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1 Introduction

The notion of△-convergence in general metric space was introduced by Lim [1].
Kirk and Panyanak [2] specialized this concept to CAT (0) space and showed that
many Banach space results which involve weak convergence have precise analogs
in this setting.

A metric space X is a CAT (0) space if it is geodesically connected and if every
geodesic triangle inX is at least as ‘thin’ as its comparison triangle in the Euclidean
plane. It is well-known that any complete, simply connected Riemannian manifold
having nonpositive sectional curvature is a CAT (0) space. The complex Hilbert
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ball with a hyperbolic metric is a CAT (0) space (see [3]). Other examples include
Pre-Hilbert spaces, R-trees (see [4]), Euclidean buildings (see [5]). For discussion
of these spaces and of the fundamental role which plays in geometry, see Bridson
and Haefliger [4], Burago et al. [6] and Gromov [7].

Fixed point theory in a CAT (0) space has been first studied by Kirk (see
[8, 9]). He showed that every nonexpansive mapping defined on a bounded closed
convex subset of a complete CAT (0) space always has a fixed point. Since then the
fixed point theory in CAT (0) space has been rapidly developed and much papers
have appeared (see e.g. [2, 8–16]).

Recently, Kirk and Panyanak [2] used the concept of △-convergence intro-
duced by Lim [1] to prove on the CAT (0) space analogs of some Banach space
results which involve weak convergence. Further, Dhompongsa and Panyanak [12]
obtained △-convergence theorems for the Picard, Mann and Ishikawa iterations
for nonexpansive mappings in the CAT (0) space.

Agarwal et al. [17] introduced the S-iteration process in a Banach space;
x1 ∈ K

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn, n ∈ N,
(1.1)

where {αn} and {βn} are sequences in (0, 1) . Throughout the paper, N and R
denote the set of natural numbers and the set of real numbers, respectively.

They showed that their process is independent of Mann and Ishikawa and
converges faster than both of these (see [17, Proposition 3.1]).

Khan and Abbas [14] have modified S-iteration process in CAT (0) space for
nonexpansive mappings.

The purpose of this paper is to study the iterative scheme defined as follows:
Let K be a nonempty, closed, convex subset of a complete CAT (0) space X

and T : K → K be a generalized nonexpansive mapping with F (T ) ̸= ∅. Suppose
that {xn} is a sequence generated iteratively by x1 ∈ K,

xn+1 = (1− an)Txn ⊕ anTyn
yn = (1− bn)xn ⊕ bnTxn, n ∈ N,

(1.2)

where and throughout the paper {an} , {bn} are the sequences such that 0 ≤ a ≤
an, bn ≤ b < 1 for all n ∈ N and for some a, b.

In this paper, we study the S-iteration process for generalized nonexpansive
mappings on the CAT (0) space and generalize some results of Khan and Abbas
[14]. This paper contains three section. In the Section 2, we first collect some
known preliminaries and lemmas that will be used in the proofs of our main the-
orems. We give the main results which related to the strong and △-convergence
theorems of S-iteration process in CAT (0) space, in Section 3. Under some suit-
able condition, we obtain the strong and △-convergence theorems of {xn} to a
fixed point of T . It is worth mentioning that our results in CAT (0) spaces can be
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applied to any CAT (k) space with k ≤ 0 since any CAT (k) space is a CAT (k
′
)

space for every k
′ ≥ k (see [4, p. 165]).

2 Preliminaries and Lemmas

Let us recall some definitons and known results in the existing literature on
this concept.

Let (X, d) be a metric space and K its nonempty subset. Let T : K → K be
a mapping. A point x ∈ K is called a fixed point of T if Tx = x. We will also
denote by F (T ) the set of fixed points of T , that is, F (T ) = {x ∈ K : Tx = x}.
T is said to be nonexpansive if

d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K.

Recently, Suzuki [18] introduced a condition on mappings, called condition(C),
which is weaker than nonexpansiveness. A mapping T : K → K is said to be
quasi-nonexpansive if F (T ) ̸= ∅ and d(Tx, p) ≤ d(x, p) for all x ∈ K and p ∈ F (T ).

Definition 2.1. Let T be a mapping on a subset K of a metric space (X, d).Then,
T : K → K is said to satisfy condition(C) (sometimes called generalized nonex-
pansive mapping) if

1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y),

for all x, y ∈ K.

Proposition 2.2 ([18]). Every nonexpansive mapping satisfies condition(C).

Proposition 2.3 ([15]). Assume that a mapping T satisfies condition(C) and has
a fixed point. Then T is quasi-nonexpansive.

Example 2.4. Define a mapping T on [0, 3] by

T (x) =

{
0 if x ̸= 3,

1 if x = 3.

Then, T satisfies condition(C), but T is not nonexpansive.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or
more briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R
to X such that c(0) = x, c(l) = y, and d(c(t), c(́t)) = |t− t́|, for all t, t′ ∈ [0, l]. In
particular, c is an isometry and d(x, y) = l. The image of c is called a geodesic (or
metric) segment joining x and y. When it is unique, this geodesic is denoted by
[x, y]. The space (X, d) is said to be a geodesic space if every two points of X are
joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one
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geodesic joining x to y, for each x, y ∈ X. A subset Y ⊂ X is said to be convex if
Y includes every geodesic segment joining any two of its points.

A geodesic triangle △(x1, x2, x3) in a geodesic metric space (X, d) consist of
three points in X (the vertices of △) and a geodesic segment between each pair of
vertices (the edges of △). A comparison triangle for geodesic triangle △(x1, x2, x3)
in (X, d) is a triangle △(x1, x2, x3) = △(x1, x2, x3) in the Euclidean plane E2 such
that dE2(xi, xj) = d(xi, xj), for i, j ∈ {1, 2, 3}.

A geodesic metric space is said to be a CAT (0) space [4] if all geodesic triangles
of appropriate size satisfy the following comparison axiom.

CAT(0): Let △ be a geodesic triangle in X and let △ be a comparison triangle
for △. Then, △ is said to satisfy the CAT (0) inequality if for all x, y ∈ △ and all
comparison points x, y ∈ △,

d(x, y) ≤ dE2(x, y).

It is known that in a CAT (0) space, the distance function is convex [4].
Complete CAT (0) spaces are often called Hadamard spaces.

Finally, we observe that if x, y1, y2 are points of a CAT (0) space and if y0
is the midpoint of the segment [y1, y2], which we will denote by y1⊕y2

2 , then the
CAT (0) inequality implies

d

(
x,

y1 ⊕ y2
2

)2

≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2. (2.1)

Equality holds for the Euclidean metric. In fact (see [4, p. 163]), a geodesic metric
space is a CAT (0) space if and only if it satisfies inequality (2.1), (which is known
as the CN inequality of Bruhat and Tits [19]).

The following lemmas can be found in [12].

Lemma 2.5. Let X be a CAT (0) space. Then

d ((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z)

for all t ∈ [0, 1] and x, y, z ∈ X.

Lemma 2.6. Let X be a CAT (0) space. Then

d ((1− t)x⊕ ty, z)
2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2,

for all t ∈ [0, 1] and x, y, z ∈ X.

Now, we recall some definitions.
Let X be a complete CAT (0) space and {xn} be a bounded sequence in X.

For x ∈ X, set
r(x, {xn}) = lim sup

n→∞
d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf {r(x, {xn}) : x ∈ X}
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and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

Definition 2.7 (See [2, Definition 3.1]). A sequence {xn} in a CAT (0) space X
is said to be △−convergent to x ∈ X if x is the unique asymptotic center of {un},
for every subsequence {un} of {xn}. In this case, we write △− limn xn = x and
x is called the △−limit of {xn} .

It is known that in a CAT (0) space, A({xn}) consists of exactly one point
[10]. Also, every CAT (0) space has the Opial property, i.e., if {xn} is a sequence
in K and △− limn xn = x , then for each y( ̸= x) ∈ K,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

Lemma 2.8 ([2]). Every bounded sequence in a complete CAT (0) space always
has a △-convergent subsequence.

Lemma 2.9 ([11]). Let K be a closed convex subset of a complete CAT (0) space
and {xn} be a bounded sequence in K. Then, the asymptotic center of {xn} is in
K.

Lemma 2.10 ([15]). Let K be a closed convex subset of a complete CAT (0) space
X, and T : K → K be a generalized nonexpansive mapping. Then,

d(x, Ty) ≤ 3d(x, Tx) + d(x, y)

for all x, y ∈ K.

3 Main Results

Before proving the strong and △-convergence theorems, we need the following
lemmas.

Lemma 3.1. Let K be a nonempty, closed, convex subset of a complete CAT (0)
space X, T : K → K be a generalized nonexpansive mapping and {xn} be a
sequence defined by the iteration process (1.2). If F (T ) ̸= ∅, then limn→∞ d(xn, p)
exists for all p ∈ F (T ).

Proof. Set yn = (1−bn)xn⊕bnTxn, n ∈ N . Since T is a generalized nonexpansive
mapping and p ∈ F (T ), we have d(Tyn, p) ≤ d(yn, p) and d(Txn, p) ≤ d(xn, p) for
all n ∈ N. By combining these inequalities and Lemma 2.5, we get

d(xn+1, p) = d((1− an)Txn ⊕ anTyn, p)

≤ (1− an)d(Txn, p) + and(Tyn, p)

≤ (1− an)d(xn, p) + and(yn, p). (3.1)
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Also,

d(yn, p) = d((1− bn)xn ⊕ bnTxn, p)

≤ (1− bn)d(xn, p) + bnd(Txn, p)

≤ (1− bn)d(xn, p) + bnd(xn, p) (3.2)

= d(xn, p).

Using (3.1) and (3.2), we have

d(xn+1, p) ≤ d(xn, p).

This implies d(xn, p) is decreasing and bounded below, and so limn→∞ d(xn, p)
exists for all p ∈ F (T ). This completes the proof.

Lemma 3.2. Let X,K, T, {xn} satisfy the hypotheses of Lemma 3.1. Then, F (T )
is nonempty if and only if {xn} is bounded and limn→∞ d(xn, Txn) = 0.

Proof. Suppose that F (T ) is nonempty and p ∈ F (T ). Then, by Lemma 3.1,
limn→∞ d(xn, p) exists and {xn} is bounded. Set

lim
n→∞

d(xn, p) = c (3.3)

and yn = (1−bn)xn⊕bnTxn, for all n ≥ 1.We first prove that limn→∞ d(yn, p) = c.
By (3.1), we have

d(xn+1, p) ≤ (1− an) d(xn, p) + an d(yn, p).

This gives that

an d(xn, p) ≤ d(xn, p) + an d(yn, p)− d(xn+1, p)

or

d(xn, p) ≤ d(yn, p) +
1

an
[d(xn, p)− d(xn+1, p)]

≤ d(yn, p) +
1

a
[d(xn, p)− d(xn+1, p)] .

This implies that
c ≤ lim inf

n→∞
d(yn, p). (3.4)

By (3.2) and (3.3),
lim sup
n→∞

d(yn, p) ≤ c.

By combining this inequality and (3.4), we get

lim
n→∞

d(yn, p) = c. (3.5)
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Next, by Lemma 2.6,

d(yn, p)
2 = d((1− bn)xn ⊕ bnTxn, p)

2

≤ (1− bn)d(xn, p)
2 + bnd(Txn, p)

2 − bn(1− bn)d(xn, Txn)
2

≤ d(xn, p)
2 − bn(1− bn)d(xn, Txn)

2.

Thus
bn(1− bn)d(xn, Txn)

2 ≤ d(xn, p)
2 − d(yn, p)

2

so that

d(xn, Txn)
2 ≤ 1

bn(1− bn)

[
d(xn, p)

2 − d(yn, p)
2
]

≤ 1

a(1− b)

[
d(xn, p)

2 − d(yn, p)
2
]
.

Using (3.3) and (3.5), we get

lim sup
n→∞

d(xn, Txn) ≤ 0.

Hence,
lim

n→∞
d(xn, Txn) = 0.

Conversely, suppose that {xn} is bounded and limn→∞ d(xn, Txn) = 0. Let
A({xn}) = {x} . Then, x ∈ K, by Lemma 2.9. Since T is generalized nonex-
pansive, we have, by Lemma 2.10,

d(xn, Tx) ≤ 3d(xn, Txn) + d(xn, x),

which implies

lim sup
n→∞

d(xn, Tx) ≤ lim sup
n→∞

[3d(xn, Txn) + d(xn, x)]

= lim sup
n→∞

d(xn, x).

By the uniqueness of asymptotic centers, we get Tx = x. Therefore, x is a fixed
point of T. This completes the proof.

Now, we prove the △-convergence theorem of S-iteration process in CAT (0)
space.

Theorem 3.3. Let X,K, T, {xn} satisfy the hypotheses of Lemma 3.1 with F (T ) ̸=
∅. Then {xn} , △-converges to a fixed point of T.

Proof. Lemma 3.2 guarantees that the sequence {xn} is bounded and

lim
n→∞

d (Txn, xn) = 0.
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Let W△(xn) = ∪A({un}), where the union is taken over all subsequences {un}
of {xn} . We claim that W△(xn) ⊆ F (T ). Let u ∈ W△(xn). Then, there exists
a subsequence {un} of {xn} such that A({un}) = {u} . By Lemmas 2.8 and 2.9,
there exists a subsequence {vn} of {un} such that △− limn→∞ vn = v ∈ K. Since
limn→∞ d (vn, T vn) = 0 and T is generalized nonexpansive, then, by Lemma 2.10,

d(vn, T v) ≤ 3 d(vn, T vn) + d(vn, v).

By taking lim sup and using Opial property, we obtain v ∈ F (T ). By Lemma 3.1,
limn→∞ d (xn, v) exists. Now, we claim that u = v. Assume on contrary, that
u ̸= v. Then, by the uniquess of asymptotic centers, we have

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, u)

≤ lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, v)

= lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v),

a contradiction. Thus u = v ∈ F (T ) and W△(xn) ⊆ F (T ).
To show that {xn}, △−converges to a fixed point of T, we show that W△(xn)

consists of exactly one point. Let {un} be a subsequence of {xn} . By Lemmas 2.8
and 2.9, there exists a subsequence {vn} of {un} such that△−limn→∞ vn = v ∈ K.
Let A({un}) = {u} and A({xn}) = {x} . We have already seen that u = v and
v ∈ F (T ). Finally, we claim that x = v. If not, then existence limn→∞ d (xn, v)
and uniquess of asymptotic centers imply that

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v),

a contradiction and hence x = v ∈ F (T ). Therefore, W△(xn) = {x} .

Finally, we briefly discuss the strong convergence of S-iteration process in a
CAT (0) space setting.

We recall (see [20]), a mapping T : K → K is said to satisfy Condition (I)
if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(r) > 0 for all r > 0 such that

d(x, Tx) ≥ f(d(x, F (T ))) for all x ∈ K,

where d(x, F (T )) = infz∈F (T ) d(x, z).
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Theorem 3.4. Let X,K, {xn} satisfy the hypotheses of Lemma 3.1 and T : K →
K be a generalized nonexpansive mapping satisfying Condition (I) with F (T ) ̸= ∅.
Then, {xn} converges strongly to a fixed point of T.

Proof. By Lemma 3.1, limn→∞ d(xn, p) exists for all p ∈ F (T ). Let this limit be
c , where c ≥ 0. If c = 0, there is nothing to prove. Suppose that c > 0. Now,
d(xn+1, p) ≤ d(xn, p) gives

inf
p∈F (T )

d(xn+1, p) ≤ inf
p∈F (T )

d(xn, p),

which means that d(xn+1, F (T )) ≤ d(xn, F (T )) and so limn→∞ d(xn, F (T )) exists.
Also, by Lemma 3.2, limn→∞ d(xn, Txn) = 0. It follows from Condition (I) that

lim
n→∞

f (d (xn, F (T )) ≤ lim
n→∞

d(xn, Txn) = 0.

That is,

lim
n→∞

f (d (xn, F (T )) = 0.

Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f (0) = 0, f (t) > 0
for all t ∈ (0,∞), we have

lim
n→∞

d (xn, F (T )) = 0.

Next we show that {xn} is a Cauchy sequence in K. Let ε > 0 be arbitrarily
chosen. Since limn→∞ d (xn, F (T )) = 0, there exists a constant n0 such that for
all n ≥ n0, we have

d (xn, F (T )) <
ε

4
.

In particular, inf {d(xn0 , p) : p ∈ F (T )} < ε
4 . Thus there must exist p⋆ ∈ F (T )

such that

d(xn0 , p
⋆) <

ε

2
.

Now, for all m,n ≥ n0, we have

d(xn+m, xn) ≤ d(xn+m, p⋆) + d(xn, p
⋆)

≤ 2d(xn0 , p
⋆)

≤ 2
(ε
2

)
= ε.

Hence {xn} is a Cauchy sequence in a closed subset K of a complete CAT (0) space
X, therefore it must be convergent to a point in K. Let limn→∞ xn = q. Now,
limn→∞ d (xn, F (T )) = 0 gives that since T is quasi-nonexpansive, it is known by
[21] that F (T ) is always closed, so q ∈ F (T ). Therefore {xn} converges strongly
to a fixed point q of T . This completes the proof.
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Now we give the following theorem which has different hypothesis from
Theorem 3.4.

Theorem 3.5. Let X,K, T, {xn} satisfy the hypotheses of Lemma 3.1 with F (T ) ̸=
∅ and K be compact subset of a complete CAT (0) space X . Then, {xn} converges
strongly to a fixed point of T.

Proof. Lemma 3.2 guarentees that {xn} is bounded and limn→∞ d(Txn, xn) = 0.
Since K is compact, there exists a subsequence {xnk

} of {xn} such that xnk
→

z ∈ K. By Lemma 2.10, we have

d(xnk
, T z) ≤ 3 d(xnk

, Txnk
) + d(xnk

, z) for all k ∈ N.

Letting k → ∞, we have {xnk
} converges to Tz. This implies Tz = z, that is

z ∈ F (T ). By Lemma 3.1, we have limn→∞ d (xn, z) exists, thus z is the strong
limit of the sequence {xn}.

Acknowledgement : The authors are grateful to the referee for his/her careful
reading and valuable comments and suggestions which led to the present form of
the paper.
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