and 2.2 of Bhaskar and Lakshmikantham [11] respectively and of Theorem 2.1 of
Luong and Thuan [20].

Remark 3.8. In the above example ψ is not the identity mapping and ϕ(t) ̸=
(1−k) t with 0 < k < 1 and hence the above mentioned generalizations of Theorems
2.1 and 2.2 of Bhaskar and Lakshmikantham [11] and of Theorem 2.1 of Luong
and Thuan [20] are not applicable to the above example. Therefore, corollaries 3.4
and 3.5 and hence Theorems 3.1 and 3.2 are actual extensions of Theorems 2.1
and 2.2 of Bhaskar and Lakshmikantham [11] respectively and of Theorem 2.1 of
Luong and Thuan [20] which are also noted here as Theorems 2.8, 2.9 and 2.10
respectively.

Example 3.9. Let X = [0, ∞). Then (X, ≤) is a partially ordered set with the
natural ordering of real numbers. Let d(x, y) = |x− y|, for x, y ∈ X. Then
(X, d) is a metric space with the required properties of Theorem 3.3.

Let g : X → X be defined as follows:

gx =

{ x

2
, if 0 ≤ x ≤ 1,

200, if x > 1.

Then g has the properties mentioned in theorem 3.3.
Let Λ = {1, 2, 3, . . .}. Let the family of mappings {Fα : X×X −→ X : α ∈ Λ}

be defined as follows: for α ∈ Λ with α ̸= 1,

Fα(x, y) =


2α

α+ 1
, if x > 1, and y > 1,

1

3
, if x > 1, and 0 ≤ y ≤ 1,

0, otherwise,
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and

F1(x, y) =

{
1

3
, if x > 1 and 0 ≤ y ≤ 1,

0, otherwise.

Then F1(X ×X) ⊆ g(X) and F1 has the mixed g-monotone property on X.
Let ψ, ϕ : [0, ∞) −→ [0, ∞) be defined as follows:

ψ(t) = t2, ϕ(t) =
5

9
t2.

Then ψ and ϕ have the properties mentioned in Theorem 3.3.
In following cases, we consider (x, y), (u, v) ∈ X×X for which gx ≽ gu and

gy ≼ gv.

Case 1: x > 1 and 0 ≤ y ≤ 1.

(i) u > 1 and v > 1,

(ii) u > 1 and 0 ≤ v ≤ 1 with y ≤ v,

(iii) 0 ≤ u ≤ 1 and v > 1,

(iv) 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 with y ≤ v.

Case 2: x > 1 and y > 1.

(i) u > 1 and v > 1,

(ii) 0 ≤ u ≤ 1 and v > 1.

Case 3: 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

(i) 0 ≤ u ≤ 1 with u ≤ x and v > 1,

(ii) 0 ≤ u ≤ 1 with u ≤ x and 0 ≤ v ≤ 1 with y ≤ v.

Case 4: 0 ≤ x ≤ 1 and y > 1.

(i) 0 ≤ u ≤ 1 with u ≤ x and v > 1.

Let L = 1. Then, in all cases, the condition (iii) of Theorem 3.3 is satisfied.
Hence all the required conditions of Theorems 3.3 are satisfied. Here, it is seen
that (0, 0) ∈ X ×X is a coupled coincidence point of g and {Fα : α ∈ Λ}.

Remark 3.10. Theorem 3.3 is a generalization of Theorem 2.2 of Bhaskar and
Lakshmikantham [11] and Theorem 2.1 (when the condition (b) holds) of Luong
and Thuan [20] which are also noted here as Theorems 2.9 and 2.10 respectively.
The above example, in which the family of mappings {Fα : α ∈ Λ} contains count-
ably infinite no of functions, is not applicable to above mentioned theorems which
are special cases of Theorem 3.3.
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Note 1. In the above example, the function g is not continuous and hence it is
not applicable to Theorems 3.1 and 3.2.

Note 2. If L = 0, then for (x, y) = (u, v) the conditions (v) of Theorem 3.1 or
the condition (iv) of Theorem 3.2 or the condition (iii) of Theorem 3.3 implies that
Fα(x, y) = Fα0

(x, y) for all α ∈ Λ, that is, the family of mappings {Fα : α ∈ Λ}
becomes the single mapping.
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