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Abstract : In this paper, we apply the Differential Transform Method (DTM)
and the Adomian Decomposition Method (ADM) to three different types of non-
linear partial differential equations (PDEs) such as, General Equal Width Wave
Equation (GEWE), General Regularized Long Wave Equation (GRLW), and Two-
component KdV Evolutionary System of order two. The study outlines the signif-
icant features of the two methods. The results show that these methods are very
efficient, convenient and can be applied to a large class of problems.
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1 Introduction

The concept of Differential Transform Method (DTM) was introduced by
Pukhov, who solved linear and non-linear initial problems in electric circuit anal-
ysis. Most of the applications that arise in mathematical physics and engineering
fields can be described by partial differential equations (PDEs). In physics, for
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example, the heat flow and the wave propagation phenomena are well described
by partial differential equations, see [11–21]. Partial differential equations have
become a useful tool for describing these natural phenomena of science and engi-
neering models. Therefore, it becomes increasingly important to be familiar with
all traditional and recently developed methods for solving partial differential equa-
tions, and the implementation of these methods.

The Adomian decomposition method (ADM), see [1-5], proposed by George Ado-
mian, has been applied to a wide class of linear and nonlinear PDEs, in physics,
biology and chemical reactions. For nonlinear models, the method has shown reli-
able results in supplying analytical approximation that converges very rapidly to
the exact solution. The aim of our study is to introduce the Differential Transform
Method (DTM) and Adomian Decomposition Method (ADM) as an alternative
to existing methods in solving different types of nonlinear PDEs such as, General
Equal Width Wave Equation (GEWE), General Regularized Long Wave Equation
(GRLW), and Two-component KdV Evolutionary System of order two. In sections
2 and 3, we give a brief description of the DTM and ADM. In section 4, we apply
the DTM and ADM to give approximate solutions to the following: The general
equal width wave equation (GEWE) in the form,

ut + εupux − νuxxt = 0, (1.1)

where p is a positive integer, ε and ν are positive constants which require the
boundary conditions u→ 0 as x→ ±∞, and x is the space variable, t is the time.
The General Regularized Long Wave Equation (GRLW) in the form,

ut + ux + εupux − νuxxt = 0. (1.2)

and the non-linear two-component evolutionary system of a homogeneous (KdV)
equations of order two in the form,

ut = −3vxx
vt = uxx + 4u2

(1.3)

where the subscripts t and x denoting to the differentiation with respect to time
and space respectively.

The rest of this paper is organized as follows: In Section 2, the differential trans-
form method is introduced. Section 3 is devoted to the Adomian Decomposition
method. In section 4, we compare the two methods by applying the two methods
to three test problems to show the effectiveness of the DTM and ADM. Section 5
discussion and conclusion of this paper.
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2 Analysis of the DTM

The basic definitions and fundamental operations of the one-dimensional dif-
ferential transform are defined as follows, see [22]: Let f(x) be an analytic function
in the real numbers, and let x0 be a real number. The function f(x) is then rep-
resented by one series whose center is located at x0. The differential transform of
the function f(x) is of the form:

F (k) =
1

k!

[
dkf(x)

dxk

]
x=x0

, (2.1)

and the differential transform inverse of F (k) is defined as

f(x) =

∞∑
k=0

F (k)(x− x0)k. (2.2)

In real applications, the function f(x) is expressed by a finite series and Equation
(2.2) can be written as:

f(x) =

N∑
k=0

F (k)(x− x0)k. (2.3)

Some basic operations of the differential transformation obtained from equations
(2.1) and (2.2) are given in the table below:

Table 1. Basic operations of the DTM [22–25]
Functional Form Transformed form
f(x)=g(x)± h(x) F(k)=G(k)±H(k)
f(x)=α g(x) F(k)=α G(k), where α is a constant.

f(x)=dng(x)
dxn F(k)= (k+n)!

k! G(k + n).

f(x)=g(x).h(x) F (k) =
∑k
i=0G(i).H(k − i).

f(x)=xn F(k)=δ(k-n), where δ(k-n)=

{
1, n=k;
0, n6=k.

f(x)=u(x).v(x).w(x). F(k)=
∑k
i=0

∑i
j=0 U(j) V (i− j)W (k − i)

f(x)=
∫ x
x0

h(t)dt F(k)=H(k−1)
k , where k ≥ 1.

Note that from the above discussion, one can realize that the DTM is derived
from the power series expansion.

Now, we illustrate the DTM by using the GEWE equation in standard form:

ut + εuux − νuxxt = 0, (2.4)

subject to the initial condition
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u(x, 0) = 3sech2
(x

2

)
, (2.5)

where x is the space variable, t is the time.

Now we transform the nonlinear Equation (2.4) into nonlinear ODE by letting
ξ = x − ct, where c is the velocity of the wave such that u(x, t) = u(ξ) is the
solution of Equation (2.4). Now Equation (2.4) becomes

− cu′(ξ) + εu(ξ)u′(ξ) + νcu′′′(ξ) = 0, (2.6)

subject to the initial condition

u(x, 0) =
3c

ε
sech2

(x
2

)
. (2.7)

Now integrate Equation (2.6) with respect to ξ to get

− cu(ξ) +
1

2
εu2(ξ) + νcu′′(ξ) = 0. (2.8)

Applying the differential transform to Equation (2.8), and using Table 1, we get

νc(k + 1)(k + 2)U(k + 2)− cU(k) +
ε

2

k∑
i=0

U(i)U(k − i) = 0, (2.9)

which is equivalent to

U(k + 2) =
U(k)

ν(k + 1)(k + 2)
− ε

2νc(k + 1)(k + 2)

k∑
i=0

U(i)U(k − i) = 0, (2.10)

where U(k) represent the DT of u(ξ), k ≥ 0, and U(0) and U(1) are:

U(0) =
1

0!

[
d0u(x)

dx0

]
x=0

= u(0) =
3c

ε
, (2.11)

and

U(1) =
1

1!

[
du(x)

dx

]
x=0

= u′(0). (2.12)

We set U(1) = β, and starting with U(0) and U(1), then U(2) can be identified
using Equation (2.11). By using U(0), U(1) and U(2), U(3) can be determined
easily. Continuing in this manner, the N - differential transforms of U(ξ) can be
identified.
These differential transforms depend on the variable ξ, and the constants c and β.
Now, applying the inverse transform of U(k) using Equation (2.8) we get,

u(ξ) =

N∑
k=0

U(k)ξk. (2.13)
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Finally, the constants c and β will be determined using u(x, 0) = 3sech2
(
x
2

)
for

different values of x. Similarly, we can do the same thing to the GRLW and KdV
systems.

3 Analysis of the ADM

It is well known that Adomian decomposition method suggests that the unknown
linear function u may be represented by the decomposition series,

u =

∞∑
n=0

un, (3.1)

where the components un, n ≥ 0 are to be determined in a recursive manner.
However, the nonlinear terms F (u), such as u2, u3, u4, sin(u), eu, uux, u

2
x, etc. can

be expressed by an infinite series of the so-called Adomian polynomials An given
in the form,

F (u) =

∞∑
n=0

An(u0, u1, u2, ..., un), (3.2)

where the An for the nonlinear term F (u) can be evaluated by using the following
expression,

An =
1

n!

dn

dλn

[
F

(
n∑
i=0

λiui

)]
λ=0

, n = 0, 1, 2, .... (3.3)

The general formula (3.3) can be simplified as follows. Assuming that the nonlinear
function is F(u), therefore by using (3.3), Adomian polynomials, see [3] are given
by:

A0 = F (u0),
A1 = u1F

′(u0),
A2 = u2F

′(u0) + 1
2!u

2
1F
′′(u0),

A3 = u3F
′(u0) + u1u2F

′′(u0) + 1
3!u

3
1F
′′′(u0),

A4 = u4F
′(u0) + ( 1

2!u
2
2 + u1u3)F ′′(u0) + 1

2!u
2
1u2F

′′′(u0) + 1
4!u

4
1F

(4)(u0).

(3.4)

Other polynomials can be generated in a similar manner. Two important obser-
vations can be made here. First, A0 depends only on u0, A1 depends only on u0
and u1, A2 depends only on u0, u1 and u2, and so on. Second, substituting (3.4)
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into (3.2) gives that

F (u) = A0 +A1 +A2 +A3 + ...

= F (u0) + (u1 + u2 + u3 + ...)F ′(u0)

+
1

2!
(u21 + 2u1u2 + 2u1u3 + u22 + ...)F ′′(u0) + ...

+
1

3!
(u31 + 3u21u2 + 3u21u3 + 6u1u2u3 + ...)F ′′′(u0) + ...

= F (u0) + (u− u0)F ′(u0) +
1

2!
(u− u0)2F ′′(u0) + ....

The last expansion confirms the fact that the series in An polynomials is a Taylor
series about a function u0 and not about a point as is usually used. The Adomian
polynomials given above in (3.4) clearly show that the sum of the subscripts of
the components of u of each term of An is equal to n.

4 Numerical Examples

In this section we present, using the DTM and the ADM, the approximate solution
for three different examples and implement the proposed method in solving these
examples. Our results will be compared with the exact solutions.

4.1 Solving GEWE, GRLW, and KdV System Using DTM

First, we apply the DTM to all three test problems mentioned above.

Example 1. Consider the following nonlinear GEWE problem.

ut + 0.5uux − uxxt = 0, (4.1)

subject to the initial condition

u(x, 0) = 3sech2
(x

2

)
, (4.2)

where the exact solution is

u(x, t) = 3sech2
(
x− 0.5t

2

)
. (4.3)

Now using the wave variable ξ = x − ct, equations (4.1–4.2) are converted to the
ODE

cu′′(ξ)− cu(ξ) + 0.25u2(ξ) = 0, (4.4)

subject to the initial condition

u(0) = 3. (4.5)
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Applying the differential transform to Equations (4.4–4.5) and by means of Table
1, we obtain the following recursive formula

U(k + 2) =
U(k)

(k + 1)(k + 2)
− 1

4c(k + 1)(k + 2)

k∑
i=0

U(i)U(k − i), k ≥ 0. (4.6)

and
U(0) = u(0) = 3, U(1) = u′(0) = β, (4.7)

where β is a constant to be determined later. Using U(0), U(1) we coded (4.6) in
Mathematica, and obtain the following results:

U(2) =
3

2
− 9

8c
, U(3) =

(
β

6
− β

4c

)
, U(4) =

27 + 2c
(
−27− 2β2 + 12c

)
192c2

, U(5) =
β
(
45− 60c+ 8c2

)
960c2

.

(4.8)
Continuing in this manner, the first 11-iterations can be identified eventually by
using mathematica software. Hence, the approximate solution can be expressed
as:

uappr(x, t) =

10∑
i=0

U(i)(x− ct)i. (4.9)

Now, using the initial condition (4.2) and by the aid of Mathematica software, the
constants c and β are

c = 0.515813, β = −0.0745867.

Substituting the values of c and β in Equation (4.9), the approximate solution is

uappr(x, t) = 3− 0.0745867(x− 0.515813t)− 0.681024(x− 0.515813t)2

+0.023719(x− 0.515813t)3 + 0.10806(x− 0.515813t)4

−0.00472473(x− 0.515813t)5 − 0.0143085(x− 0.515813t)6

+0.000773468(x− 0.515813t)7 + 0.00175039(x− 0.515813t)8

−0.000112692(x− 0.515813t)9 − 0.000203116(x− 0.515813t)10.

Figure 1 below shows the comparison of the DTM approximate solution of order 10
and the exact solution in (4.3). It is clear from figure 1, the DTM approximation
and the exact solution is in good agreement.
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Figure 1: The exact, approximate solutions for Example 1

Example 2. Consider the following nonlinear GRLW problem

ut + ux + 0.5uux − uxxt = 0, (4.10)

subject to the initial condition

u(x, 0) = −3sec2
(x

2

)
, (4.11)

where the exact solution is

u(x, t) = −3sec2
(
x− 0.5t

2

)
. (4.12)

Now using the wave variable ξ = x − ct, equations (4.10–4.11) are converted to
the ODE

(1− c)u(ξ) + 0.25u2(ξ) + cu′′(ξ) = 0, (4.13)

subject to the initial condition
u(0) = −3. (4.14)

Applying the differential transform to Equations (4.13–4.14) and make a use of
Table 1, we obtain the following recursive formula

U(k + 2) =
(c− 1)U(k)

c(k + 1)(k + 2)
− 1

4c(k + 1)(k + 2)

k∑
i=0

U(i)U(k − i), (4.15)

and
U(0) = u(0) = −3, U(1) = u′(0) = β, (4.16)

where β is a constant to be determined. Using U(0), U(1) we coded (4.15) in
Mathematica, and obtain the following results:

U(2) =

(
− 9

8c
− 3(c− 1)

2c

)
, U(3) =

(
β

4c
+
β(c− 1)

6c

)
, U(4) =

−β2 + 6
(

9
8c + 3(c−1)

2c

)
48c

+

(
9
8c + 3(c−1)

2c

)
(1− c)

12c

 .

(4.17)
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Continuing in this manner, the first 14-iterations can be identified eventually by
using mathematica software. Hence, the approximate solution can be expressed
as

uappr(x, t) =

13∑
i=0

U(i)(x− ct)i. (4.18)

Now, using the initial condition (4.11), and by the aid of Mathematica software,
the constants c and β are

c = 0.450128, β = −0.0637504.

Substituting the values of c and β in Equation (4.18), then the approximate solu-
tion is

uappr(x, t) = −3− 0.0637504(x− 0.450128t)− 0.666903(x− 0.450128t)2

−0.0224273(x− 0.450128t)3 − 0.117496(x− 0.450128t)4

−0.00472827(x− 0.450128t)5 − 0.0165539(x− 0.450128t)6

−0.000831304(x− 0.450128t)7 − 0.00218922(x− 0.450128t)8

−0.000129954(x− 0.450128t)9 − 0.000274757(x− 0.450128t)10

−0.0000188605(x− 0.450128t)11 − 0.0000333679(x− 0.450128t)12

−(2.5994582729727103)10−6(x− 0.450128t)13.

Figure 2 shows the comparison of the DTM approximate solution of order 13 and
the exact solution in (4.12). It is clear from figure 2, the DTM approximation and
the exact solution is in good agreement.

Figure 2: The exact, approximate solutions for Example 2



578 Thai J. Math. 12 (2014)/ N. A. Obiedat, M. Rawashdeh and M. Alquran

Example 3. We consider the non-linear two-component evolutionary system of
homogeneous KdV equations of order two in the form

ut = −3vxx

vt = uxx + 4u2,
(4.19)

subject to the initial conditions

u(x, 0) = −3
4(1+cos(x))

v(x, 0) =
√
3
4 tan

(
x
2

)
,

(4.20)

where the exact solutions are

u(x, t) = −3
4(1+cos(x+

√
3t))

v(x, t) =
√
3
4 tan

(
x+
√
3t

2

)
.

(4.21)

Here the subscripts t and x denoting to the differentiation with respect to time and
space respectively. Thus by using ξ = x− ct, equations (4.19–4.20) are converted
to ODE system

−cu′(ξ) = −3v′′(ξ)

−cv′(ξ) = u′′(ξ) + 4u2(ξ).
(4.22)

From Equation (4.22), we have

v′(ξ) =
c

3
u(ξ), (4.23)

and therefore,
c2u(ξ) + 12u2(ξ) + 3u′′(ξ) = 0, (4.24)

subject to the initial condition

u(0) = −3

8
. (4.25)

Applying the differential transform to Equation (4.24–4.25), we get the recursive
formula

U(k + 2) =
−c2U(k)

3(k + 1)(k + 2)
− 4

(k + 1)(k + 2)

k∑
i=0

U(i)U(k − i), k ≥ 0 (4.26)

and

U(0) = u(0) = −3

8
, u(1) = U(1) = β, (4.27)
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where β is a constant to be determined. Using U(0), U(1) we coded (4.26) in
Mathematica, and obtained the following:

U(2) =

(
c2

16
− 9

32

)
, U(3) =

(
β

2
− βc2

18

)
, U(4) =

(
−81− 384β2 + 27c2 − 2c4

1152

)
.

(4.28)

Continuing in this manner, the first 9-iterations can be identified eventually by
using mathematica software. Hence, the approximate solutions can be expressed
as

u(x, t) =

8∑
i=0

U(i)(x− ct)i. (4.29)

Now, using the initial condition (4.20) and by the aid of Mathematica software,
the constants c and β are

c = −1.7320507758213959, β = (1.349735537423171)10−9.

Substituting the values of c and β in Equation (4.29), the approximate solutions
are

uappr(x, t) = −3

8
+ (1.349735537423171)10−9(x+ 1.73205t)− 0.09375(x+ 1.73205t)2

+(4.4991185405434545)10−10(x+ 1.73205t)3 − 0.015625(x+ 1.73205t)4

+(9.560627259444544)10−11(x+ 1.73205t)5 − 0.00221354(x+ 1.73205t)6

+(1.660389099082482)10−11(x+ 1.73205t)7

−0.000288318(x+ 1.73205t)8,

and using Equation (4.23), we get

vappr(x, t) = 0.216506(x+ 1.73205t)− (3.89635080791252)10−10(x+ 1.73205t)2

+0.0180422(x+ 1.73205t)3 − (6.493918132217263)10−11(x+ 1.73205t)4

+0.00180422(x+ 1.73205t)5 − (9.199717701144504)10−12(x+ 1.73205t)6

+0.00018257(x+ 1.73205t)7 − (1.1982825946796675)10−12(x+ 1.73205t)8

+0.0000184956(x+ 1.73205t)9.

Figures 3 and 4 above shows the comparison of the DTM u(x, t)-approximate and
v(x, t)-approximate solutions of order 8 and the exact solution in (4.21). It is
clear from figure 3 and 4, the DTM approximation and the exact solution are in
excellent agreement.
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Figure 3: The exact, approximate solutions and absolute error, respectively of
u(x,t) for Example 3

Figure 4: The exact, approximate solutions and absolute error, respectively of
v(x,t) for Example 3

4.2 Solving GEWE, GRLW, and KdV System Using ADM

In this section, we apply the ADM to the same previous examples that been con-
sidered by the DTM.

Example 1. Consider the following nonlinear GEWE problem

ut + 0.5uux − uxxt = 0, (4.30)

subject to the initial condition

u(x, 0) = 3sech2
(x

2

)
, (4.31)

which has the exact solution

u(x, t) = 3sech2
(
x− 0.5t

2

)
. (4.32)

Applying the ADM, Equation (4.30) becomes

Lt (u(x, t)) = uxxt − 0.5uux, (4.33)

where Lt is defined by Lt = ∂
∂t . Now the inverse operator L−1t is identified by

L−1t (.) =

∫ t

0

(.) dz. (4.34)



An Improved Approximate Solutions to Nonlinear PDEs ... 581

Applying L−1t to both sides of (4.33) and using the initial condition we obtain

u(x, t)− u(x, 0) = L−1t uxxt − 0.5L−1t uux. (4.35)

Then

u(x, t) = 3sech2
(x

2

)
+ L−1t uxxt − 0.5L−1t uux. (4.36)

Substituting

u(x, t) =

∞∑
n=0

un(x, t),

and the nonlinear term by

0.5uux = 0.5

∞∑
n=0

An,

into Equation (4.36) gives

∞∑
n=0

un(x, t) = 3sech2
(x

2

)
+L−1t

( ∞∑
n=0

(un(x, t))xxt

)
−0.5L−1t

( ∞∑
n=0

An

)
. (4.37)

This gives the recursive relation

u0(x, t) = 3sech2
(
x
2

)
uk+1(x, t) = L−1t ((uk)xxt)− L−1t (Ak), k ≥ 0.

(4.38)

The first two components are given by

u0(x, t) = 3sech2
(
x
2

)
u1(x, t) = −L−1t (A0) = −L−1t

(
− 9

2sech
4
(
x
2

)
tanh

(
x
2

))
,

(4.39)

where additional terms can be easily computed. The Adomian polynomials An for
this form of nonlinearity are given by

A0 = u0(u0)x
2 = − 9

2sech
4
(
x
2

)
tanh

(
x
2

)
A1 = u1(u0)x

2 + u0(u1)x
2

= − 27
4 tsech

6
(
x
2

)
tanh2

(
x
2

)
+ 3

2sech
2
(
x
2

) (
9
4 tsech

6
(
x
2

)
− 9tsech4

(
x
2

)
tanh2

(
x
2

))
A2 = u2(u0)x

2 + u1(u1)x
2 + u0(u2)x

2 .

(4.40)
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Combining the results obtained above, the approximate solution is given by

uappr(x, t) = 3sech
(x

2

)2
+

(
9

2
sech

(x
2

)4
tanh

(x
2

))
t+

(
27

8
(3cosh(x)− 4)sech

(x
2

)8)
t2

+

(
81

8
(7cosh(x)− 13)sech

(x
2

)10
tanh

(x
2

))
t3.

Figure 5 below shows the comparison of the ADM approximate solution of order 3
and the exact solution in (4.32). It is clear from figure 5, the ADM approximation
and the exact solution are in excellent agreement.

Figure 5: The exact, approximate solutions and absolute error, respectively for
Example 1

Example 2. Consider the following nonlinear GRLW problem

ut + ux + 0.5uux − uxxt = 0, (4.41)

subject to the initial condition

u(x, 0) = −3sec2
(x

2

)
, (4.42)

which has the exact solution

u(x, t) = −3sec2
(
x− 0.5t

2

)
. (4.43)

Applying the ADM, Equation (4.41) becomes

Lt (u(x, t)) = uxxt − 0.5uux − ux, (4.44)

where Lt is defined by Lt = ∂
∂t .

Applying L−1t to both sides of (4.44) and using the initial condition, we obtain

u(x, t)− u(x, 0) = L−1t uxxt − 0.5L−1t uux − L−1t ux. (4.45)

Then
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u(x, t) = −3sec2
(x

2

)
+ L−1t uxxt − 0.5L−1t uux − L−1t ux. (4.46)

Substituting

u(x, t) =

∞∑
n=0

un(x, t),

and the nonlinear term by

0.5uux = 0.5

∞∑
n=0

An,

into Equation (4.46) gives

∞∑
n=0

un(x, t) = −3sec2
(x

2

)
+L−1t

( ∞∑
n=0

(un)xxt

)
−L−1t

( ∞∑
n=0

(un)x

)
−0.5L−1t

( ∞∑
n=0

An

)
.

(4.47)
This gives the recursive relation

u0(x, t) = −3sec2
(
x
2

)
uk+1(x, t) = L−1t ((uk)xxt)− L−1t ((uk)x)− L−1t (Ak), k ≥ 0.

(4.48)

Thus, the first two components are given by

u0(x, t) = −3sec2
(
x
2

)
u1(x, t) = −L−1t (A0) = −L−1t

(
9
2sec

4
(
x
2

)
tan

(
x
2

))
,

(4.49)

where additional terms can be easily computed. The Adomian polynomials An for
this form of nonlinearity are given by

A0 = u0(u0)x
2 = 9

2sec
4
(
x
2

)
tan

(
x
2

)
. (4.50)

Combining the results obtained above, the approximate solution is given by

uappr(x, t) = −3 sec
(x

2

)2
+ 3sec

(x
2

)2( 2 sin(2x)

(1 + cos(x))2
− 2 sin(x)

(1 + cos(x))2

)
t

+3 sec
(x

2

)2(
1 +

42

(1 + cos(x))2
− 15 cos(x)

(1 + cos(x))2
−

63 sec
(
x
2

)2
2(1 + cos(x))2

)
t2

+3 sec
(x

2

)2( 38 sin(x)

(1 + cos(x))2
− cos(x) sin(x)

(1 + cos(x))2

)
t3

−3 sec
(x

2

)2(9(59− 42 cos(x) + 19 cos(2x)) sec
(
x
2

)4
tan

(
x
2

)
4(1 + cos(x))2

)
t4.
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Figure 6 below shows the comparison of the ADM approximate solution of order 3
and the exact solution in (4.43). It is clear from figure 6, the ADM approximation
and the exact solution are in excellent agreement.

Figure 6: The exact, approximate solutions and absolute error, respectively for
Example 2

Example 3. Consider the non-linear two-component evolutionary system of a
homogeneous KdV equations of order two in the form

ut = −3vxx

vt = uxx + 4u2,
(4.51)

subject to the initial conditions

u(x, 0) = −3
4(1+cos(x))

v(x, 0) =
√
3
4 tan

(
x
2

)
,

(4.52)

where the exact solutions are

u(x, t) = −3
4(1+cos(x+

√
3t))

v(x, t) =
√
3
4 tan

(
x+
√
3t

2

)
.

(4.53)

Applying the ADM, Equation (4.51) becomes

Lt (u(x, t)) + 3
4(1+cos(x)) = Lt (−3vxx)

Lt (v(x, t))−
√
3
4 tan

(
x
2

)
= Lt

(
uxx + 4u2

)
,

(4.54)

where Lt is defined by Lt = ∂
∂t .

Applying L−1t to both sides of (4.54) and using the initial conditions we obtain
that

u(x, t) = −3
4(1+cos(x)) − L

−1
t (3vxx)

v(x, t) =
√
3
4 tan

(
x
2

)
+ L−1t

(
uxx + 4u2

)
.

(4.55)
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Substituting

u(x, t) =

∞∑
n=0

un(x, t),

v(x, t) =

∞∑
n=0

vn(x, t),

and the nonlinear term by

4u2 = 4

∞∑
n=0

An,

into Equation (4.55) gives

∞∑
n=0

un(x, t) =
−3

4(1 + cos(x))
− 3L−1t

( ∞∑
n=0

(vn)xx

)

∞∑
n=0

vn(x, t) =

√
3

4
tan

(x
2

)
+ L−1t

( ∞∑
n=0

(un(x, t))xx

)
+ 4L−1t

( ∞∑
n=0

An

)
. (4.56)

This gives the recursive relation

u0(x, t) = −3
4(1+cos(x))

uk+1(x, t) = −3L−1t ((vk)xx) , k ≥ 0

(4.57)

and

v0(x, t) =
√
3
4 tan

(
x
2

)
vk+1(x, t) = L−1t ((uk)xx) + 4L−1t (Ak), k ≥ 0.

(4.58)

The first two components are given by

u0(x, t) = −3
4(1+cos(x)) u1(x, t) = −3

√
3

8 tsec2
(
x
2

)
tan

(
x
2

)
, (4.59)

where additional terms can be easily computed. The Adomian polynomials An for
this form of nonlinearity are given by

A0 = 9
16(1+cos(x))2 , A1 =

9
√
3tsec2( x

2 )tan( x
2 )

16(1+cos(x)) , (4.60)

where additional terms can be easily computed. Accordingly, combining the results
obtained above, the approximate solution of the system is given by
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uappr(x, t) =
3

35840(1 + cos(x))

(
13440t2 − 3360t4 + 336t6 − 18t8 − 8960

)
+

3sec2
(
x
2

)
35840(1 + cos(x))

(
−20160t2 + 25200t4 + 1512t6 + 4455t8

)
−

3sec4
(
x
2

)
35840(1 + cos(x))

(
25200t4 + 61488t6 + 56565t8

)
−

3sec8
(
x
2

)
35840(1 + cos(x))

(
122472t6 + t8

(
133650sec2

(x
2

)
+ 292815

))
+ ...

and

vappr(x, t) =
sec10

(
x
2

)
4587520

(
470400t+ 168000t3 + 458640t5 − 965880t7

)
+

3tcos(x)sec10
(
x
2

)
286720

(
15680 + 4760t2 + 4074t4 + 25971t6

)
+

3tcos(2x)sec10
(
x
2

)
71680

(
1960 + 280t2 − 1302t4 − 1347t6

)
+
tcos(3x)sec10

(
x
2

)
4587520

(
107520− 13440t2 + 14112t4 + 17136t6

)
+
tcos(4x)sec10

(
x
2

)
4587520

(
13440− 6720t2 + 1008t4 − 72t6

)
+ ...

Figures 7 and 8 shows the comparison of the ADM u(x, t)-approximate and v(x, t)-
approximate solutions of order 8 and the exact solution in (4.53). It is clear from
figure 7 and 8, the ADM approximation and the exact solution are in excellent
agreement.

Figure 7: The exact, approximate solutions and absolute error, respectively of
u(x,t) for Example 3
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Figure 8: The exact, approximate solutions and absolute error, respectively of
v(x,t) for Example 3

5 Conclusion

In this paper, the Differential Transform Method (DTM) and the Adomian De-
composition Method (ADM) were proposed for solving the GEWE, GRLW, and
the KdV system. We were be able successfully to find approximate solutions for
nonlinear PDEs. The results we obtained were in excellent agreement with the ex-
act solutions. The decomposition method introduces a significant improvement in
the fields over existing techniques. Moreover, the decomposition method in away
is easier, more convenient and more efficient. Also a comparative study has been
conducted between the DTM and the ADM.

Acknowledgement(s) : The authors would like to express his appreciation and
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References

[1] G. Adomian, Solving frontier problems of physics: the decomposition method.
Kluwer Acad. Publ., (1994).

[2] G. Adomian, A review of the decomposition method in applied mathematics.
J. Math. Anal. Appl.,Volume 135, No.10, (1988) 501-544.

[3] G. Adomian, Nonlinear stochastic operator equations. Academic Press, New
York, (1986).

[4] G. Adomian, A new approach to nonlinear partial differential equations. J.
Math. Anal. Appl., Vol. 102, (1984), 420-434.

[5] G. Adomian, Explicit solutions of nonlinear partial differential equations. J.
Math. Anal. Appl., 88, (1997) 117-126.

[6] A. Ali, A. Soliman and K. Raslan, Soliton solution for nonlinear partial
differential equations by cosine-function method. Physics Letters A, 368,
(2007) 299-304.



588 Thai J. Math. 12 (2014)/ N. A. Obiedat, M. Rawashdeh and M. Alquran

[7] M. Alquran, Applying Differential Transform Method to Nonlinear Par-
tial Differential Equations: A Modified approach. Applications and Applied
Mathematics: An International Journal., Vol. 7, Issue 1 (2012), pp. 155 163.

[8] M. Alquran, Solitons and periodic solutions to nonlinear partial differential
equations by the Sine-Cosine method. Appl. Math. Inf. Sci., Volume 6(1),
(2012) pp. 85-88.

[9] M. Alquran and B. Al-Khamaiseh, Algorithms to Solve Nonlinear Singularly
Perturbed Two Point Boundary Value Problems. Applied Mathematical Sci-
ences, Volume 4, No. 57 (2007) 2809-2827.

[10] M. Alquran and K. Al-Khaled, Approximations of Sturm-Liouville Eigenval-
ues Using Sinc-Galerkin and Differential Transform Methods. Applications
and Applied Mathematics: An International Journal., Vol. 5, Issue 1, (2010),
128-147.

[11] M. Alquran and K. Al-Khaled, Sinc and solitary wave solutions to the gener-
alized Benjamin-Bona-Mahony-Burgers equations. Physica Scripta., Vol. 19,
No. 4, (2012), 555-562.

[12] R. Camassa and D. Holm, An integrable shallow water equation with peaked
solitons. Phys. Rev. Lett., Volume 11, No. 71, (1993), 1661-1664.

[13] A. Degasperis and M. Procesi, Asymptotic Integrabilty, Symmetry and Per-
turbation Theory. World Scientific., (1999), 2337.

[14] V. Eguiluz, E. Hernandez and O. Piro, , Boundary effects in the complex
Ginzburg-Landau equation. Intrnat. J. Bifur. Chaos, Volume 9, No. 11,
(1999), 2209-2214.

[15] B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equa-
tions: Generalization of the Camassa-Holm equation. Physica D, Volume 95,
(1996), 229-243.

[16] M. Alquran, K. Al-Khaled, The tanh method and sine-cosine method for a
reliable treatment of nonlinear evolutions equations. Physica Scripta, Volume
84 (2011).

[17] Marwan Alquran, Bright and dark soliton solutions to the Ostrovsky-
Benjamin-Bona-Mahony (OS-BBM) equation. J. Math. Comput. Sci., Volume
2(1) (2012) pp. 15-22.

[18] Marwan Alquran, Kamel Al-khaled, Mathematical methods for a reliable
treatment of the (2+1)-dimensional Zoomeron equation. Mathematical Sci-
ences, Volume 6(12) (2012).

[19] Marwan Alquran, Kamel Al-Khaled, Hassan Ananbeh, New Soliton Solutions
for Systems of Nonlinear Evolution Equations by the Rational Sine-Cosine
Method. Studies in Mathematical Sciences., Volume 3(1) (2011) pp. 1-9.



An Improved Approximate Solutions to Nonlinear PDEs ... 589

[20] Marwan Alquran, Mohammed Ali, Kamel Al-Khaled, Solitary wave solutions
to shallow water waves arising in fluid dynamics. Nonlinear Studies, Volume
19(4) (2012) pp. 555-562.

[21] Marwan Alquran, Aminah Qawasmeh, Classifications of solutions to some
generalized nonlinear evolution equations and systems by the sine-cosine
method. Nonlinear Studies, Volume 20(2) (2013) pp. 261-270.

[22] A. S. V. Kanth, K. Aruna, differential transform method for solving linear
and non-linear systems of partial differential equations. Physics Letters A,
Volume 372, (2008), 6896-6898.

[23] Z. M. Odibat, Differential transform method for solving Volterra integral
Equations with separable kernels. Math. Comput. Model, Volume 48, Issues
78, (2008), 1144-1149.

[24] Abdul Majid. Wazwaz, Partial Differential Equations and Solitary Waves
Theory. Springer-Verlag, Heidelberg, (2009).

[25] G. B. Whitham, Linear and Nonlinear Waves. John Wiley, New York, (1976).

[26] Rawashdeh. M, Improved Approximate Solutions for Nonlinear Evolutions
Equations in Mathematical Physics Using the RDTM. Journal of Applied
Mathematics, Volume 3, No. 2, (2013) 1-14.

[27] Rawashdeh. M, Using the Reduced Differential Transform Method to Solve
Nonlinear PDEs Arises in Biology and Physics. World Applied Sciences Jour-
nal, Volume 23, No. 8, (2013), 1037-1043.

[28] Rawashdeh. M, Obeidat. N, On Finding Exact and Approximate Solutions
to Some PDEs Using the Reduced Differential Transform Method. Applied
Mathematics and Information Sciences, (To appear)(2014).

[29] Rawashdeh. M, Obeidat. N, Applying the Reduced Differential Transform
Method to Solve the Telegraph and Cahn-Hilliard Equations. Thai Journal
of Mathematics, (To appear)(2014).

(Received 11 June 2013)
(Accepted 12 November 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Analysis of the DTM
	Analysis of the ADM
	Numerical Examples
	Solving GEWE, GRLW, and KdV System Using DTM
	Solving GEWE, GRLW, and KdV System Using ADM

	Conclusion

