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1 Introduction and Preliminaries

Partial metric is one of the generalizations of metric was introduced by Matthews
[1] in 1992 to study denotational semantics of data flow networks. In fact,
partial metric spaces constitute a suitable framework to model several distin-
guished examples of the theory of computation and also to model metric spaces
via domain theory [2–7]. Recently, many researchers have obtained fixed, common
fixed and coupled fixed point results on partial metric spaces and ordered partial
metric spaces [4, 8–11].

Motivated the interesting paper of Jaggi [12], in [13] Harjani et al. proved the
following fixed point theorem in partially ordered metric spaces.
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Theorem 1.1 ([13]). Let (X,≤) be a ordered set and suppose that there exists a
metric d in X such that (X, d) is a complete metric space. Let T : X → X be a
non-decreasing mapping such that

d(Tx, Ty) ≤ α
d(x, Tx)d(y, Ty)

d(x, y)
+ βd(x, y) for x, y ∈ X,x ≥ y, x ̸= y,

and for some α, β ∈ [0, 1) with α + β < 1.Also, assume either T is continuous or
X has the property that

{xn} is a nondecreasing sequence in X such that xn → x,then x = sup{xn}.

If there exists x0 ∈ X such that x0 ≤ Tx0, then T has a fixed point.

In this paper we extend the result of Harjani et al. [13] to the case of partial
metric spaces. An example is considered to illustrate our obtained results.

First, we recall some definitions of partial metric space and some of their
properties [1, 3, 8, 9, 11].

Definition 1.2. A partial metric on a nonempty set X is a function
p : X ×X → R+ such that for all x, y, z ∈ X :

(PM1) p(x, y) = p(y, x) (symmetry);

(PM2) if 0 ≤ p(x, x) = p(x, y) = p(y, y) then x = y (equality);

(PM3) p(x, x) ≤ p(x, y) (small self-distances);

(PM4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z) (triangularity); for all x, y, z ∈ X.

For a partial metric p on X, the function dp : X ×X → R+ given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a (usual) metric on X. Each partial metric p on X generates a T0 topology τp
on X with a base of the family of open p-balls {Bp(x, ϵ) : x ∈ X, ϵ > 0}, where
Bp(x, ϵ) = {y ∈ X : p(x, y) < p(x, x) + ϵ} for all x ∈ X and ϵ > 0.

Definition 1.3. Let (X, p) be a partial metric space.

(i) A sequence {xn} in a PMS (X, p) is converges to x ∈ X iff p(x, x) =
limn→∞ p(x, xn).

(ii) A sequence {xn} in a PMS (X, p) is called Cauchy iff limn,m→∞ p(xn, xm)
exists (and is finite).

(iii) A PMS (X, p) is said to be complete if every Cauchy sequence {xn} in
X converges, with respect to τp, to a point x ∈ X such that p(x, x) =
limn,m→∞ p(xn, xm).

(iv) A mapping T : X → X is said to be continuous at x0 ∈ X if for every ϵ > 0,
there exists δ > 0 such that T (Bp(x0, δ)) ⊂ Bp(T (x0), ϵ).
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Lemma 1.4. Let (X, p) be a partial metric space. Then

(i) A sequence {xn} is a Cauchy sequence in the PMS (X, p) if and only if {xn}
is Cauchy in a metric space (X, dp).

(ii) A PMS (X, p) is complete if and only if a metric space (X, dp) is complete.
Moreover,

lim
n→∞

dp(x, xn) = 0 ⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm).

2 Main Results

Theorem 2.1. Let (X,≤) be a partially ordered set and suppose that there exists
a partial metric p in X such that (X, p) is a complete partial metric space. Let
T : X → X be a continuous and nondecreasing mapping such that

p(Tx, Ty) ≤ αp(x, Tx)p(y, Ty)

p(x, y)
+ βp(x, y), for x, y ∈ X,x ≥ y, x ̸= y, (2.1)

with α ≥ 0, β ≥ 0, α + β < 1. If there exists x0 ∈ X with x0 ≤ Tx0, then T has
fixed point z ∈ X and p(z, z) = 0.

Proof. If Tx0 = x0, then the proof is done. Suppose that x0 ≤ Tx0. Since T is a
nondecreasing mapping, we obtain by induction that

x0 ≤ Tx0 ≤ T 2x0 ≤ · · · ≤ Tnx0 ≤ Tn+1x0 ≤ · · · .

Put xn+1 = Txn. If there exists n ≥ 1 such that xn+1 = xn, then from xn+1 =
Txn = xn, xn is a fixed point. Suppose that xn+1 ̸= xn for n ≥ 1. That is xn and
xn−1 are comparable, we get, for n ≥ 1,

p(xn+1, xn) = p(Txn, Txn−1)

≤ αp(xn, Txn)p(xn−1, Txn−1)

p(xn, xn−1)
+ βp(xn, xn−1)

≤ αp(xn, xn+1) + βp(xn, xn−1).

The last inequality gives us

p(xn+1, xn) ≤ kp(xn, xn−1), k =
β

1− α
< 1

...

≤ knp(x1, x0). (2.2)
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Moreover, by the triangular inequality, we have, for m ≥ n,

p(xm, xn) ≤ p(xm, xm−1) + · · ·+ p(xn+1, xn)−
m−n−1∑

i=1

p(xm−k, xm−k)

≤ [km−1 + · · ·+ kn]p(x1, x0)

= kn
1− km−n

1− k
p(x1, x0)

≤ kn

1− k
p(x1, x0).

Hence, limn,m→∞ p(xn, xm) = 0, that is, {xn} is a Cauchy sequence in (X, p). By
Lemma 1.4, {xn} is also Cauchy in (X, dp). In addition, since (X, p) is complete,
(X, dp) is also complete. Thus there exists z ∈ X such that xn → z in (X, dp);
moreover, by Lemma 1.4,

p(z, z) = lim
n→∞

p(z, xn) = lim
n,m→∞

p(xn, xm) = 0.

Given that T is continuous in (X, p). Therefore, Txn → Tz in (X, p).

i.e., p(Tz, Tz) = lim
n→∞

p(Tz, Txn) = lim
n,m→∞

p(Txn, Txm).

But, p(Tz, Tz) = limn,m→∞ p(Txn, Txm) = limn,m→∞ p(xn+1, xm+1) = 0.

We will show next that z is the fixed point of T.

p(Tz, z) ≤ p(Tz, Txn) + p(Txn, z)− p(Txn, Txn)

≤ p(Tz, Txn) + p(xn+1, z).

As n→ ∞, we obtain p(Tz, z) ≤ 0. Thus, p(Tz, z) = 0.Hence p(z, z) = p(Tz, Tz) =
p(Tz, z) = 0. Therefore, by (PM2) we get Tz = z and p(z, z) = 0 which completes
the proof.

In what follows we prove that Theorem 2.1 is still valid for T not necessarily
continuous, assuming X has the property that

{xn} is a nondecreasing sequence in X such that xn → x,then x = sup{xn}.
(2.3)

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there exists
a partial metric p in X such that (X, p) is a complete partial metric space. Assume
that X satisfies (2.3) in (X, p). Let T : X → X be a nondecreasing mapping such
that

p(Tx, Ty) ≤ αp(x, Tx)p(y, Ty)

p(x, y)
+ βp(x, y), for x, y ∈ X,x ≥ y, x ̸= y, (2.4)

with α ≥ 0, β ≥ 0, α + β < 1. If there exists x0 ∈ X with x0 ≤ Tx0 , then T has
fixed point z ∈ X and p(z, z) = 0.
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Proof. Following the proof of Theorem 2.1, we only have to check that Tz = z. As
{xn} is a nondecreasing sequence in X and xn → z, then, by (2.3), z = sup{xn}.
In particularly, xn ≤ z for all n ∈ N. Since T is a nondecreasing mapping, then
Txn ≤ Tz, for all n ∈ N or, equivalently, xn+1 ≤ Tz for all n ∈ N. Moreover, as
x0 < x1 ≤ Tz and z = sup{xn}, we get z ≤ Tz.

Suppose that z < Tz. Using a similar argument that in the proof of Theorem
2.1 for x0 ≤ Tx0, we obtain that {Tnz} is a nondecreasing sequence such that

p(y, y) = lim
n→∞

p(Tnz, y) = lim
m,n→∞

p(Tnz, Tmz) = 0 for some y ∈ X. (2.5)

By the assumption of (2.3), we have y = sup{Tnz}.
Moreover, from x0 ≤ z, we get xn = Tnx0 ≤ Tnz for n ≥ 1 and xn < Tnz for

n ≥ 1 because xn ≤ z < Tz ≤ Tnz for n ≥ 1.
As xn and Tnz are comparable and distinct for n ≥ 1, applying the contractive

condition we get

p(Tn+1z, xn+1) = p(T (Tnz), Txn)

≤ αp(Tnz, Tn+1z)p(xn, Txn)

p(Tnz, xn)
+ βp(Tnz, xn),

p(Tn+1z, xn+1) ≤
αp(Tnz, Tn+1z)p(xn, xn+1)

p(Tnz, xn)
+ βp(Tnz, xn). (2.6)

From limn→∞ p(xn, z) = limn→∞ p(Tnz, y) = 0, we have

lim
n→∞

p(Tnz, xn) = p(y, z). (2.7)

As, n→ ∞ in (2.6) and using that (2.2) and (2.7), we obtain

p(y, z) ≤ βp(y, z).

As β < 1, p(y, z) = 0. Hence p(z, z) = p(y, y) = p(y, z) = 0. Therefore, by (PM2)
y = z. Particularly, y = z = sup{Tnz} and, consequently, Tz ≤ z and this is a
contradiction. Hence, we conclude that z = Tz and p(z, z) = 0.

Theorem 2.3. In addition to the hypotheses of Theorem 2.1 (or Theorem 2.2),
suppose that

for every x, y ∈ X, there exists z ∈ X that is comparable to x and y, (2.8)

then T has a unique fixed point.

Proof. From Theorem 2.1 or Theorem 2.2, the set of fixed points of T is non-
empty. Suppose that there exists z, y ∈ X which are fixed point. By Theorem 2.1
or Theorem 2.2, we get p(z, z) = 0 and p(y, y) = 0. We distinguish two cases.
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Case 1: If y and z are comparable and y ̸= z, then using the contractive
condition we have

p(y, z) = p(Ty, Tz)

≤ αp(y, Ty)p(z, Tz)

p(y, z)
+ βp(y, z).

Since y is fixed point and p(y, y) = 0. We obtain, p(y, z) ≤ βp(y, z) which is a
contradiction to β < 1. Thus y = z.

Case 2: If y is not comparable to z, then by (2.8) there exists x ∈ X comparable
to y and z. Monotonicity implies that Tnx is comparable to Tny = y and Tnz = z
for n = 0, 1, 2, . . . .

Suppose there exists n0 ≥ 1 such that Tn0x = y, then Tnx = y = Ty
for all n ≥ n0. Therefore, limn→∞ p(Tnx, y) = p(y, y) = 0.

On the other hand, if Tnx ̸= y for n ≥ 1, using the contractive condition, we
obtain, for n ≥ 1,

p(Tnx, y) = p(Tnx, Tny)

≤ αp(Tn−1x, Tnx)p(Tn−1y, Tny)

p(Tn−1x, Tn−1y)
+ βp(Tn−1x, Tn−1y)

≤ αp(Tn−1x, Tnx)p(y, y)

p(Tn−1x, y)
+ βp(Tn−1x, y).

Since y is fixed point and p(y, y) = 0. We obtain,

p(Tnx, y) ≤ βp(Tn−1x, y).

Therefore, p(Tnx, y) ≤ βnp(x, y), for n ≥ 2. As n→ ∞, we get

lim
n→∞

p(Tnx, y) = 0.

Using a similar argument, we can prove that limn→∞ p(Tnx, z) = 0.

0 ≤ p(y, z) ≤ p(y, Tnx) + p(Tnx, z)− p(Tnx, Tnx)

≤ p(y, Tnx) + p(Tnx, z).

As n → ∞, we get p(y, z) = 0. By (PM2), we obtain y = z. Hence the proof is
completed.

Example 2.4. Let X = [0,∞) endowed with the usual partial metric p defined
by p : X ×X → R+ with p(x, y) = max{x, y}, for all x, y ∈ X. We consider the
ordered relation in X as follows

x 4 y ⇔ p(x, x) = p(x, y) ⇔ x = max{x, y} ⇐ y ≤ x

where ≤ be the usual ordering.
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It is clear that (X,4) is totally ordered. The partial metric space (X, p) is
complete because (X, dp) is complete. Indeed, for any x, y ∈ X,

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) = 2max{x, y} − (x+ y) = |x− y|

Thus, (X, dp) = ([0,∞), |.|) is the usual metric space, which is complete.

Let T : X → X be given by T (x) =
x

2
, x ≥ 0. The function T is contin-

uous on (X, p). Indeed, let {xn} be a sequence converging to x in (X, p), then
limn→∞ max{xn, x} = limn→∞ p(xn, x) = p(x, x) = x and

lim
n→∞

p(Txn, Tx) = lim
n→∞

max{Txn, Tx} = lim
n→∞

max{xn, x}
2

=
x

2
= p(Tx, Tx)

(2.9)
that is {T (xn)} converges to T (x) in (X, p). Since xn → x and by the definition T
we have, limn→∞ dp(xn, x) = 0 and

lim
n→∞

dp(Txn, Tx) = 0. (2.10)

From (2.9) and (2.10) we get T is continuous on (X, p). Any x, y ∈ X are com-
parable, so for example we take x 4 y, and then p(x, x) = p(x, y), so y ≤ x. Since
T (y) ≤ T (x), so T (x) 4 T (y), giving that T is non-decreasing with respect to 4 .
In particular, for any x 4 y, we have

p(x, y) = x, p(Tx, Ty) = Tx =
x

2
, p(x, Tx) = x, p(y, Ty) = y.

Now we have to show that T satisfies the inequality (2.1). For any x, y ∈ X
with x 4 y and x ̸= y, we have

p(Tx, Ty) =
x

2
and

αp(x, Tx)p(y, Ty)

p(x, y)
+ βp(x, y) =

αxy

x
+ βx.

Therefore, choose β ≥ 1
2 and α + β < 1, then (2.1) holds. All the hypotheses

of Theorem 2.3 are satisfied, so T has a unique fixed point in X which is 0 and
p(0, 0) = 0.
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