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1 Introduction and Preliminaries

Partial metric is one of the generalizations of metric was introduced by Matthews
[1] in 1992 to study denotational semantics of data flow networks. In fact,
partial metric spaces constitute a suitable framework to model several distin-
guished examples of the theory of computation and also to model metric spaces
via domain theory [2-7]. Recently, many researchers have obtained fixed, common
fixed and coupled fixed point results on partial metric spaces and ordered partial
metric spaces [4, 8-11].

Motivated the interesting paper of Jaggi [12], in [13] Harjani et al. proved the
following fixed point theorem in partially ordered metric spaces.

1Corresponding author.

Copyright (© 2014 by the Mathematical Association of Thailand.
All rights reserved.



614 Thai J. Math. 12 (2014)/ V. Pragadeeswarar and M. Marudai

Theorem 1.1 ([13]). Let (X, <) be a ordered set and suppose that there exists a
metric d in X such that (X,d) is a complete metric space. Let T : X — X be a
non-decreasing mapping such that

d(z, Tx)d(y, Ty)
d(z,y)

and for some «, 8 € [0,1) with a + 8 < 1.Also, assume either T is continuous or
X has the property that

d(Tz,Ty) < « + Bd(z,y) foraz,y€ X,z >y, x#y,

{zn} is a nondecreasing sequence in X such that x, — x,then x = sup{z,}.
If there exists xg € X such that o < Txg, then T has a fized point.

In this paper we extend the result of Harjani et al. [13] to the case of partial
metric spaces. An example is considered to illustrate our obtained results.

First, we recall some definitions of partial metric space and some of their
properties [1, 3, 8, 9, 11].

Definition 1.2. A partial metric on a nonempty set X is a function
p: X x X — Ry such that for all z,y,z € X :

(PM1) p(x,y) = p(y,x) (symmetry);
(PM2) if 0 < p(z,z) = p(z,y) = p(y,y) then z =y (equality);
(PM3)

(PM4)

p(z,x) < p(z,y) (small self-distances);
p(x,2) +p(y,y) < p(e,y) +ply, 2) (triangularity); for all z,y,z € X.

For a partial metric p on X, the function d), : X x X — R given by

dp(7,y) = 2p(z,y) — p(z,2) — p(y,y)

is a (usual) metric on X. Each partial metric p on X generates a Ty topology 7,
on X with a base of the family of open p-balls {By(z,€) : ¢ € X,e > 0}, where
By(z,e) ={y € X : p(z,y) <p(z,z) + €} forall z € X and € > 0.

Definition 1.3. Let (X, p) be a partial metric space.
(i) A sequence {z,} in a PMS (X,p) is converges to z € X iff p(z,z) =

(ii) A sequence {z,} in a PMS (X, p) is called Cauchy iff lim,, y,—y00 P(Tn, Tm)
exists (and is finite).

(iii) A PMS (X,p) is said to be complete if every Cauchy sequence {z,} in
X converges, with respect to 7,, to a point & € X such that p(z,z) =
limn,m%oo p(xnaxm)

(iv) A mapping T : X — X is said to be continuous at xy € X if for every e > 0,
there exists 0 > 0 such that T(By(zo,d)) C Bp(T(z0),€).
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Lemma 1.4. Let (X,p) be a partial metric space. Then

(i) A sequence {x,} is a Cauchy sequence in the PMS (X, p) if and only if {x,}
is Cauchy in a metric space (X,dp).

(11) A PMS (X,p) is complete if and only if a metric space (X,d,) is complete.

Moreover,
i dy(z,20) =0 p(e,2) = lim pla,zn) = m_plan,am)

2 Main Results

Theorem 2.1. Let (X, <) be a partially ordered set and suppose that there exists
a partial metric p in X such that (X,p) is a complete partial metric space. Let
T:X — X be a continuous and nondecreasing mapping such that

ap(z, Tz)p(y, Ty)

p(Tz,Ty) < 1)

+ pp(z,y), forxz,ye X,z >y,x#y, (2.1)

with a > 0,8 > 0,a+ B < 1. If there exists vy € X with xg < Txg, then T has
fized point z € X and p(z,z) = 0.

Proof. If Txg = xg, then the proof is done. Suppose that zq < T'zg. Since T is a
nondecreasing mapping, we obtain by induction that

29 <Tag < T?xg < - <T"xg < T Mg < -+

Put 2,41 = Tx,. If there exists n > 1 such that z,,41 = x,, then from z,1; =
Tx, = x,, x, is a fixed point. Suppose that x,,+1 # z, for n > 1. That is x,, and
T,_1 are comparable, we get, for n > 1,

p(mn+17 xn) = p(T-Tna Txn—l)
< Ozp(xn, Txn)p(xn—la T-Tn—l)
p(x'ru xnfl)

< Oép(.’l?»m xn+1) + 5P($n, $n71>-

+ Bp(xn, Tp-1)

The last inequality gives us

p(zn—&-laxn) < kp(xnaxn—l)a k=——x<1

< k"p(z1, ). (2.2)
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Moreover, by the triangular inequality, we have, for m > n,

m—n—1

p(xmvxn) S p(x’ﬂuxm—l) +--- +p($n+1,$n) - Z p(xm—kvxm—k)

=1
<[E™ N 4 E"p(2, 20)

1—fm—n
= Kl o)

n

<
—1—-k

p(Ih 500)-

Hence, limy, ;m— 00 P(Tn, Tm) = 0, that is, {x,} is a Cauchy sequence in (X, p). By
Lemma 1.4, {z,} is also Cauchy in (X,d,). In addition, since (X,p) is complete,
(X,d,) is also complete. Thus there exists z € X such that =, — z in (X, d,);
moreover, by Lemma 1.4,

p(z,2z) = lim p(z,z,) = lUm p(x,,x,)=0.

n—o0o n,m—oo
Given that T is continuous in (X, p). Therefore, Tz, — Tz in (X, p).

ie, p(Tz,Tz) = nli_)n;op(Tz,Txn) = lim p(Tz,,Tz,).

n,Mm—00

But, p(TZ7 TZ) = hmn,m—>oo p(Tx'ru Txm) = hmn,m—>oo p(xn-&-la xm—i—l) =0.

We will show next that z is the fixed point of T.

p(Tz,2) <p(Tz,Txy) + p(Txn,2) — p(Txn, Txy)
<p(Tz,Tx,) + p(xni1, 2).

Asn — oo, weobtain p(Tz, z) < 0. Thus, p(T'z, z) = 0. Hence p(z,2) = p(T2,Tz) =
p(Tz,z) = 0. Therefore, by (PM2) we get Tz = z and p(z, z) = 0 which completes
the proof. O

In what follows we prove that Theorem 2.1 is still valid for T not necessarily
continuous, assuming X has the property that

{zn} is a nondecreasing sequence in X such that z,, — z,then = sup{z,}.
(2.3)

Theorem 2.2. Let (X, <) be a partially ordered set and suppose that there exists
a partial metric p in X such that (X, p) is a complete partial metric space. Assume
that X satisfies (2.3) in (X,p). Let T : X — X be a nondecreasing mapping such
that

ap(z, Tz)p(y, Ty)
p(z,y)

with a > 0,8 > 0,a+ B < 1. If there exists xg € X with xog < Txq , then T has
fized point z € X and p(z,z) = 0.

p(Tz, Ty) <

+ Bp(x,y), forzye X, x>y x#y, (24)
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Proof. Following the proof of Theorem 2.1, we only have to check that Tz = z. As
{z} is a nondecreasing sequence in X and x,, — z, then, by (2.3), z = sup{x, }.
In particularly, x,, < z for all n € N. Since T is a nondecreasing mapping, then
Tx, < Tz, for all n € N or, equivalently, x,+1 < Tz for all n € N. Moreover, as
2o < 21 < Tz and z = sup{z,}, we get z < Tz.

Suppose that z < Tz. Using a similar argument that in the proof of Theorem
2.1 for xg < T'zg, we obtain that {T™z} is a nondecreasing sequence such that

p(y,y) = lim p(T"z,y) = lim p(T"2,T™z) =0 for some y € X. (2.5)
n—o0 m,n— 00
By the assumption of (2.3), we have y = sup{7T"z}.
Moreover, from zo < z, we get x,, =T"xg <T"z for n > 1 and z,, < T"z for
n > 1 because x, <z < Tz <T"zforn > 1.
As x,, and T"z are comparable and distinct for n > 1, applying the contractive
condition we get

p(T" ' 2, 20 1) = p(T(T"2), Ty)
< ap(Tmz, T 1 2)p(x,, Txy,)

T"z,xp),

ap(T"2, T 2)p(tn, 1)
p(TnZa In)

p(Tn+1Z7 xn+1)

IA

+ Bp(T" 2, ). (2.6)
From lim,, 00 p(@n, 2) = limy, 00 p(T"2,y) = 0, we have

lim p(T"z,z,) = p(y, 2). (2.7)

n— oo

As, n — oo in (2.6) and using that (2.2) and (2.7), we obtain

p(y,z) < Bp(y, ).

As B < 1, p(y,z) = 0. Hence p(z,2) = p(y,y) = p(y, z) = 0. Therefore, by (PM2)
y = z. Particularly, y = z = sup{T™z} and, consequently, Tz < z and this is a
contradiction. Hence, we conclude that z = Tz and p(z, z) = 0. O

Theorem 2.3. In addition to the hypotheses of Theorem 2.1 (or Theorem 2.2),
suppose that

for every x,y € X, there exists z € X that is comparable to x and y, (2.8)
then T has a unique fixed point.
Proof. From Theorem 2.1 or Theorem 2.2, the set of fixed points of T is non-

empty. Suppose that there exists z,y € X which are fixed point. By Theorem 2.1
or Theorem 2.2, we get p(z,2) =0 and p(y,y) = 0. We distinguish two cases.
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Case 1: If y and 2z are comparable and y # z, then using the contractive
condition we have

p(y,2) = p(Ty,Tz)
< aply, Ty)p(z, Tz)
- p(y, 2)

+ Bp(y, 2).

Since y is fixed point and p(y,y) = 0. We obtain, p(y,z) < Bp(y,z) which is a
contradiction to 8 < 1. Thus y = z.

Case 2: If y is not comparable to z, then by (2.8) there exists € X comparable
to y and z. Monotonicity implies that 7"« is comparable to T"y = y and T"z = 2
forn=20,1,2,....

Suppose there exists ng > 1 such that Tz = y, then Tz = y = Ty
for all n > ng. Therefore, lim,,_, o p(T"z,y) = p(y,y) = 0.

On the other hand, if T"x # y for n > 1, using the contractive condition, we
obtain, for n > 1,

p(T"x,y) = p(T"z, T"y)
< ap(T"la, Ta)p(T" "1y, T"y)
p(Tn71$, Tnfly)

ap(T" tz, T"z)p(y, y) 1
+ Bp(T" ™ ", y).
p(Tn=tz,y) ( )

Since y is fixed point and p(y,y) = 0. We obtain,

p(T"z,y) < Bp(T" *z,y).

Therefore, p(T™z,y) < f"p(z,y), for n > 2. As n — oo, we get

+ Bp(T" o, T 1y)

lim p(T"z,y) = 0.

n—roo

Using a similar argument, we can prove that lim, . p(T"x, z) = 0.

0<py,2) <ply,T"z) +p(T"x,2) — p(T"z, T"x)
<ply, T"x) +p(T"x, 2).

As n — oo, we get p(y,z) = 0. By (PM2), we obtain y = z. Hence the proof is
completed. O

Example 2.4. Let X = [0,00) endowed with the usual partial metric p defined
byp: X x X — Ry with p(x,y) = max{x,y}, for all x,y € X. We consider the
ordered relation in X as follows

r<yeplrr)=pry) Sc=max{ry}l=y<z

where < be the usual ordering.
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It is clear that (X, <) is totally ordered. The partial metric space (X,p) is
complete because (X, dy) is complete. Indeed, for any z,y € X,

dp(w,y) = 2p(x,y) — p(z,2) — p(y,y) = 2max{z,y} — (z +y) = |z — y|

Thus, (X,dp) = ([0,00),].|) is the usual metric space, which is complete.
Let T : X — X be given by T(xz) = g, x > 0. The function T is contin-
uwous on (X,p). Indeed, let {x,} be a sequence converging to x in (X,p), then

limy, -y 0o max{zy, x} = limy, 00 p(zn, ) = p(x,2) = x and

max{x,,z} _ g (T, Tx)

(2.9)
that is {T(xy,)} converges to T(x) in (X, p). Since x,, — = and by the definition T
we have, lim,_,o dp(zn, ) =0 and

lim p(Tz,,Tx) = lim max{Tz,, Tz} = lim

n—oo n—oo n—oo

lim d,(Tx,,Tz)=0. (2.10)

n—oo

From (2.9) and (2.10) we get T is continuous on (X,p). Any x,y € X are com-
parable, so for example we take x <y, and then p(z,x) = p(x,y), soy < x. Since
T(y) < T(x), so T(x) < T(y), giving that T is non-decreasing with respect to < .
In particular, for any x <X y, we have

xT

Now we have to show that T satisfies the inequality (2.1). For any x,y € X
with <Xy and © # y, we have

p(z, Tx)p(y, Ty)
p(z,y)

+ Bp(z,y) = % + B

p(Tz,Ty) = % and &

Therefore, choose B > % and o + f < 1, then (2.1) holds. All the hypotheses
of Theorem 2.3 are satisfied, so T has a unique fized point in X which is 0 and

p(0,0) = 0.
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