Fixed Point Theorems for Mappings Satisfying a Contractive Condition of Rational Expression on a Ordered Partial Metric Space

V. Pragadeeswarar ${ }^{1}$ and M. Marudai
Department of Mathematics, Bharathidasan University
Trichy 620 024, Tamil Nadu, India
e-mail : pragadeeswarar@gmail.com (V. Pragadeeswarar) marudaim@hotmail.com (M. Marudai)

Abstract

The purpose of this manuscript is to present a fixed point theorem using a contractive condition of rational expression in the context of ordered partial metric spaces.

Keywords : partial metric spaces; fixed point; ordered set.
2010 Mathematics Subject Classification : 47H10; 47H04; 54H25.

1 Introduction and Preliminaries

Partial metric is one of the generalizations of metric was introduced by Matthews [1] in 1992 to study denotational semantics of data flow networks. In fact, partial metric spaces constitute a suitable framework to model several distinguished examples of the theory of computation and also to model metric spaces via domain theory $[2-7]$. Recently, many researchers have obtained fixed, common fixed and coupled fixed point results on partial metric spaces and ordered partial metric spaces $[4,8-11]$.

Motivated the interesting paper of Jaggi [12], in [13] Harjani et al. proved the following fixed point theorem in partially ordered metric spaces.

[^0]Theorem 1.1 ([13]). Let (X, \leq) be a ordered set and suppose that there exists a metric d in X such that (X, d) is a complete metric space. Let $T: X \rightarrow X$ be a non-decreasing mapping such that

$$
d(T x, T y) \leq \alpha \frac{d(x, T x) d(y, T y)}{d(x, y)}+\beta d(x, y) \quad \text { for } x, y \in X, x \geq y, x \neq y
$$

and for some $\alpha, \beta \in[0,1)$ with $\alpha+\beta<1$.Also, assume either T is continuous or X has the property that
$\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow x$, then $x=\sup \left\{x_{n}\right\}$.
If there exists $x_{0} \in X$ such that $x_{0} \leq T x_{0}$, then T has a fixed point.
In this paper we extend the result of Harjani et al. [13] to the case of partial metric spaces. An example is considered to illustrate our obtained results.

First, we recall some definitions of partial metric space and some of their properties $[1,3,8,9,11]$.

Definition 1.2. A partial metric on a nonempty set X is a function $p: X \times X \rightarrow \mathbb{R}_{+}$such that for all $x, y, z \in X$:
(PM1) $p(x, y)=p(y, x)$ (symmetry);
(PM2) if $0 \leq p(x, x)=p(x, y)=p(y, y)$ then $x=y$ (equality);
(PM3) $p(x, x) \leq p(x, y)$ (small self-distances);
(PM4) $p(x, z)+p(y, y) \leq p(x, y)+p(y, z)$ (triangularity); for all $x, y, z \in X$.
For a partial metric p on X, the function $d_{p}: X \times X \rightarrow \mathbb{R}_{+}$given by

$$
d_{p}(x, y)=2 p(x, y)-p(x, x)-p(y, y)
$$

is a (usual) metric on X. Each partial metric p on X generates a T_{0} topology τ_{p} on X with a base of the family of open p-balls $\left\{B_{p}(x, \epsilon): x \in X, \epsilon>0\right\}$, where $B_{p}(x, \epsilon)=\{y \in X: p(x, y)<p(x, x)+\epsilon\}$ for all $x \in X$ and $\epsilon>0$.

Definition 1.3. Let (X, p) be a partial metric space.
(i) A sequence $\left\{x_{n}\right\}$ in a $\operatorname{PMS}(X, p)$ is converges to $x \in X$ iff $p(x, x)=$ $\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)$.
(ii) A sequence $\left\{x_{n}\right\}$ in a $\operatorname{PMS}(X, p)$ is called Cauchy iff $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ exists (and is finite).
(iii) A PMS (X, p) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges, with respect to τ_{p}, to a point $x \in X$ such that $p(x, x)=$ $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$.
(iv) A mapping $T: X \rightarrow X$ is said to be continuous at $x_{0} \in X$ if for every $\epsilon>0$, there exists $\delta>0$ such that $T\left(B_{p}\left(x_{0}, \delta\right)\right) \subset B_{p}\left(T\left(x_{0}\right), \epsilon\right)$.

Lemma 1.4. Let (X, p) be a partial metric space. Then
(i) A sequence $\left\{x_{n}\right\}$ is a Cauchy sequence in the $P M S(X, p)$ if and only if $\left\{x_{n}\right\}$ is Cauchy in a metric space $\left(X, d_{p}\right)$.
(ii) A PMS (X, p) is complete if and only if a metric space $\left(X, d_{p}\right)$ is complete. Moreover,

$$
\lim _{n \rightarrow \infty} d_{p}\left(x, x_{n}\right)=0 \Leftrightarrow p(x, x)=\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)
$$

2 Main Results

Theorem 2.1. Let (X, \leq) be a partially ordered set and suppose that there exists a partial metric p in X such that (X, p) is a complete partial metric space. Let $T: X \rightarrow X$ be a continuous and nondecreasing mapping such that

$$
\begin{equation*}
p(T x, T y) \leq \frac{\alpha p(x, T x) p(y, T y)}{p(x, y)}+\beta p(x, y), \quad \text { for } x, y \in X, x \geq y, x \neq y \tag{2.1}
\end{equation*}
$$

with $\alpha \geq 0, \beta \geq 0, \alpha+\beta<1$. If there exists $x_{0} \in X$ with $x_{0} \leq T x_{0}$, then T has fixed point $z \in X$ and $p(z, z)=0$.

Proof. If $T x_{0}=x_{0}$, then the proof is done. Suppose that $x_{0} \leq T x_{0}$. Since T is a nondecreasing mapping, we obtain by induction that

$$
x_{0} \leq T x_{0} \leq T^{2} x_{0} \leq \cdots \leq T^{n} x_{0} \leq T^{n+1} x_{0} \leq \cdots
$$

Put $x_{n+1}=T x_{n}$. If there exists $n \geq 1$ such that $x_{n+1}=x_{n}$, then from $x_{n+1}=$ $T x_{n}=x_{n}, x_{n}$ is a fixed point. Suppose that $x_{n+1} \neq x_{n}$ for $n \geq 1$. That is x_{n} and x_{n-1} are comparable, we get, for $n \geq 1$,

$$
\begin{aligned}
p\left(x_{n+1}, x_{n}\right) & =p\left(T x_{n}, T x_{n-1}\right) \\
& \leq \frac{\alpha p\left(x_{n}, T x_{n}\right) p\left(x_{n-1}, T x_{n-1}\right)}{p\left(x_{n}, x_{n-1}\right)}+\beta p\left(x_{n}, x_{n-1}\right) \\
& \leq \alpha p\left(x_{n}, x_{n+1}\right)+\beta p\left(x_{n}, x_{n-1}\right)
\end{aligned}
$$

The last inequality gives us

$$
\begin{align*}
p\left(x_{n+1}, x_{n}\right) & \leq k p\left(x_{n}, x_{n-1}\right), \quad k=\frac{\beta}{1-\alpha}<1 \\
& \vdots \\
& \leq k^{n} p\left(x_{1}, x_{0}\right) \tag{2.2}
\end{align*}
$$

Moreover, by the triangular inequality, we have, for $m \geq n$,

$$
\begin{aligned}
p\left(x_{m}, x_{n}\right) & \leq p\left(x_{m}, x_{m-1}\right)+\cdots+p\left(x_{n+1}, x_{n}\right)-\sum_{i=1}^{m-n-1} p\left(x_{m-k}, x_{m-k}\right) \\
& \leq\left[k^{m-1}+\cdots+k^{n}\right] p\left(x_{1}, x_{0}\right) \\
& =k^{n} \frac{1-k^{m-n}}{1-k} p\left(x_{1}, x_{0}\right) \\
& \leq \frac{k^{n}}{1-k} p\left(x_{1}, x_{0}\right) .
\end{aligned}
$$

Hence, $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0$, that is, $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, p). By Lemma 1.4, $\left\{x_{n}\right\}$ is also Cauchy in $\left(X, d_{p}\right)$. In addition, since (X, p) is complete, $\left(X, d_{p}\right)$ is also complete. Thus there exists $z \in X$ such that $x_{n} \rightarrow z$ in $\left(X, d_{p}\right)$; moreover, by Lemma 1.4,

$$
p(z, z)=\lim _{n \rightarrow \infty} p\left(z, x_{n}\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0
$$

Given that T is continuous in (X, p). Therefore, $T x_{n} \rightarrow T z$ in (X, p).

$$
\text { i.e., } p(T z, T z)=\lim _{n \rightarrow \infty} p\left(T z, T x_{n}\right)=\lim _{n, m \rightarrow \infty} p\left(T x_{n}, T x_{m}\right)
$$

But, $p(T z, T z)=\lim _{n, m \rightarrow \infty} p\left(T x_{n}, T x_{m}\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n+1}, x_{m+1}\right)=0$.
We will show next that z is the fixed point of T.

$$
\begin{aligned}
p(T z, z) & \leq p\left(T z, T x_{n}\right)+p\left(T x_{n}, z\right)-p\left(T x_{n}, T x_{n}\right) \\
& \leq p\left(T z, T x_{n}\right)+p\left(x_{n+1}, z\right)
\end{aligned}
$$

As $n \rightarrow \infty$, we obtain $p(T z, z) \leq 0$. Thus, $p(T z, z)=0$. Hence $p(z, z)=p(T z, T z)=$ $p(T z, z)=0$. Therefore, by (PM2) we get $T z=z$ and $p(z, z)=0$ which completes the proof.

In what follows we prove that Theorem 2.1 is still valid for T not necessarily continuous, assuming X has the property that
$\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow x$, then $x=\sup \left\{x_{n}\right\}$.

Theorem 2.2. Let (X, \leq) be a partially ordered set and suppose that there exists a partial metric p in X such that (X, p) is a complete partial metric space. Assume that X satisfies (2.3) in (X, p). Let $T: X \rightarrow X$ be a nondecreasing mapping such that

$$
\begin{equation*}
p(T x, T y) \leq \frac{\alpha p(x, T x) p(y, T y)}{p(x, y)}+\beta p(x, y), \quad \text { for } x, y \in X, x \geq y, x \neq y \tag{2.4}
\end{equation*}
$$

with $\alpha \geq 0, \beta \geq 0, \alpha+\beta<1$. If there exists $x_{0} \in X$ with $x_{0} \leq T x_{0}$, then T has fixed point $z \in X$ and $p(z, z)=0$.

Proof. Following the proof of Theorem 2.1, we only have to check that $T z=z$. As $\left\{x_{n}\right\}$ is a nondecreasing sequence in X and $x_{n} \rightarrow z$, then, by (2.3), $z=\sup \left\{x_{n}\right\}$. In particularly, $x_{n} \leq z$ for all $n \in \mathbb{N}$. Since T is a nondecreasing mapping, then $T x_{n} \leq T z$, for all $n \in \mathbb{N}$ or, equivalently, $x_{n+1} \leq T z$ for all $n \in \mathbb{N}$. Moreover, as $x_{0}<x_{1} \leq T z$ and $z=\sup \left\{x_{n}\right\}$, we get $z \leq T z$.

Suppose that $z<T z$. Using a similar argument that in the proof of Theorem 2.1 for $x_{0} \leq T x_{0}$, we obtain that $\left\{T^{n} z\right\}$ is a nondecreasing sequence such that

$$
\begin{equation*}
p(y, y)=\lim _{n \rightarrow \infty} p\left(T^{n} z, y\right)=\lim _{m, n \rightarrow \infty} p\left(T^{n} z, T^{m} z\right)=0 \text { for some } y \in X \tag{2.5}
\end{equation*}
$$

By the assumption of (2.3), we have $y=\sup \left\{T^{n} z\right\}$.
Moreover, from $x_{0} \leq z$, we get $x_{n}=T^{n} x_{0} \leq T^{n} z$ for $n \geq 1$ and $x_{n}<T^{n} z$ for $n \geq 1$ because $x_{n} \leq z<T z \leq T^{n} z$ for $n \geq 1$.

As x_{n} and $T^{n} z$ are comparable and distinct for $n \geq 1$, applying the contractive condition we get

$$
\begin{align*}
p\left(T^{n+1} z, x_{n+1}\right) & =p\left(T\left(T^{n} z\right), T x_{n}\right) \\
& \leq \frac{\alpha p\left(T^{n} z, T^{n+1} z\right) p\left(x_{n}, T x_{n}\right)}{p\left(T^{n} z, x_{n}\right)}+\beta p\left(T^{n} z, x_{n}\right) \\
p\left(T^{n+1} z, x_{n+1}\right) & \leq \frac{\alpha p\left(T^{n} z, T^{n+1} z\right) p\left(x_{n}, x_{n+1}\right)}{p\left(T^{n} z, x_{n}\right)}+\beta p\left(T^{n} z, x_{n}\right) \tag{2.6}
\end{align*}
$$

From $\lim _{n \rightarrow \infty} p\left(x_{n}, z\right)=\lim _{n \rightarrow \infty} p\left(T^{n} z, y\right)=0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(T^{n} z, x_{n}\right)=p(y, z) \tag{2.7}
\end{equation*}
$$

As, $n \rightarrow \infty$ in (2.6) and using that (2.2) and (2.7), we obtain

$$
p(y, z) \leq \beta p(y, z)
$$

As $\beta<1, p(y, z)=0$. Hence $p(z, z)=p(y, y)=p(y, z)=0$. Therefore, by (PM2) $y=z$. Particularly, $y=z=\sup \left\{T^{n} z\right\}$ and, consequently, $T z \leq z$ and this is a contradiction. Hence, we conclude that $z=T z$ and $p(z, z)=0$.

Theorem 2.3. In addition to the hypotheses of Theorem 2.1 (or Theorem 2.2), suppose that

$$
\begin{equation*}
\text { for every } x, y \in X \text {, there exists } z \in X \text { that is comparable to } x \text { and } y \text {, } \tag{2.8}
\end{equation*}
$$

then T has a unique fixed point.
Proof. From Theorem 2.1 or Theorem 2.2, the set of fixed points of T is nonempty. Suppose that there exists $z, y \in X$ which are fixed point. By Theorem 2.1 or Theorem 2.2, we get $p(z, z)=0$ and $p(y, y)=0$. We distinguish two cases.

Case 1: If y and z are comparable and $y \neq z$, then using the contractive condition we have

$$
\begin{aligned}
p(y, z) & =p(T y, T z) \\
& \leq \frac{\alpha p(y, T y) p(z, T z)}{p(y, z)}+\beta p(y, z)
\end{aligned}
$$

Since y is fixed point and $p(y, y)=0$. We obtain, $p(y, z) \leq \beta p(y, z)$ which is a contradiction to $\beta<1$. Thus $y=z$.

Case 2: If y is not comparable to z, then by (2.8) there exists $x \in X$ comparable to y and z. Monotonicity implies that $T^{n} x$ is comparable to $T^{n} y=y$ and $T^{n} z=z$ for $n=0,1,2, \ldots$.

Suppose there exists $n_{0} \geq 1$ such that $T^{n_{0}} x=y$, then $T^{n} x=y=T y$ for all $n \geq n_{0}$. Therefore, $\lim _{n \rightarrow \infty} p\left(T^{n} x, y\right)=p(y, y)=0$.

On the other hand, if $T^{n} x \neq y$ for $n \geq 1$, using the contractive condition, we obtain, for $n \geq 1$,

$$
\begin{aligned}
p\left(T^{n} x, y\right) & =p\left(T^{n} x, T^{n} y\right) \\
& \leq \frac{\alpha p\left(T^{n-1} x, T^{n} x\right) p\left(T^{n-1} y, T^{n} y\right)}{p\left(T^{n-1} x, T^{n-1} y\right)}+\beta p\left(T^{n-1} x, T^{n-1} y\right) \\
& \leq \frac{\alpha p\left(T^{n-1} x, T^{n} x\right) p(y, y)}{p\left(T^{n-1} x, y\right)}+\beta p\left(T^{n-1} x, y\right)
\end{aligned}
$$

Since y is fixed point and $p(y, y)=0$. We obtain,

$$
p\left(T^{n} x, y\right) \leq \beta p\left(T^{n-1} x, y\right)
$$

Therefore, $p\left(T^{n} x, y\right) \leq \beta^{n} p(x, y)$, for $n \geq 2$. As $n \rightarrow \infty$, we get

$$
\lim _{n \rightarrow \infty} p\left(T^{n} x, y\right)=0
$$

Using a similar argument, we can prove that $\lim _{n \rightarrow \infty} p\left(T^{n} x, z\right)=0$.

$$
\begin{aligned}
0 \leq p(y, z) & \leq p\left(y, T^{n} x\right)+p\left(T^{n} x, z\right)-p\left(T^{n} x, T^{n} x\right) \\
& \leq p\left(y, T^{n} x\right)+p\left(T^{n} x, z\right)
\end{aligned}
$$

As $n \rightarrow \infty$, we get $p(y, z)=0$. By (PM2), we obtain $y=z$. Hence the proof is completed.

Example 2.4. Let $X=[0, \infty)$ endowed with the usual partial metric p defined by $p: X \times X \rightarrow \mathbb{R}_{+}$with $p(x, y)=\max \{x, y\}$, for all $x, y \in X$. We consider the ordered relation in X as follows

$$
x \preccurlyeq y \Leftrightarrow p(x, x)=p(x, y) \Leftrightarrow x=\max \{x, y\} \Leftarrow y \leq x
$$

where \leq be the usual ordering.

It is clear that (X, \preccurlyeq) is totally ordered. The partial metric space (X, p) is complete because $\left(X, d_{p}\right)$ is complete. Indeed, for any $x, y \in X$,

$$
d_{p}(x, y)=2 p(x, y)-p(x, x)-p(y, y)=2 \max \{x, y\}-(x+y)=|x-y|
$$

Thus, $\left(X, d_{p}\right)=([0, \infty),|\cdot|)$ is the usual metric space, which is complete.
Let $T: X \rightarrow X$ be given by $T(x)=\frac{x}{2}, x \geq 0$. The function T is continuous on (X, p). Indeed, let $\left\{x_{n}\right\}$ be a sequence converging to x in (X, p), then $\lim _{n \rightarrow \infty} \max \left\{x_{n}, x\right\}=\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=p(x, x)=x$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(T x_{n}, T x\right)=\lim _{n \rightarrow \infty} \max \left\{T x_{n}, T x\right\}=\lim _{n \rightarrow \infty} \frac{\max \left\{x_{n}, x\right\}}{2}=\frac{x}{2}=p(T x, T x) \tag{2.9}
\end{equation*}
$$

that is $\left\{T\left(x_{n}\right)\right\}$ converges to $T(x)$ in (X, p). Since $x_{n} \rightarrow x$ and by the definition T we have, $\lim _{n \rightarrow \infty} d_{p}\left(x_{n}, x\right)=0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{p}\left(T x_{n}, T x\right)=0 \tag{2.10}
\end{equation*}
$$

From (2.9) and (2.10) we get T is continuous on (X, p). Any $x, y \in X$ are comparable, so for example we take $x \preccurlyeq y$, and then $p(x, x)=p(x, y)$, so $y \leq x$. Since $T(y) \leq T(x)$, so $T(x) \preccurlyeq T(y)$, giving that T is non-decreasing with respect to \preccurlyeq. In particular, for any $x \preccurlyeq y$, we have

$$
p(x, y)=x, p(T x, T y)=T x=\frac{x}{2}, p(x, T x)=x, p(y, T y)=y
$$

Now we have to show that T satisfies the inequality (2.1). For any $x, y \in X$ with $x \preccurlyeq y$ and $x \neq y$, we have

$$
p(T x, T y)=\frac{x}{2} \text { and } \frac{\alpha p(x, T x) p(y, T y)}{p(x, y)}+\beta p(x, y)=\frac{\alpha x y}{x}+\beta x
$$

Therefore, choose $\beta \geq \frac{1}{2}$ and $\alpha+\beta<1$, then (2.1) holds. All the hypotheses of Theorem 2.3 are satisfied, so T has a unique fixed point in X which is 0 and $p(0,0)=0$.

Acknowledgement : We would like to thank the referees for there comments and suggestions to improve the manuscript.

References

[1] S.G. Matthews, Partial metric topology, in: Proceedings Eighth Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci. 728 (1994) 183-197.
[2] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Struct. 7 (1999) 71-83.
[3] S.J. O' Neill, Partial metrics, valuations and domain theory, in: Proceedings Eleventh Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci. 806 (1996) 304-315.
[4] S. Romaguera, M. Schellekens, Partial metric monoids and semivaluation spaces, Topol. Appl. 153 (5-6) (2005) 948-962.
[5] S. Romaguera, O. Valero, A quantitative computational model for complete partial metric spaces via formal balls, Math. Struct. Comput. Sci. 19 (3) (2009) 541-563.
[6] M.P. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315 (2004) 135-149.
[7] P. Waszkiewicz, Partial metrisability of continuous posets, Math. Struct. Comput. Sci. 16 (2) (2006) 359-372.
[8] S. Oltra, O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste. 36 (2004) 17-26.
[9] T. Abdeljawad, E. Karapinar, K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011) 1900-1904.
[10] H. Aydi , E. Karapinar, W. Shatanawi, Coupled fixed point results for (ψ, ϕ) weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. 62 (2011) 4449-4460.
[11] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol. 6 (2) (2005) 229-240.
[12] D.S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math. 8 (1977) 223-230.
[13] J. Harjani, B. Lopez, K. Sadarangani, A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Abstr. Appl. Anal., Volume 2010 (2010), Article ID 190701, 8 pages.
(Received 29 March 2012)
(Accepted 26 March 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2014 by the Mathematical Association of Thailand. All rights reserved.

