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1 Introduction

Let f(z) =
∑∞

n=0 anzn be an entire function and M(r, f) = max|z|=r |f(z)|
be its maximum modulus. The growth of f(z) is measured in terms of its order ρ
and type τ defined as under

lim sup
r→∞

ln ln M(r, f)
ln r

= ρ, (1.1)

lim sup
r→∞

ln M(r, f)
rρ

= τ, (1.2)

for 0 < ρ < ∞. Various workers have given different characterizations for entire
functions of fast growth (ρ = ∞). M. N. Seremeta [5] defined the generalized order
and generalized type with the help of general functions as follows.

Let Lo denote the class of functions h satisfying the following conditions

(i) h(x) is defined on [a,∞) and is positive, strictly increasing, differentiable
and tends to ∞ as x →∞,

(ii)

lim
x→∞

h{(1 + 1/ψ(x))x}
h(x)

= 1,

for every function ψ(x) such that ψ(x) →∞ as x →∞.



258 Thai J. Math. 4(2006)/ R. Ganti and G. S. Srivastava

Let Λ denote the class of functions h satisfying condition (i) and

lim
x→∞

h(cx)
h(x)

= 1

for every c > 0, that is, h(x) is slowly increasing.
For the entire function f(z) and functions α(x) ∈ Λ, β(x) ∈ Lo, the generalized

order of an entire function in terms of maximum modulus is defined as

ρ(α, β, f) = lim sup
r →∞

α[lnM(r, f)]
β(ln r)

. (1.3)

Further, for α(x) ∈ Lo, β−1(x) ∈ Lo, γ(x) ∈ Lo, generalized type of an entire
function f of finite generalized order ρ is defined as

τ(α, β, f) = lim sup
r →∞

α[lnM(r, f)]
β[(γ(r))ρ]

(1.4)

where 0 < ρ < ∞ is a fixed number.
Let f(z1, z2, . . . , zn) be an entire function, z = (z1, z2, . . . , zn) ∈ Cn. Let G

be a full region in Rn
+ (Positive hyper octant). Let GR ⊂ Cn denote the region

obtained from G by a similarity transformation about the origin, with ratio of
similitude R. Let dk(G) = supz∈G |z|k, where |z|k = |z1|k1 |z2|k2 . . . |zn|kn , and let
∂G denote the boundary of the region G. Let

f(z) = f(z1, z2, . . . , zn) =
∞∑

k1,k2,...,kn=0

ak1...kn zk1
1 . . . zkn

n =
∞∑

‖k‖=0

ak zk,

‖k‖ = k1 + k2 + · · · + kn, be the power series expansion of the function f(z).
Let Mf,G(R) = maxz ∈ GR

|f(z)|. To characterize the growth of f, order(ρG) and
type (σG) of f are defined as [2]

ρG = lim sup
R →∞

ln ln Mf,G(R)
ln R

,

σG = lim sup
R →∞

ln Mf,G(R)
RρG

.

For the entire function, f(z) =
∑∞
‖k‖=0 ak zk, A. A. Gol’dberg [3, Th .1]

obtained the order and type in terms of the coefficients of its Taylor expansion as

ρG = lim sup
‖k‖ → ∞

‖k‖ ln ‖k‖
− ln |ak| . (1.5)

(e ρG σG)1/ρG = lim sup
‖k‖ → ∞

{
‖k‖1/ρG [|ak| dk(G)]1/‖k‖

}
, (0 < ρG < ∞)

(1.6)
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where dk(G) = max
r ∈ G

rk; rk = rk1
1 rk2

2 . . . rkn
n .

For an entire function of several complex variables f(z) =
∑∞
‖k‖=0 ak zk, and

functions α(x) ∈ Λ, β(x) ∈ Lo, Seremeta [5, Th .1’] proved that

ρ = lim sup
R→∞

α[lnMf,G(R)]
β(ln R)

= lim sup
‖k‖→∞

α(‖k‖)
β[− 1

‖k‖ ln (|ak| dk(G))]
. (1.7)

Further, for α(x) ∈ Lo, β−1(x) ∈ Lo, γ(x) ∈ Lo, Seremeta [5, Th .2’] proved that

σ = lim sup
R→∞

α[ln Mf,G(R)]
β[(γ(R))ρ]

= lim sup
‖k‖→∞

α(‖k‖ρ )

β[(γ{e1/ρ[|ak| dk(G)]−1/‖k‖})ρ]
(1.8)

where 0 < ρ < ∞ is a fixed number.
For the entire function f(z), we define

‖f‖Lp =
{

1
A

∫ ∫

z ∈G

|f(z)|p dσ1dσ2 . . . dσn

}1/p

< ∞,

where z = (z1, z2, . . . , zn), dσj = dxj dyj , zj = xj + iyj , j = 1, 2, ..., n.
and A is the area of G.

Let Pm =
{

q : q =
∑
‖k‖≤m ak zk

}
be the class of polynomials of degree at most

m. Then we define error of an entire function f on a region G as

E‖k‖(f) = E‖k‖(f,G) = inf
{‖f − q‖Lp : q ∈ P‖k‖

}
, p > 0.

To the best of our knowledge, polynomial approximation and growth charac-
teristics for entire functions of several complex variables on a full region G in Rn

+

have not been obtained so far. Similarly, the characterization of generalized order
and generalized type for approximating entire functions in a region in terms of
approximation errors have not been studied so far.

In this paper, we have made an attempt to bridge this gap. We have charac-
terized the generalized order and generalized type of the entire functions of several
complex variables in terms of the approximation errors.

Before proving main results we state a lemma.

Lemma 1.1 Let H(z) =
∑
‖k‖=m ak zk be a polynomial of degree m, where

‖k‖ = m = k1 + k2 + ... + kn. Let MH,G(1) = maxz ∈ G |H(z)|. Then

1 ≤ MH,G(1) max
‖k‖ = m

{|ak| dk(G)} ≤ (m + 1)n.

The result can be obtained on the lines similar to those used by A. A. Gol’dberg
[3].
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2 Main Results

First we prove the following

Theorem 2.1 Let α(x) ∈ Lo, and β(x) ∈ Λ. Set F (x; c) = β−1[c α(x)]. If
dF (x; c)/d ln x = O(1) as x → ∞ for all c, 0 < c < ∞, then

lim sup
R →∞

α[ln Mf,G(R)]
β (lnR)

= lim sup
‖k‖ → ∞

α(‖k‖)
β(− 1

‖k‖ ln (E‖k‖(f)dk(G)))
.

Proof. Let f(z) =
∑∞
‖k‖=0 ak zk be an entire function and q =

∑
‖k‖≤m ak zk

be the partial sum of f . Therefore from the definition of error, we have

E‖k‖(f) ≤ ‖f − q‖Lp = ‖
∞∑

‖j‖=‖k‖+1

aj zj‖Lp ≤
∞∑

‖j‖=‖k‖+1

|aj | rj , (2.1)

where r is a fixed number and r ∈ (1,∞). From (1.7), we have

|ak|dk(G) ≤ e−‖k‖ F (‖k‖; 1ρ ).

By using above inequality and (2.1), we get

E‖k‖(f) ≤ 1
dk(G)

∞∑

‖j‖=‖k‖+1

e−‖j‖ F (‖j‖; 1ρ ) |z|j

≤ 1
dk(G)

e−(‖k‖+1) F (‖k‖+1; 1ρ ) r‖k‖+1

[
1− r

eF (‖k‖+1; 1ρ )

]−1

.

By setting r = 1 + 1
‖k‖ in the above inequality, we get

E‖k‖(f) dk(G) ≤ e−(‖k‖+1) F ((‖k‖+1); 1ρ ) (1 +
1
‖k‖ )(‖k‖+1)

[
1−

(1 + 1
‖k‖ )

e(‖k‖+1) F ((‖k‖+1); 1ρ )

]−1

.

As ‖k‖ → ∞, the above inequality becomes

1
E‖k‖(f) dk(G)

≥ O(1) e(‖k‖+1) F ((‖k‖+1); 1ρ )−1.

− ln E‖k‖(f) dk(G) ≥ (‖k‖+ 1) F ((‖k‖+ 1);
1
ρ
) + O(1)

≥ (‖k‖+ 1) β−1

[
1
ρ

α(‖k‖+ 1)
]

+ O(1).

Now proceeding to limits and since α(x) ∈ Lo, and β(x) ∈ Λ, we obtain

lim sup
‖k‖ → ∞

α(‖k‖)
β(− 1

‖k‖ ln (E‖k‖(f)dk(G)))
≤ ρ. (2.2)
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Conversely, let

lim sup
‖k‖ → ∞

α(‖k‖)
β(− 1

‖k‖ ln (E‖k‖(f) dk(G)))
= η.

Suppose η < ∞. Then for any ε > 0 there exists N ′ such that for all k with
‖k‖ = m > N ′, we have

E‖k‖(f) dk(G) ≤ exp {−‖k‖F (‖k‖ ; 1/η)} (2.3)

where η = η + ε. The inequality

‖k‖
√

R‖k‖ E‖k‖ dk(G) ≤ R e−F (‖k‖ ; 1/η) ≤ 1
2

(2.4)

is fulfilled beginning with some ‖k‖ = m = m(R) = E[α−1[η β(lnR + ln 2)]] ,
where E[Q] denotes the integer part of Q. Then

∞∑

‖k‖ = m(R)+1

E‖k‖(f) dk(G) R‖k‖ ≤
∞∑

‖k‖ = m(R)+1

1
2‖k‖

≤ 1. (2.5)

Now

Mf,G(R) ≤
∞∑

‖k‖ = 0

E‖k‖(f) dk(G) R‖k‖ =
m0∑

‖k‖ = 0

E‖k‖(f) dk(G) R‖k‖ +

m1(R)∑

‖k‖ = m0+1

E‖k‖(f) dk(G) R‖k‖ +
∞∑

‖k‖ = m1(R)+1

E‖k‖(f) dk(G) R‖k‖. (2.6)

By applying the lemma and (2.5), the above inequality becomes

Mf,G(R) ≤ (1 + ‖k‖)n + m1(R) max
m0 ≤ ‖k‖ ≤m1(R)

(Ek dk(G)R‖k‖) +
∑

2−‖k‖.

From (2.4), we have

2 R ≤ exp {F (‖k‖ ; 1/η)}.

Now, we express k in terms of R. Thus

ln 2 + ln R ≤ F (‖k‖ ; 1/η) = β−1[
1
η

α(‖k‖)]

where m1(R) = m(R) + 1, and m0 = max {N ′ , m1(R)}. Now

max
m0 ≤ ‖k‖ ≤ m1(R)

(E‖k‖(f) R‖k‖) ≤ max
m0 ≤ ‖k‖ ≤ m1(R)

ψ(‖k‖)

≤ exp {A α−1[η β(ln R + A)]}
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where ψ(‖k‖) = R‖k‖ exp {−‖k‖F (‖k‖ ; 1/η)}. From (2.6), we have

Mf,G(R)(1 + o(1)) ≤ exp {(A + o(1)) α−1[η β(ln R + A)]}.

Then we have

α[(A + o(1))−1 ln Mf,G(R)]
β(ln R + A)

≤ η = η + ε.

Now proceeding to limits and using the properties of α(x) and β(x), since ε is
arbitrary, we obtain

ρ = lim sup
R →∞

α(ln Mf,G(R))
β(ln R)

≤ η. (2.7)

From (2.2) and (2.7), we obtain the required result. ¤

Now we prove

Theorem 2.2 Let α(x), β−1(x) and γ(x) ∈ L0. Let ρ be a fixed number, 0 < ρ <
∞. Set F (x; σ, ρ) = γ−1{[β−1(σ α(x))]1/ρ}. Suppose that for all σ, 0 < σ < ∞,
F satisfies

d ln F (xσ, ρ)/d ln x = O(1) asx →∞;

then the following equation holds:

lim sup
R→∞

α(lnMf,G(R))
β[(γ(R))ρ]

= lim sup
‖k‖→∞

α(‖k‖ρ )

β{[γ(e1/ρ[E‖k‖(f) dk(G)]−1/‖k‖)]ρ} .

Proof. From (1.8), we have

|ak| dk(G) ≤ e‖k‖/ρ

[
F (
‖k‖
ρ

;
1
σ

, ρ)
]−‖k‖

.

By using above inequality and (2.1), we get

E‖k‖(f) ≤ 1
dk(G)

(
r e1/ρ

[F (‖k‖+1
ρ ; 1

σ , ρ)]

)(‖k‖+1) [
1− r e1/ρ

[F (‖k‖+1
ρ ; 1

σ , ρ)]

]−1

.

By setting r = 1 + 1
‖k‖ in the above inequality, we get

E‖k‖(f) dk(G) ≤
(

(1 + 1
‖k‖ ) e1/ρ

[F (‖k‖+1
ρ ; 1

σ , ρ)]

)(‖k‖+1) [
1−

(1 + 1
‖k‖ ) e1/ρ

[F (‖k‖+1
ρ ; 1

σ , ρ)]

]−1

.
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As ‖k‖ → ∞, the above inequality becomes

e1/ρ [E‖k‖(f) dk(G)]−
1
‖k‖ ≥ O(1) γ−1

{[
β−1

(
1
σ

α

(‖k‖
ρ

))]1/ρ
}

.

Now proceeding to limits and since α(x), β−1(x), γ(x) ∈ L0, we obtain

lim sup
‖k‖ → ∞

α(‖k‖ρ )

β{[γ(e1/ρ {E‖k‖(f) dk(G)}−1/‖k‖)]ρ} ≤ σ. (2.8)

Conversely, let

lim sup
‖k‖ → ∞

α(‖k‖ρ )

β{[γ(e1/ρ[E‖k‖(f) dk(G)]−1/‖k‖)]ρ} = τ.

Suppose τ < ∞. Then for every ε > 0 there exists M ′ such that for all k with
‖k‖ = m ≥ M ′, we have

E‖k‖(f) dk(G) ≤
exp (‖k‖ρ )

[F (‖k‖/ρ ; 1/τ , ρ)]‖k‖

where τ = τ + ε. The inequality

‖k‖
√

E‖k‖(f) dk(G) R‖k‖ ≤ e1/ρ R

F (‖k‖/ρ ; 1/τ , ρ)
≤ 1

2
(2.9)

is fulfilled for all ‖k‖ beginning with some

‖k‖ = m = m(R) = E[ρ α−1{τ β [(γ (2e1/ρ R))ρ]}].

Then ∞∑

‖k‖=m(R)+1

E‖k‖(f) dk(G) R‖k‖ ≤
∞∑

‖k‖=m(R)+1

1
2‖k‖

≤ 1. (2.10)

Hence

Mf,G(R) ≤
∞∑

‖k‖ = 0

E‖k‖ dk(G) R‖k‖ =
m0∑

‖k‖ = 0

E‖k‖(f) dk(G) R‖k‖ +

m1(R)∑

‖k‖ = m0+1

E‖k‖(f) dk(G) R‖k‖ +
∞∑

‖k‖ = m1(R)+1

E‖k‖(f) dk(G) R‖k‖ (2.11)

By applying the lemma and (2.10), the above inequality becomes

Mf,G(R) ≤ (1 + ‖k‖)n + m1(R) max
m0 ≤ ‖k‖ ≤m1(R)

(E‖k‖(f) dk(G)R‖k‖) +
∑

2−‖k‖,
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where m1(R) = m(R) + 1, and m0 = max {M ′ , m1(R)}. Hence

max
m0 ≤ ‖k‖ ≤ m1(R)

(E‖k‖(f) R‖k‖) ≤ max
m0 ≤ ‖k‖ ≤ m1(R)

χ(‖k‖)

≤ exp {A ρ α−1{τ β [(γ(Re
1
ρ −A))ρ]}},

where
χ(‖k‖) = (R e1/ρ)‖k‖ [F (‖k‖/ρ; 1/τ , ρ)]−‖k‖.

From (2.11)

Mf,G(R) ≤ exp {(A ρ + o(1)) α−1{τ β [(γ (R e
1
ρ +A))ρ]}},

or

α
[
(A ρ + o(1))−1 ln Mf,G(R)

]

β [(γ (R e
1
ρ +A))ρ]

≤ τ = τ + ε.

Since α(x) ∈ L0, β−1(x) ∈ L0, γ(x) ∈ L0, proceeding to limits and since ε is
arbitrary, we obtain

σ = lim sup
R →∞

α(lnMf,G(R))
β[(γ(R))ρ]

≤ τ = lim sup
‖k‖ → ∞

α(‖k‖ρ )

β{[γ(e1/ρ[E‖k‖(f) dk(G)]−1/‖k‖)]ρ} .

(2.12)
From (2.8) and (2.12), we obtain the required result. ¤
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