Thai Journal of Mathematics Volume 12 (2014) Number 3 : 613–620

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Fixed Point Theorems for Mappings Satisfying a Contractive Condition of Rational Expression on a Ordered Partial Metric Space

V. Pragadeeswarar¹ and M. Marudai

Department of Mathematics, Bharathidasan University Trichy 620 024, Tamil Nadu, India e-mail: pragadeeswarar@gmail.com (V. Pragadeeswarar) marudaim@hotmail.com (M. Marudai)

Abstract : The purpose of this manuscript is to present a fixed point theorem using a contractive condition of rational expression in the context of ordered partial metric spaces.

Keywords : partial metric spaces; fixed point; ordered set.2010 Mathematics Subject Classification : 47H10; 47H04; 54H25.

1 Introduction and Preliminaries

Partial metric is one of the generalizations of metric was introduced by Matthews [1] in 1992 to study denotational semantics of data flow networks. In fact, partial metric spaces constitute a suitable framework to model several distinguished examples of the theory of computation and also to model metric spaces via domain theory [2–7]. Recently, many researchers have obtained fixed, common fixed and coupled fixed point results on partial metric spaces and ordered partial metric spaces [4, 8–11].

Motivated the interesting paper of Jaggi [12], in [13] Harjani et al. proved the following fixed point theorem in partially ordered metric spaces.

Copyright 2014 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

Theorem 1.1 ([13]). Let (X, \leq) be a ordered set and suppose that there exists a metric d in X such that (X, d) is a complete metric space. Let $T : X \to X$ be a non-decreasing mapping such that

$$d(Tx,Ty) \le \alpha \frac{d(x,Tx)d(y,Ty)}{d(x,y)} + \beta d(x,y) \quad \text{for } x,y \in X, x \ge y, x \ne y,$$

and for some $\alpha, \beta \in [0, 1)$ with $\alpha + \beta < 1$. Also, assume either T is continuous or X has the property that

 $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to x$, then $x = \sup\{x_n\}$.

If there exists $x_0 \in X$ such that $x_0 \leq Tx_0$, then T has a fixed point.

In this paper we extend the result of Harjani et al. [13] to the case of partial metric spaces. An example is considered to illustrate our obtained results.

First, we recall some definitions of partial metric space and some of their properties [1, 3, 8, 9, 11].

Definition 1.2. A partial metric on a nonempty set X is a function $p: X \times X \to \mathbb{R}_+$ such that for all $x, y, z \in X$:

- (PM1) p(x, y) = p(y, x) (symmetry);
- (PM2) if $0 \le p(x, x) = p(x, y) = p(y, y)$ then x = y (equality);
- (PM3) $p(x, x) \le p(x, y)$ (small self-distances);
- (PM4) $p(x, z) + p(y, y) \le p(x, y) + p(y, z)$ (triangularity); for all $x, y, z \in X$.

For a partial metric p on X, the function $d_p: X \times X \to \mathbb{R}_+$ given by

$$d_p(x,y) = 2p(x,y) - p(x,x) - p(y,y)$$

is a (usual) metric on X. Each partial metric p on X generates a T_0 topology τ_p on X with a base of the family of open p-balls $\{B_p(x,\epsilon) : x \in X, \epsilon > 0\}$, where $B_p(x,\epsilon) = \{y \in X : p(x,y) < p(x,x) + \epsilon\}$ for all $x \in X$ and $\epsilon > 0$.

Definition 1.3. Let (X, p) be a partial metric space.

- (i) A sequence $\{x_n\}$ in a PMS (X, p) is converges to $x \in X$ iff $p(x, x) = \lim_{n \to \infty} p(x, x_n)$.
- (ii) A sequence $\{x_n\}$ in a PMS (X, p) is called Cauchy iff $\lim_{n,m\to\infty} p(x_n, x_m)$ exists (and is finite).
- (iii) A PMS (X, p) is said to be complete if every Cauchy sequence $\{x_n\}$ in X converges, with respect to τ_p , to a point $x \in X$ such that $p(x, x) = \lim_{n,m\to\infty} p(x_n, x_m)$.
- (iv) A mapping $T: X \to X$ is said to be continuous at $x_0 \in X$ if for every $\epsilon > 0$, there exists $\delta > 0$ such that $T(B_p(x_0, \delta)) \subset B_p(T(x_0), \epsilon)$.

Lemma 1.4. Let (X, p) be a partial metric space. Then

- (i) A sequence $\{x_n\}$ is a Cauchy sequence in the PMS (X, p) if and only if $\{x_n\}$ is Cauchy in a metric space (X, d_p) .
- (ii) A PMS (X, p) is complete if and only if a metric space (X, d_p) is complete. Moreover,

$$\lim_{n \to \infty} d_p(x, x_n) = 0 \Leftrightarrow p(x, x) = \lim_{n \to \infty} p(x, x_n) = \lim_{n, m \to \infty} p(x_n, x_m).$$

2 Main Results

Theorem 2.1. Let (X, \leq) be a partially ordered set and suppose that there exists a partial metric p in X such that (X, p) is a complete partial metric space. Let $T: X \to X$ be a continuous and nondecreasing mapping such that

$$p(Tx,Ty) \le \frac{\alpha p(x,Tx)p(y,Ty)}{p(x,y)} + \beta p(x,y), \quad \text{for } x,y \in X, x \ge y, x \ne y, \quad (2.1)$$

with $\alpha \ge 0, \beta \ge 0, \alpha + \beta < 1$. If there exists $x_0 \in X$ with $x_0 \le Tx_0$, then T has fixed point $z \in X$ and p(z, z) = 0.

Proof. If $Tx_0 = x_0$, then the proof is done. Suppose that $x_0 \leq Tx_0$. Since T is a nondecreasing mapping, we obtain by induction that

$$x_0 \le T x_0 \le T^2 x_0 \le \dots \le T^n x_0 \le T^{n+1} x_0 \le \dots$$

Put $x_{n+1} = Tx_n$. If there exists $n \ge 1$ such that $x_{n+1} = x_n$, then from $x_{n+1} = Tx_n = x_n$, x_n is a fixed point. Suppose that $x_{n+1} \ne x_n$ for $n \ge 1$. That is x_n and x_{n-1} are comparable, we get, for $n \ge 1$,

$$p(x_{n+1}, x_n) = p(Tx_n, Tx_{n-1})$$

$$\leq \frac{\alpha p(x_n, Tx_n) p(x_{n-1}, Tx_{n-1})}{p(x_n, x_{n-1})} + \beta p(x_n, x_{n-1})$$

$$\leq \alpha p(x_n, x_{n+1}) + \beta p(x_n, x_{n-1}).$$

The last inequality gives us

$$p(x_{n+1}, x_n) \le k p(x_n, x_{n-1}), \quad k = \frac{\beta}{1 - \alpha} < 1$$

$$\vdots$$

$$\le k^n p(x_1, x_0). \tag{2.2}$$

Moreover, by the triangular inequality, we have, for $m \ge n$,

$$p(x_m, x_n) \le p(x_m, x_{m-1}) + \dots + p(x_{n+1}, x_n) - \sum_{i=1}^{m-n-1} p(x_{m-k}, x_{m-k})$$

$$\le [k^{m-1} + \dots + k^n] p(x_1, x_0)$$

$$= k^n \frac{1 - k^{m-n}}{1 - k} p(x_1, x_0)$$

$$\le \frac{k^n}{1 - k} p(x_1, x_0).$$

Hence, $\lim_{n,m\to\infty} p(x_n, x_m) = 0$, that is, $\{x_n\}$ is a Cauchy sequence in (X, p). By Lemma 1.4, $\{x_n\}$ is also Cauchy in (X, d_p) . In addition, since (X, p) is complete, (X, d_p) is also complete. Thus there exists $z \in X$ such that $x_n \to z$ in (X, d_p) ; moreover, by Lemma 1.4,

$$p(z,z) = \lim_{n \to \infty} p(z,x_n) = \lim_{n,m \to \infty} p(x_n,x_m) = 0.$$

Given that T is continuous in (X, p). Therefore, $Tx_n \to Tz$ in (X, p).

i.e.,
$$p(Tz, Tz) = \lim_{n \to \infty} p(Tz, Tx_n) = \lim_{n, m \to \infty} p(Tx_n, Tx_m).$$

But, $p(Tz, Tz) = \lim_{n,m\to\infty} p(Tx_n, Tx_m) = \lim_{n,m\to\infty} p(x_{n+1}, x_{m+1}) = 0.$

We will show next that z is the fixed point of T.

$$p(Tz, z) \le p(Tz, Tx_n) + p(Tx_n, z) - p(Tx_n, Tx_n)$$
$$\le p(Tz, Tx_n) + p(x_{n+1}, z).$$

As $n \to \infty$, we obtain $p(Tz, z) \le 0$. Thus, p(Tz, z) = 0. Hence p(z, z) = p(Tz, Tz) = p(Tz, z) = 0. Therefore, by (PM2) we get Tz = z and p(z, z) = 0 which completes the proof.

In what follows we prove that Theorem 2.1 is still valid for T not necessarily continuous, assuming X has the property that

 $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to x$, then $x = \sup\{x_n\}$. (2.3)

Theorem 2.2. Let (X, \leq) be a partially ordered set and suppose that there exists a partial metric p in X such that (X, p) is a complete partial metric space. Assume that X satisfies (2.3) in (X, p). Let $T : X \to X$ be a nondecreasing mapping such that

$$p(Tx,Ty) \le \frac{\alpha p(x,Tx)p(y,Ty)}{p(x,y)} + \beta p(x,y), \quad \text{for } x,y \in X, x \ge y, x \ne y, \quad (2.4)$$

with $\alpha \ge 0, \beta \ge 0, \alpha + \beta < 1$. If there exists $x_0 \in X$ with $x_0 \le Tx_0$, then T has fixed point $z \in X$ and p(z, z) = 0.

Proof. Following the proof of Theorem 2.1, we only have to check that Tz = z. As $\{x_n\}$ is a nondecreasing sequence in X and $x_n \to z$, then, by (2.3), $z = \sup\{x_n\}$. In particularly, $x_n \leq z$ for all $n \in \mathbb{N}$. Since T is a nondecreasing mapping, then $Tx_n \leq Tz$, for all $n \in \mathbb{N}$ or, equivalently, $x_{n+1} \leq Tz$ for all $n \in \mathbb{N}$. Moreover, as $x_0 < x_1 \leq Tz$ and $z = \sup\{x_n\}$, we get $z \leq Tz$.

Suppose that z < Tz. Using a similar argument that in the proof of Theorem 2.1 for $x_0 \leq Tx_0$, we obtain that $\{T^n z\}$ is a nondecreasing sequence such that

$$p(y,y) = \lim_{n \to \infty} p(T^n z, y) = \lim_{m,n \to \infty} p(T^n z, T^m z) = 0 \text{ for some } y \in X.$$
(2.5)

By the assumption of (2.3), we have $y = \sup\{T^n z\}$.

Moreover, from $x_0 \leq z$, we get $x_n = T^n x_0 \leq T^n z$ for $n \geq 1$ and $x_n < T^n z$ for $n \geq 1$ because $x_n \leq z < Tz \leq T^n z$ for $n \geq 1$.

As x_n and $T^n z$ are comparable and distinct for $n \ge 1$, applying the contractive condition we get

$$p(T^{n+1}z, x_{n+1}) = p(T(T^n z), Tx_n)$$

$$\leq \frac{\alpha p(T^n z, T^{n+1}z)p(x_n, Tx_n)}{p(T^n z, x_n)} + \beta p(T^n z, x_n),$$

$$p(T^{n+1}z, x_{n+1}) \le \frac{\alpha p(T^n z, T^{n+1}z) p(x_n, x_{n+1})}{p(T^n z, x_n)} + \beta p(T^n z, x_n).$$
(2.6)

From $\lim_{n\to\infty} p(x_n, z) = \lim_{n\to\infty} p(T^n z, y) = 0$, we have

$$\lim_{n \to \infty} p(T^n z, x_n) = p(y, z).$$
(2.7)

As, $n \to \infty$ in (2.6) and using that (2.2) and (2.7), we obtain

$$p(y,z) \le \beta p(y,z).$$

As $\beta < 1$, p(y, z) = 0. Hence p(z, z) = p(y, y) = p(y, z) = 0. Therefore, by (PM2) y = z. Particularly, $y = z = \sup\{T^n z\}$ and, consequently, $Tz \le z$ and this is a contradiction. Hence, we conclude that z = Tz and p(z, z) = 0.

Theorem 2.3. In addition to the hypotheses of Theorem 2.1 (or Theorem 2.2), suppose that

for every $x, y \in X$, there exists $z \in X$ that is comparable to x and y, (2.8)

then T has a unique fixed point.

Proof. From Theorem 2.1 or Theorem 2.2, the set of fixed points of T is nonempty. Suppose that there exists $z, y \in X$ which are fixed point. By Theorem 2.1 or Theorem 2.2, we get p(z, z) = 0 and p(y, y) = 0. We distinguish two cases. Case 1: If y and z are comparable and $y \neq z$, then using the contractive condition we have

$$p(y,z) = p(Ty,Tz)$$

$$\leq \frac{\alpha p(y,Ty)p(z,Tz)}{p(y,z)} + \beta p(y,z).$$

Since y is fixed point and p(y, y) = 0. We obtain, $p(y, z) \leq \beta p(y, z)$ which is a contradiction to $\beta < 1$. Thus y = z.

Case 2: If y is not comparable to z, then by (2.8) there exists $x \in X$ comparable to y and z. Monotonicity implies that $T^n x$ is comparable to $T^n y = y$ and $T^n z = z$ for n = 0, 1, 2, ...

Suppose there exists $n_0 \ge 1$ such that $T^{n_0}x = y$, then $T^n x = y = Ty$ for all $n \ge n_0$. Therefore, $\lim_{n\to\infty} p(T^n x, y) = p(y, y) = 0$.

On the other hand, if $T^n x \neq y$ for $n \geq 1$, using the contractive condition, we obtain, for $n \geq 1$,

$$\begin{split} p(T^{n}x,y) &= p(T^{n}x,T^{n}y) \\ &\leq \frac{\alpha p(T^{n-1}x,T^{n}x)p(T^{n-1}y,T^{n}y)}{p(T^{n-1}x,T^{n-1}y)} + \beta p(T^{n-1}x,T^{n-1}y) \\ &\leq \frac{\alpha p(T^{n-1}x,T^{n}x)p(y,y)}{p(T^{n-1}x,y)} + \beta p(T^{n-1}x,y). \end{split}$$

Since y is fixed point and p(y, y) = 0. We obtain,

$$p(T^n x, y) \le \beta p(T^{n-1} x, y).$$

Therefore, $p(T^n x, y) \leq \beta^n p(x, y)$, for $n \geq 2$. As $n \to \infty$, we get

$$\lim_{n \to \infty} p(T^n x, y) = 0.$$

Using a similar argument, we can prove that $\lim_{n\to\infty} p(T^n x, z) = 0$.

$$0 \le p(y, z) \le p(y, T^n x) + p(T^n x, z) - p(T^n x, T^n x) \le p(y, T^n x) + p(T^n x, z).$$

As $n \to \infty$, we get p(y, z) = 0. By (PM2), we obtain y = z. Hence the proof is completed.

Example 2.4. Let $X = [0, \infty)$ endowed with the usual partial metric p defined by $p: X \times X \to \mathbb{R}_+$ with $p(x, y) = \max\{x, y\}$, for all $x, y \in X$. We consider the ordered relation in X as follows

$$x \preccurlyeq y \Leftrightarrow p(x, x) = p(x, y) \Leftrightarrow x = \max\{x, y\} \Leftarrow y \le x$$

where \leq be the usual ordering.

It is clear that (X, \preccurlyeq) is totally ordered. The partial metric space (X, p) is complete because (X, d_p) is complete. Indeed, for any $x, y \in X$,

$$d_p(x,y) = 2p(x,y) - p(x,x) - p(y,y) = 2\max\{x,y\} - (x+y) = |x-y|$$

Thus, $(X, d_p) = ([0, \infty), |.|)$ is the usual metric space, which is complete. Let $T : X \to X$ be given by $T(x) = \frac{x}{2}, x \ge 0$. The function T is continuous on (X,p). Indeed, let $\{x_n\}$ be a sequence converging to x in (X,p), then $\lim_{n \to \infty} \max\{x_n, x\} = \lim_{n \to \infty} p(x_n, x) = p(x, x) = x \text{ and}$

$$\lim_{n \to \infty} p(Tx_n, Tx) = \lim_{n \to \infty} \max\{Tx_n, Tx\} = \lim_{n \to \infty} \frac{\max\{x_n, x\}}{2} = \frac{x}{2} = p(Tx, Tx)$$
(2.9)

that is $\{T(x_n)\}$ converges to T(x) in (X, p). Since $x_n \to x$ and by the definition T we have, $\lim_{n\to\infty} d_p(x_n, x) = 0$ and

$$\lim_{n \to \infty} d_p(Tx_n, Tx) = 0.$$
(2.10)

From (2.9) and (2.10) we get T is continuous on (X,p). Any $x, y \in X$ are comparable, so for example we take $x \preccurlyeq y$, and then p(x, x) = p(x, y), so $y \le x$. Since $T(y) \leq T(x)$, so $T(x) \preccurlyeq T(y)$, giving that T is non-decreasing with respect to \preccurlyeq . In particular, for any $x \preccurlyeq y$, we have

$$p(x,y) = x, p(Tx,Ty) = Tx = \frac{x}{2}, p(x,Tx) = x, p(y,Ty) = y.$$

Now we have to show that T satisfies the inequality (2.1). For any $x, y \in X$ with $x \preccurlyeq y$ and $x \neq y$, we have

$$p(Tx,Ty) = \frac{x}{2} \text{ and } \frac{\alpha p(x,Tx)p(y,Ty)}{p(x,y)} + \beta p(x,y) = \frac{\alpha xy}{x} + \beta x.$$

Therefore, choose $\beta \geq \frac{1}{2}$ and $\alpha + \beta < 1$, then (2.1) holds. All the hypotheses of Theorem 2.3 are satisfied, so T has a unique fixed point in X which is 0 and p(0,0) = 0.

Acknowledgement : We would like to thank the referees for there comments and suggestions to improve the manuscript.

References

- [1] S.G. Matthews, Partial metric topology, in: Proceedings Eighth Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci. 728 (1994) 183–197.
- [2] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Struct. 7 (1999) 71–83.

- [3] S.J. O' Neill, Partial metrics, valuations and domain theory, in: Proceedings Eleventh Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci. 806 (1996) 304–315.
- [4] S. Romaguera, M. Schellekens, Partial metric monoids and semivaluation spaces, Topol. Appl. 153 (5-6) (2005) 948–962.
- [5] S. Romaguera, O. Valero, A quantitative computational model for complete partial metric spaces via formal balls, Math. Struct. Comput. Sci. 19 (3) (2009) 541–563.
- [6] M.P. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315 (2004) 135–149.
- [7] P. Waszkiewicz, Partial metrisability of continuous posets, Math. Struct. Comput. Sci. 16 (2) (2006) 359–372.
- [8] S. Oltra, O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste. 36 (2004) 17–26.
- [9] T. Abdeljawad, E. Karapinar, K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011) 1900–1904.
- [10] H. Aydi , E. Karapinar, W. Shatanawi, Coupled fixed point results for (ψ, ϕ) -weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. 62 (2011) 4449–4460.
- [11] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol. 6 (2) (2005) 229–240.
- [12] D.S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math. 8 (1977) 223–230.
- [13] J. Harjani, B. Lopez, K. Sadarangani, A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Abstr. Appl. Anal., Volume 2010 (2010), Article ID 190701, 8 pages.

(Received 29 March 2012) (Accepted 26 March 2013)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th

620