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Abstract : In this paper, based on two different approaches, some limit theorems
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1 Introduction

The concept of fuzzy random variable was developed by several authors as an
extension of random sets or set valued random variables e.g. [12], [21], and [22].
Over the last years, fuzzy random variable has been extensively applied in the
areas of probability and statistics and stochastic process. For some recent works
on this topic, see, for example, [4, 16, 17, 20, 11]. There are many authors who
have devoted their studies to limit theorems for fuzzy random variables. For the
purposes of this study, we review some works on this topic. Klement et al. [13]
have been established some limit theorems for independent identically distributed
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fuzzy random variables based on embedding theorem as well as certain probability
techniques in Banach space. Inoue [6] and Joo [7] obtained some strong laws
of large numbers for independent tight fuzzy random sets. Joo et al. [8] and
Joo [9] established a strong law of large numbers for stationary fuzzy random
variables and weighted sums of level-wise independent fuzzy random variables,
respectively. Hong and Kim [5] derived Marcinkiewcz type law of large numbers
for independent fuzzy random variables. Kim [14] obtained Kolmogorov’s strong
law of large numbers for sums of independent and level-wise identically distributed
fuzzy random variables. Also, Kim [15] derived a strong law of large numbers for
random upper continuous fuzzy sets. Based on a certain distance in the Banach
space, Li and Ogura [16] and Molchanov [18] established some strong laws of large
numbers for independent fuzzy random variable. Fu and Zhang [4] studied strong
laws of large numbers for arrays of rowwise independent compact sets and fuzzy
random sets. It should be mentioned that, although the concept of variance has
been found very convenient in studying limit theorems, but, as the authors know, it
has not been developed the limit theorems for fuzzy random variables based on the
concept of variance, except the work by Feng [2]. Based on a natural extension of
the concept of variance, he extended the Kolmogorov’s inequality to independent
fuzzy random variables and obtained some limit theorems. His method is a direct
application of classical methods in probability theory to fuzzy random variables.
As an application, Parchami et al. [20] obtained a consistent confidence interval
for fuzzy capability index. In this paper, using a certain metric on the space of
fuzzy numbers, we state and prove some limit theorems for independent fuzzy
random variables.
This paper is organized as follows. In Section 2, we consider some definitions,
lemmas and theorems that needed to prove our results. A weak convergence
theorem for an array of independent fuzzy random variables is obtained, in Section
3. Some strong convergence theorems for independent fuzzy random variables are
investigated based on two different approaches, in Section 4. Also, we present
some examples that satisfy the conditions which are needed for convergence of the
sequence of independent fuzzy random variables. A brief conclusion is given in
Section 5.

2 Preliminaries

In this section, we consider some elementary concepts of fuzzy set, fuzzy arith-
metic and fuzzy random variables, based on [3, 19] . Suppose that R is the real
line. Define E = {ũ : R → [0, 1]}, where ũ satisfies the following arguments:
(i) ũ is normal; (ii) ũ is convex fuzzy set; (iii) ũ is upper semicontinuous. For a
ũ ∈ E, [ũ]r = {x ∈ R|ũ(x) ≥ r, 0 < r ≤ 1} is called the r-level set of ũ.
We use the notations ⊕, ⊖ and ⊙, and furthermore we have
i) [ã⊕ b̃]r = [ã−(r) + b̃−(r), ã+(r) + b̃+(r)].
ii) If λ > 0 then [λ⊙ ã]r = [λã−(r), λã+(r)].
iii) If λ < 0 then [λ⊙ ã]r = [λã+(r), λã−(r)].
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iv) [ã⊖ b̃]r = [ã−(r)− b̃+(r), ã+(r)− b̃−(r)].
Let ũ, ṽ ∈ E, and set

dp(ũ, ṽ) = (

∫ 1

0

hp([ũ]r, [ṽ]r)dr)
1
p , 1 ≤ p <∞,

d∞(ũ, ṽ) = sup0<r≤1h([ũ]
r, [ṽ]r), where h is Hausdorff metric i.e.

h([ũ]r, [ṽ]r) = max{|u−(r)−v−(r)|, |u+(r)−v+(r)|}. Norm ||ũ||p of a fuzzy number
ũ ∈ E is defined by ||ũ||p = dp(ũ, 0̃), where 0̃ is the fuzzy number in E whose
membership function equals 1 at 0 and zero otherwise. The norm ||.||∞of ũ is
defined by ||ũ||∞ = d∞(ũ, 0̃).
The operation ⟨., .⟩ : E × E → [−∞,∞] is defined by

⟨ũ, ṽ⟩ =
∫ 1

0

(ũ−(r)ṽ−(r) + ũ+(r)ṽ+(r))dr.

If the indeterminacy of the form ∞−∞ arises in the Lebesgue integral, then we
say that ⟨ũ, ṽ⟩ does not exist. It is easy to see that the operation ⟨., .⟩ has the
following properties:

(i) ⟨ũ, ũ⟩ ≥ 0 and ⟨ũ, ũ⟩ = 0 ⇔ ũ = 0̃,

(ii) ⟨ũ, ṽ⟩ = ⟨ṽ, ũ⟩,
(iii) ⟨ũ+ ṽ, w̃⟩ = ⟨ũ, w̃⟩+ ⟨ṽ, w̃⟩,
(iv) ⟨λũ, ṽ⟩ = λ⟨ũ, ṽ⟩,
(v) |⟨ũ, ṽ⟩| <

√
⟨ũ, ũ⟩⟨ṽ, ṽ⟩.

For all ũ, ṽ ∈ E, if ⟨ũ, ũ⟩ < ∞ and ⟨ṽ, ṽ⟩ < ∞, then the property (v) implies that
⟨ũ, ṽ⟩ <∞. So, we can define

d∗(ũ, ṽ) =
√
⟨ũ, ũ⟩ − 2⟨ũ, ṽ⟩+ ⟨ṽ, ṽ⟩.

In fact, d∗ is a metric in {ũ ∈ E|⟨ũ, ũ⟩ <∞}.
Moreover, the norm ||ũ||∗ of fuzzy number ũ ∈ E is defined by ||ũ||∗ = d∗(ũ, 0̃).

Let (Ω,A, P ) be a complete probability space. A fuzzy random variable
(briefly: f.r.v.) is defined as a Borel measurable function X̃ : (Ω,A) → (E, d∞).
Let X̃ be a f.r.v. defined on the probability space (Ω,A, P ), then
[X̃]r = [X−(r), X+(r)], r ∈ (0, 1], is a random closed interval set, and X̃−(r) and
X̃+(r) are real valued random variables. A f.r.v. X̃ is called integrably bounded if
E||X̃||∞ <∞. The expectation EX̃ is defined as the unique fuzzy number which
satisfies the property [EX̃]r = E[X̃]r, 0 < r ≤ 1 [21, 25].

Definition 2.1. ([25]) Two f.r.v’s X̃ and Ỹ are called independent if two σ-fields
σ(X̃) = σ({X̃−(r), X̃+(r)|r ∈ [0, 1]}) and σ(Ỹ ) = σ({Ỹ −(r), Ỹ +(r)|r ∈ [0, 1]})
are independent.
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Definition 2.2. A finite collection of f.r.v.’s {X̃k, 1 ≤ k ≤ n} is said to be
independent if σ-fields σ({X̃−

k (r), X̃
+
k (r)|r ∈ [0, 1]}|1 ≤ k ≤ n) are independent.

An infinite sequence {X̃n, n ≥ 1} is called independent if every finite sub collection
of it is independent.

Definition 2.3. ([3]) Let X̃ and Ỹ be two f.r.v.’s in L2 (L2 = {X̃|X̃ is f.r.v. and
E||X̃||22 <∞}), then

Cov(X̃, Ỹ ) =
1

2

∫ 1

0

(Cov(X̃−(r), Ỹ −(r)) + Cov(X̃+(r), Ỹ +(r)))dr.

Specially, the variance of X̃ is defined by V ar(X̃) = Cov(X̃, X̃).

Theorem 2.4. ([3]) Let X̃ and Ỹ be two f.r.v.’s in L2 and ũ, ṽ ∈ E and λ, k ∈ R.
Then
i) Cov(X̃, Ỹ ) = 1

2 (E⟨X̃, Ỹ ⟩ − ⟨EX̃,EỸ ⟩)
ii) V ar(X̃) = 1

2Ed
2
∗(X̃, EX̃)

iii) Cov(λX̃ ⊕ ũ, kỸ ⊕ ṽ) = λkCov(X̃, Ỹ )
iv) V ar(λX̃ ⊕ u) = λ2V ar(X̃)
v) V ar(X̃ ⊕ Ỹ ) = V ar(X̃) + V ar(Ỹ ) + 2Cov(X̃, Ỹ )
vi) If X̃ and Ỹ are independent, then Cov(X̃, Ỹ ) = 0.

In order to establish strong and weak convergence, we need the following def-
initions.

Definition 2.5. ([26]) Let X̃ and X̃n be f.r.v.’s are defined on the same probability
space (Ω,A, P ). i) We say that {X̃n} converges to X̃ in probability with respect to
the metric d∗ if, for all ϵ > 0, limn→∞P (ω : d∗(X̃n(ω), X̃(ω)) > ϵ) = 0.
ii) We say that {X̃n} converges to X̃ almost surely (briefly: a.s.) with respect to
the metric d∗ if P (ω : limn→∞d∗(X̃n(ω), X̃(ω)) = 0) = 1.

Throughout this paper it is assumed that all of f.r.v.’s are defined on the
probability space (Ω,A, P ).

3 A weak convergence theorem for an array of
independent f.r.v.’s

In this section, based on Lemma 3.1, we establish a limit theorem for an array
of independent f.r.v.’s.

Lemma 3.1. ([10]) Let {X̃k, 1 ≤ k ≤ n} be independent f.r.v.’s with E||X̃k||r∗ <
∞ for k = 1, 2, ..., n and 1 ≤ r ≤ 2. Then,

E|||S̃n||∗ − E||S̃n||∗|r ≤ Dr

n∑
i=1

E||X̃i||r∗,
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where S̃n = ⊕ni=1X̃i and Dr is a positive constant depending only on r; if r = 2,
then it is possible to take D2 = 4.

The following theorem provides a weak convergence for f.r.v.’s as an extension
of Theorem 1 in [23].

Theorem 3.2. Let {X̃n,k; 1 ≤ k ≤ n, n ≥ 1} be an array of independent f.r.v.’s.
Suppose that there exists a nonnegative random variable X with EXr < ∞ for
some 0 < r < 1 such that for each n, k, P (||X̃n,k||∗ > λ) ≤ P (X > λ).
If {an,k; 1 ≤ k ≤ n, n ≥ 1} is an array of nonnegative real numbers such

that
∑n
k=1 a

r
n,k ≤ M for all n and maxkan,k → 0 as n → ∞, then S̃n =

⊕nk=1{an,k ⊙ X̃n,k} → 0̃ in probability with respect to the metric d∗.

Proof. Define Ỹn,k = an,k⊙ X̃n,kI{||an,k⊙ X̃n,k||∗ ≤ 1}, T̃n = ⊕nk=1Ỹn,k. It is easy

to see that ||S̃n||∗ ≤ d∗(S̃n, T̃n) + ||T̃n||∗. To do this, it suffices to show that
a) d∗(T̃n, S̃n) → 0, and b) ||T̃n||∗ → 0 in probability.
a) For each ϵ > 0, we have

P (d∗(S̃n, T̃n) > ϵ) = P (S̃n ̸= T̃n)

≤
n∑
k=1

P (||X̃n,k||∗ > a−1
n,k)

≤
n∑
k=1

P (X > a−1
n,k).

By using Theorem 1 in [23], we have
∑n
k=1 P (X > a−1

n,k) → 0 as n → ∞ and

consequently P (d∗(S̃n, T̃n) > ϵ) → 0 as n→ ∞.
b) It suffices to show that ||T̃n||∗ −E||T̃n||∗ → 0 in probability, and E||T̃n||∗ → 0.
By Markov’s inequality and Lemma 3.1, we can write

P (|||T̃n||∗ − E||T̃n||∗| > ϵ) ≤ E|||T̃n||∗ − E||T̃n||∗|2

ϵ2

≤
∑n
k=1E||Ỹn,k||2∗

ϵ2
.

It suffices to show that
∑n
k=1E||Ỹn,k||2∗ → 0 as n → ∞. By using integration by

parts, we obtain∫
[x<T ]

x2dP (||X̃n,k||∗ ≤ x) ≤ −T 2P (||X̃n,k||∗ > T )

+ 2

∫ T

0

xP (X > x)dx

≤ 2

∫ T

0

xP (X > x)dx.
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But, for sufficiently large n,

n∑
k=1

E||Ỹn,k||2∗ ≤
n∑
k=1

Ea2n,k||X̃n,k||2∗I{||an,k⊙X̃n,k||∗≤1}

=
n∑
k=1

a2n,k

∫
[x≤a−1

n,k]

x2dP (||X̃n,k||∗ ≤ x)

≤ 2

n∑
k=1

a2n,k

∫ a−1
n,k

0

xP (X > x)dx,

Theorem 1 in [23] implies that 2
∑n
k=1 a

2
n,k

∫ a−1
n,k

0 xP (X > x)dx → 0 as n → ∞.

Therefore
∑n
k=1E||Ỹn,k||2∗ → 0 as n→ ∞. Now, we show that E||T̃n||∗ → 0.

By sub additivity property of the norm ||.||∗, i.e. || ⊕ni=1 X̃i||∗ ≤
∑n
i=1 ||X̃i||∗, and

Theorem 1 in [23], we have

E||T̃n||∗ = E|| ⊕nk=1 Ỹn,k||∗

≤
n∑
k=1

an,kE||X̃n,k||∗I{||an,k⊙X̃n,k||∗≤1}

≤
n∑
k=1

arn,k{a1−rn,k

∫ a−1
n,k

0

xdP (||X̃n,k||∗ ≤ x)} → 0.

This completes the proof.

Example 3.3. Let {X̃n,k; 1 ≤ k ≤ n, n ≥ 1} be an array of independent f.r.v.’s
with the following membership function

µX̃n,k(ω)
(x) =



x− Yn,k(ω)

Yn,k(ω)
, Yn,k(ω) < x < 2Yn,k(ω),

1, x = 2Yn,k(ω),

3Yn,k(ω)− x

Yn,k(ω)
, 2Yn,k(ω) < x < 3Yn,k(ω),

0, otherwise,

where {Yn,k; 1 ≤ k ≤ n, n ≥ 1} is an array of nonnegative independent real valued

random variables. Note that ||X̃n,k||∗ =
√
78
3 Yn,k. Now, let X be a nonnegative

random variable with EXr < ∞ for some 0 < r < 1, such that for each n, k,

P (
√
78
3 Yn,k > λ) ≤ P (X > λ). If {an,k; 1 ≤ k ≤ n, n ≥ 1} is an array of

nonnegative real numbers such that
∑n
k=1 a

r
n,k ≤ M for all n and maxkan,k → 0

as n→ ∞, then, by Theorem 3.2, S̃n = ⊕nk=1{an,k⊙ X̃n,k} → 0̃ in probability with
respect to the metric d∗.
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4 Some strong convergence theorems for a se-
quence of independent f.r.v.’s

In this section, using two different approaches, we establish two strong con-
vergence theorems for independent f.r.v.’s. The first approach is based on Lemma
3.1 and second one is based on the concept of variance and Lemma 4.4.

Theorem 4.1. Let {X̃n} be a sequence of independent f.r.v.’s, {an} a sequence
of positive numbers with an ↑ ∞, and ψ a nonnegative even function such that

ψ(t)

|t|
↑, ψ(t)

t2
↓ as |t| ↑ . (4.1)

If

∞∑
n=1

n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

<∞, (4.2)

and

1

an

n∑
i=1

E||X̃i||∗ → 0, (4.3)

then, ⊕ni=1{a−1
n ⊙ X̃i} converges to 0̃ a.s. with respect to the metric d∗.

Proof. For all n ≥ 1 and 1 ≤ i ≤ n, set

Ỹn,i = X̃iI{||X̃i||∗ ≤ an} and Z̃n,i = X̃iI{||X̃i||∗ > an}.

It is easy to see that
||⊕n

i=1X̃i||∗
an

≤ d∗(⊕n
i=1Ỹn,i,⊕n

i=1X̃i)
an

+
||⊕n

i=1Ỹn,i||∗
an

. Then, it suffices

to prove that
d∗(⊕n

i=1Ỹn,i,⊕n
i=1X̃i)

an
→ 0 a.s. and

||⊕n
i=1Ỹn,i||∗
an

→ 0 a.s. By using (4.1)
and (4.2), we can write

∞∑
n=1

P (
d∗(⊕ni=1Ỹn,i,⊕ni=1X̃i)

an
> ϵ) ≤

∞∑
n=1

n∑
i=1

P (||X̃i||∗ > an)

≤
∞∑
n=1

n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

I{||X̃i||∗ > an}

≤
∞∑
n=1

n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

<∞.

Now, Borel Cantelli Lemma implies that
d∗(⊕n

i=1Ỹn,i,⊕n
i=1X̃i)

an
→ 0 a.s. To show

||⊕n
i=1Ỹn,i||∗
an

→ 0 a.s., it is sufficient to prove that
||⊕n

i=1Ỹn,i||∗−E||⊕n
i=1Ỹn,i||∗

an
→ 0
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a.s. and
E||⊕n

i=1Ỹn,i||∗
an

→ 0. By Lemma 3.1, and the relations (4.1) and (4.2), we
have

∞∑
n=1

P (| || ⊕
n
i=1 Ỹn,i||∗ − E|| ⊕ni=1 Ỹn,i||∗

an
| > ϵ) ≤

∞∑
n=1

E||| ⊕ni=1 Ỹn,i||∗ − E|| ⊕ni=1 Ỹn,i||∗|2

a2nϵ
2

≤ 4

ϵ2

∞∑
n=1

n∑
i=1

E||Ỹn,i||2∗
a2n

≤ 4

ϵ2

∞∑
n=1

n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

<∞.

Then, Borel Cantelli Lemma implies that
||⊕n

i=1Ỹn,i||∗−E||⊕n
i=1Ỹn,i||∗

an
→ 0 a.s. It

remains to show that
E||⊕n

i=1Ỹn,i||∗
an

→ 0. By sub additivity of the norm ||.||∗, and
using the relations (4.1) and (4.2), we have

E|| ⊕ni=1 Z̃n,i||∗
an

≤
∑n
i=1E||Z̃n,i||∗

an

≤
n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

→ 0. (4.4)

Now, the relations (4.4) and (4.3) imply that
E||⊕n

i=1Ỹn,i||∗
an

→ 0. This completes
the proof.

By invoking the similar method, Sung [24] obtained Chung-Teicher type strong
law of large numbers for a sequence Banach space valued random variables.

Remark 4.2. The above theorem is an extension of Theorem 5.4.1 in [1] to the
case of f.r.v.’s.

Example 4.3. Let ũ be a fuzzy number with ||ũ||∗ = 1 for instance a fuzzy number
with the following membership function

ũ(x) = 1−
√
6

3
|x|, −

√
6

2
≤ x ≤

√
6

2
,

,ψ(x) = |x|p, 1 ≤ p ≤ 2 and an = nβ and βp > 3 and β > 1. Let {X̃n} be a
sequence of independent f.r.v.’s such that P (X̃n = nũ) = 1

n , P (X̃n = 0̃) = 1− 1
n .

Then,
∑∞
n=1

∑n
i=1E

ψ(||X̃i||∗)
ψ(an)

< ∞ and, therefore, by Theorem 4.1, ⊕ni=1{a−1
n ⊙

X̃i} converges to 0̃ a.s. with respect to the metric d∗.

To establish the next theorem, in which we employ a different approach, we
need the following lemma.

Lemma 4.4. If X̃ is a f.r.v., then

||EX̃||2∗ ≤ E||X̃||2∗.
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Proof. Since [EX̃]r = E[X̃]r, ∀r ∈ (0, 1] [21], by applying Jensen’s inequality and
Fubini’s theorem, we have

||EX̃||2∗ =

∫ 1

0

{(EX̃−(r))2 + (EX̃+(r))2}dr

≤
∫ 1

0

{E(X̃−(r))2 + E(X̃+(r))2}dr (since φ(x) = x2 is a convex function)

= E

∫ 1

0

{(X̃−(r))2 + (X̃+(r))2}dr = E||X̃||2∗.

The following theorem is an extension of strong law of large numbers to inde-
pendent f.r.v.’s, by using the concept of variance.

Theorem 4.5. Let {X̃n} be a sequence of independent f.r.v.’s, {an} a sequence
of positive numbers with an ↑ ∞, and ψ a nonnegative even function such that

ψ(t)

|t|
↑, ψ(t)

t2
↓ as |t| ↑ . (4.5)

If

∞∑
n=1

n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

<∞, (4.6)

and

n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

= o(n−1). (4.7)

then ⊕ni=1{a−1
n ⊙ X̃i} converges to 0̃ a.s. with respect to the metric d∗.

Proof. For all n ≥ 1 and 1 ≤ i ≤ n, set Ỹn,i = X̃iI{||X̃i||∗ < an}. It is easy

to see that
||⊕n

i=1X̃i||∗
an

≤ d∗(⊕n
i=1Ỹn,i,⊕n

i=1X̃i)
an

+
||⊕n

i=1Ỹn,i||∗
an

. Then, it is sufficient

to show that
d∗(⊕n

i=1Ỹn,i,⊕n
i=1X̃i)

an
→ 0 and

||⊕n
i=1Ỹn,i||∗
an

→ 0 a.s. By invoking
(4.5) and (4.6) and using a similar way to the proof of Theorem 4.1, we have
d∗(⊕n

i=1Ỹn,i,⊕n
i=1X̃i)

an
→ 0 a.s. It remains to prove that

||⊕n
i=1Ỹn,i||∗
an

→ 0 a.s. It is

easy to see that
||⊕n

i=1Ỹn,i||∗
an

≤ d∗(⊕n
i=1Ỹn,i,⊕n

i=1EỸn,i)
an

+
||⊕n

i=1EỸn,i||∗
an

. It suffices to

show that
d∗(⊕n

i=1Ỹn,i,⊕n
i=1EỸn,i)

an
→ 0 a.s. and

||⊕n
i=1EỸn,i||∗

an
→ 0. By Markov’s
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inequality, (4.5) and (4.6), we have

n∑
i=1

P (
d∗(⊕ni=1Ỹn,i,⊕ni=1EỸn,i)

an
> ϵ) ≤

∞∑
n=1

n∑
i=1

2
V ar(Ỹn,i)

ϵ2a2n

≤
∞∑
n=1

n∑
i=1

2

ϵ2
E
ψ(||X̃i||∗)
ψ(an)

I{||X̃i||∗ ≤ an}

≤ 2

ϵ2

∞∑
n=1

n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

<∞.

Then Borel Cantelli Lemma implies that
d∗(⊕n

i=1Ỹn,i,⊕n
i=1EỸn,i)

an
→ 0 a.s. Also, by

sub additivity property of the norm ||.||∗ and Lemma 4.4

|| ⊕ni=1 EỸn,i||∗
an

≤
n∑
i=1

||EỸn,i||∗
an

≤
n∑
i=1

a−1
n E

1
2 ||Ỹn,i||2∗.

It suffices to show that
∑n
i=1 a

−1
n E

1
2 ||Ỹn,i||2∗ converges to 0. Recall the standard

l2 inequality

(
1

n

n∑
i=1

xi)
2 ≤ 1

n

n∑
i=1

x2i , ∀xi ∈ R. (4.8)

Now, using (4.5), (4.7), and (4.8), we can write

{
n∑
i=1

a−1
n E

1
2 ||Ỹn,i||2∗}2 ≤ n

n∑
i=1

a−2
n E||Ỹn,i||2∗

= n
n∑
i=1

a−2
n E||X̃i||2∗I{||X̃i||∗ ≤ an}

≤ n
n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

I{||X̃i||∗ ≤ an}

≤ n
n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

→ 0.

This completes the proof.

Remark 4.6. Note that the conditions of Theorems 4.1 and 4.5 are different.
The condition (3) of Theorem 4.1 is an alternative to condition (7) of Theorem
4.5. Of course, none of the two conditions do not imply another one. It is worth
mentioning that the approach used in Theorem 4.5 is a novel approach, and has
not been used until now.
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5 Conclusion

By using a certain metric on the space of fuzzy numbers and a definition of
the variance for f.r.v.’s, some limit theorems for independent f.r.v.’s were proved.
Two different approaches are studied to prove such limit theorems. The second
approach, which is based on the concept of variance, is a novel approach. From
a technical point of view, we can generalize the classical probabilistic results to
f.r.v.’s based on the concept of variance, instead of using mathematical methods.
The study of limit theorems for dependent f.r.v.’s , specially weak and strong laws
of large numbers, for such random variables is a potential work for future research.
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