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1 Introduction

In [1], Tanno classified connected almost contact metric manifolds whose au-
tomorphism groups possess the maximum dimension. For such a manifold M , the
sectional curvature of plane sections containing ξ is a contact, say c. If c > 0, M
is homogeneous Sasakian manifold of constant sectional curvature. If c = 0, M is
the product of a line or circle with a Kaehler manifold of constant holomorphic
sectional curvature. If c < 0, M is a warped product space R ×f Cn. In 1971,
Kenmotsu studied a class of contact Riemannian manifolds satisfying some special
conditions [2]. We call it Kenmotsu manifold. Recently, Kenmotsu manifolds have
been studied by many authors such as De and Pathak [3], Jun et al. [4], Prakasha
[5] and many others.

In this paper, we studied the properties of Kenmotsu manifold equipped with
conharmonic curvature tensor. We prove that conharmonically flat Kenmotsu
manifold is an η-Einstein manifold. Also, we study Kenmotsu manifolds in with
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C̄(ξ,X).R = 0, where C̄ is conharmonic curvature tensor. In this case, we show
that manifold is locally isometric to the Hyperbolic Hn(−1). Then we study
Kenmotsu manifold with the irrotational conharmonic curvature tensor. Also, we
study Kenmotsu manifolds in with C̃(ξ, U).C̄ = 0, where C̃ is concircular curvature
tensor. In this case, we show that a Kenmotsu manifold is an η-Einstein manifold.
Next, we prove that φ-conharmonically flat Kenmotsu manifold is an η-Einstein
manifold. Moreover we show that a Kenmotsu manifold satisfying C(ξ, Y ).C̄ = 0,
is an η-Einstein manifold, where C is Weyl conformal curvature tensor. Finally we
investigate conharmonic φ-recurrent and locally conharmonic φ-symmetric Ken-
motsu manifold.

2 Preliminaries

If on an add dimensional differentiable manifold Mn, n = 2m + 1, of differ-
entiability class Cr+1, there exist a vector real linear function φ, a 1-form η, the
associated vector field ξ and the Riemannian metric g satisfying

φ2 = −I + η ⊗ ξ, (2.1)

η(φX) = 0, (2.2)

g(φX,φY ) = g(X,Y )− η(X)η(Y ), (2.3)

for all vector fields X and Y , then (Mn, g) is said to be an almost contact metric
manifold and structure (φ, η, ξ, g), is called an almost contact metric structure to
Mn [1, 2, 5]. In view of above relations we get

η(ξ) = 1, g(X, ξ) = η(X), φ(ξ) = 0. (2.4)

If moreover,
(∇Xφ)Y = −g(X,φY )ξ − η(Y )φX, (2.5)

and
∇Xξ = X − η(X)ξ, (2.6)

for all vector fieldsX, Y . Where∇ denotes the operator of covariant differentiation
with respect to the Riemannian metric g, then (Mn, φ, ξ, η, g) is called a Kenmotsu
manifold [6].

Also, the following relations hold in Kenmotsu manifold [3–5, 7–10]:

g(R(X,Y )Z, ξ) = η(R(X,Y )Z)

= g(X,Z)η(Y )− g(Y, Z)η(X), (2.7)

R(X,Y )ξ = η(X)Y − η(Y )X, (2.8)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (2.9)

R(ξ,X)ξ = X − η(X)ξ, (2.10)

S(X, ξ) = −(n− 1)η(X), (2.11)

Qξ = −(n− 1)ξ, (2.12)

S(φX,φY ) = S(X,Y ) + (n− 1)η(X)η(Y ), (2.13)
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for any vector fields X, Y , Z, where R(X,Y )Z is the curvature tensor, and S is
the Ricci tensor.

A Kenmotsu manifold (Mn, g) is said to be η-Einstein if its Ricci tensor S is
of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (2.14)

for any vector fields X, Y where a, b are functions on (Mn, g). If b = 0, then
η-Einstein manifold becomes to Einstein manifold. Kenmotsu [2], proved that if
(Mn, g) is an η-Einstein manifold, then a+ b = −(n− 1).

In view of (2.4) and (2.14), we have

QX = aX + bη(X)ξ, (2.15)

where Q is the Ricci operator defined by

S(X,Y ) = g(QX,Y ). (2.16)

Again, contracting (2.15) with respect to X and using (2.4), we have

r = na+ b, (2.17)

where r is the scalar curvature.
Now, substituting X = ξ and Y = ξ in (2.14) and then using (2.4) and (2.9),

we obtain
a+ b = −(n− 1). (2.18)

Equations (2.17) and (2.18) gives

a =

(
r

n− 1
+ 1

)
, b = −

(
r

n− 1
+ n

)
. (2.19)

Definition 2.1. The conharmonic curvature tensor C̄ of type (1, 3) on Kenmotsu
manifold M of dimensional n is defined by

C̄(X,Y )Z = R(X,Y )Z − 1

n− 2
[S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY ], (2.20)

for any vector fields X, Y , Z, on M . The manifold is said to be conharmonically
flat if C̄ vanishes identically on M .

Definition 2.2. The concircular curvature tensor C̃ on Kenmotsu manifold M
of dimensional n is defined by

C̃(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ], (2.21)

for any vector fields X, Y , Z, where R is the curvature tensor and r is the scalar
curvature.
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Definition 2.3. The Weyl conformal curvature tensor C on Kenmotsu manifold
M of dimensional n is defined b

C(X,Y )Z = R(X,Y )Z − 1

n− 2
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY ] +
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ], (2.22)

for all vector fields X, Y , Z on M .

3 Main Results

In this section, we prove the following theorems:

Theorem 3.1. An n-dimensional conharmonically flat Kenmotsu manifold is an
η-Einstein manifold.

Proof. If C̄ = 0 then we get from (2.20) that

R(X,Y )Z =
1

n− 2
[S(Y,Z)X − S(X,Z)Y (3.1)

+ g(Y,Z)QX − g(X,Z)QY ].

Putting Z = ξ in (3.1) and using (2.4), (2.8) and (2.11) we obtain

η(X)Y − η(Y )X =
1

n− 2
[−(n− 1)η(Y )X + (n− 1)η(X)Y (3.2)

+ η(Y )QX − η(X)QY ].

Taking Y = ξ in (3.2) and using (2.4) we get

η(X)ξ −X =
1

n− 2
[−(n− 1)X + (n− 1)η(X)ξ +QX + (n− 1)η(X)ξ]. (3.3)

Therefore with simplify of the above equation we get

QX = X − nη(X)ξ. (3.4)

Similarly, We obtain

QY = Y − nη(Y )ξ. (3.5)

Now, putting (3.4) and (3.5) in (3.1) we obtain

R(X,Y )Z =
1

n− 2
[S(Y,Z)X − S(X,Z)Y + g(Y, Z)X (3.6)

− ng(Y, Z)η(X)ξ − g(X,Z)Y + ng(X,Z)η(Y )ξ],
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putting X = ξ and using (2.9) and (2.11) we get

η(Z)Y − g(Y, Z)ξ =
1

n− 2
[S(Y,Z)ξ + (n− 1)η(Z)Y + g(Y, Z)ξ

− ng(Y, Z)ξ − η(Z)Y + nη(Z)η(Y )ξ].

With simplify of the above equation we obtain

S(Y,Z) = g(Y,Z)− nη(Y )η(Z).

Therefore, in view of (2.14), manifold is an η-Einstein.

Theorem 3.2. Let M be an n-dimensional η-Einstein Kenmotsu manifold. Then
M satisfies in condition C̄(ξ,X).R = 0, if and only if M is locally isometric to the
Hyperbolic Hn(−1).

Proof. IfM is an η-Einstein Kenmotsu manifold then in view of (2.4), (2.9), (2.14),
(2.15) and (2.19), (2.20) becomes

C̄(ξ, Y )Z =
r

(n− 1)(n− 2)
[η(Y )Z − g(Y, Z)ξ].

Since C̄(ξ,X).R = 0, we have

(C̄(ξ,X).R)(Y, Z)U = 0,

this implies that

0 = C̄(ξ,X)R(Y,Z)U −R(C̄(ξ,X)Y, Z)U (3.7)

−R(Y, C̄(ξ,X)Z)U −R(Y, Z)C̄(ξ,X)U.

In view of (3.7) and using (2.4), (2.7), (2.8) and (2.9) we obtain

0 =

{
r

(n− 1)(n− 2)

}
[η(R(Y,Z)U)X − R̀(Y, Z, U,X)ξ

− η(Y )R(X,Z)U + g(X,Y )R(ξ, Z)U − η(Z)R(Y,X)U

+ g(X,Z)R(Y, ξ)U − η(U)R(Y, Z)X + g(X,U)R(Y, Z)ξ],

where
R̀(X,Y, Z, U) = g(R(X,Y, Z), U).

Taking the inner product of the last equation with ξ we get

0 =

{
r

(n− 1)(n− 2)

}
[η(R(Y, Z)U)η(X)− R̀(Y,Z, U,X)

− η(Y )η(R(X,Z)U) + g(X,Y )η(R(ξ, Z)U)− η(Z)η(R(Y,X)U)

+ g(X,Z)η(R(Y, ξ)U)− η(U)η(R(Y, Z)X) + g(X,U)η(R(Y,Z)ξ)].



530 Thai J. Math. 12 (2014)/ N. Asghari and A. Taleshian

With simplify of the above equation we obtain{
r

(n− 1)(n− 2)

}
[−̀R(Y, Z, U,X)− g(X,Y )g(Z,U) + g(X,Z)g(Y, U)] = 0.

Finally we obtain

R̀(Y, Z, U,X) = g(X,Z)g(Y, U)− g(X,Y )g(Z,U),

this implies that
R(Y,Z)U = −[g(Z,U)Y − g(Y, U)Z].

The above equation implies that M is of constant curvature −1 and consequently
it is locally isometric with the Hyperbolic Hn(−1). This the completes the proof
of the theorem.

Theorem 3.3. If the conharmonic curvature tensor C̄ on a Kenmotsu manifold
is irrotational, then C̄ given by

C̄(X,Y )Z =
r

(n− 1)(n− 2)
[g(X,Z)Y − g(Y, Z)X], (3.8)

where r is the scalar curvature.

Proof. The rotation (Curl) of conharmonic curvature tensor C̄ on a Riemannian
manifold is given by

RotC̄ = (∇U C̄)(X,Y )Z + (∇XC̄)(U, Y )Z (3.9)

+ (∇Y C̄)(X,U)Z − (∇ZC̄)(X,Y )U,

where ∇ denotes the Rimannian connection. By virtue of second Bianchi identity,
we have

(∇U C̄)(X,Y )Z + (∇XC̄)(U, Y )Z + (∇Y C̄)(X,U)Z = 0. (3.10)

Therefore in view of (3.9), (3.10) reduces to

RotC̄ = −(∇ZC̄)(X,Y )U. (3.11)

Now, if the conharmonic curvature tensor is irrotational, then CurlC̄ = 0 and so
by (3.11) we obtain

(∇ZC̄)(X,Y )U = 0,

this implies that

∇ZC̄(X,Y )U = C̄(∇ZX,Y )U + C̄(X,∇ZY )U + C̄(X,Y )∇ZU.

Putting U = ξ in the above equation we get

∇ZC̄(X,Y )ξ = C̄(∇ZX,Y )ξ + C̄(X,∇ZY )ξ + C̄(X,Y )∇Zξ. (3.12)
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Replacing Z = ξ in (2.20) and using (2.4), (2.8), (2.5) and (2.19) we obtain

C̄(X,Y )ξ =
r

(n− 1)(n− 2)
[η(X)Y − η(Y )X]. (3.13)

Using (3.13) in (3.12) we get

C̄(X,Y )Z =
r

(n− 1)(n− 2)
[g(X,Z)Y − g(Y, Z)X].

The proof is complete.

Theorem 3.4. Let M be an n-dimensional Kenmotsu manifold. Then M satisfies
in condition C̃(ξ, U).C̄ = 0, if and only if either M has scalar curvature r = n(1−n)
or M is an η-Einstein manifold.

Proof. Since C̃(ξ, U).C̄ = 0 we have

C̃(ξ, U).C̄(X,Y )W = 0,

this implies that

[C̃(ξ, U), C̄(X,Y )]W − C̄(C̃(ξ, U)X,Y )W − C̄(X, C̃(ξ, U)Y )W = 0,

in view of (2.21) we get

0 =

(
−1− r

n(n− 1)

)
[−η(C̄(X,Y )W )U + C̄(X,Y,W,U)ξ

+ η(X)C̄(U, Y )W − g(U,X)C̄(ξ, Y )W

+ η(Y )C̄(X,U)W − g(U, Y )C̄(X, ξ)W

+ η(W )C̄(X,Y )U − g(U,W )C̄(X,Y )ξ].

Therefore M has scalar curvature r = n(1− n) or

0 = −η(C̄(X,Y )W )U + C̄(X,Y,W,U)ξ + η(X)C̄(U, Y )W

− g(U,X)C̄(ξ, Y )W + η(Y )C̄(X,U)W − g(U, Y )C̄(X, ξ)W

+ η(W )C̄(X,Y )U − g(U,W )C̄(X,Y )ξ.

Taking the inner product of the last equation with ξ we get

0 = −η(C̄(X,Y )W )η(U) + C̄(X,Y,W,U)

+ η(X)η(C̄(U, Y )W )− g(U,X)η(C̄(ξ, Y )W )

+ η(Y )η(C̄(X,U)W )− g(U, Y )η(C̄(X, ξ)W )

+ η(W )η(C̄(X,Y )U)− g(U,W )η(C̄(X,Y )ξ).

Finally, with simplify we get

C̄(X,Y,W,U) = 0,

which implies that M is conharmonically flat. Thus in view of Theorem 3.1, M is
an η-Einstein manifold. The converse is trivial.
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Definition 3.5. An n-dimensional, (n > 3), Kenmotsu manifold satisfying the
condition

φ2C̄(φX,φY )φZ = 0, (3.14)

is called φ-conharmonically flat manifold.

Theorem 3.6. Let M be an n-dimensional, (n > 3), φ-conharmonically flat
Kenmotsu manifold. Then M is an η-Einstein manifold.

Proof. If M is φ- conharmonically flat Kenmotsu manifold then we get from (3.14)
that

φ2C̄(φX,φY )φZ = 0,

this implies that
g(C̄(φX,φY )φZ,φW ) = 0,

for any vector fields X, Y , Z, W on M . Using (2.20) we obtain

g(R(φX,φY )φZ,φW ) =
1

n− 2
[S(φY, φZ)g(φX,φW )

− S(φX,φZ)g(φY, φW )

+ g(φY, φZ)S(φX,φW )

− g(φX,φZ)S(φY, φW )]. (3.15)

Let {e1, . . . , en−1, ξ} be a local orthonormal basis of vector fields in M. Using that
{φe1, . . . , φen−1, ξ} is also a local orthonormal basis, if we put X = W = ei in
(3.15) and sum up with respect to i, then

n−1∑
i=1

g(R(φei, φY ), φZ, φei) =
1

n− 2

n−1∑
i=1

[S(φY, φZ)g(φei, φei)

− S(φei, φZ)g(φY, φei)

+ g(φY, φZ)S(φei, φei)

− g(φei, φZ)S(φY, φei)]. (3.16)

It can be easily verify that

n−1∑
i=1

g(R(φei, φY )φZ,φei) = S(φY, φZ) + g(φY, φZ), (3.17)

n−1∑
i=1

S(φei, φei) = r − (n− 1), (3.18)

n−1∑
i=1

g(φei, φei) = n− 1, (3.19)

n−1∑
i=1

g(φY, φei)S(φei, φZ) = S(φY, φZ). (3.20)
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So by virtue of - the equation can be written as

S(φY, φZ) + g(φY, φZ) =
1

n− 2
[(n− 3)S(φY, φZ) + (r − (n− 1))g(φY, φZ)],

this implies that
S(φY, φZ) = (r − (2n− 3))g(φY, φZ).

In view of and we get

S(Y, Z) + (n− 1)η(Y )η(Z) = (r − (2n− 3))g(Y,Z)− (r − (2n− 3))η(Y )η(Z).

Finally we obtain

S(Y,Z) = (r − (2n− 3))g(Y, Z)− (r − n+ 2)η(Y )η(Z).

Therefore, in view of , M is an η-Einstein manifold. The proof is complete.

Theorem 3.7. Let M be an n-dimensional Kenmotsu manifold. Then M satisfies
in condition C(ξ, Y ).C̄ = 0, if and only if either M has scalar curvature r = (1−n)
or M is an η-Einstein manifold.

Proof. Since C(ξ, Y ).C̄ = 0 we have

C(ξ, Y ).C̄(Z,U)V = 0,

this implies that

[C(ξ, Y ), C̄(Z,U)]V − C̄(C(ξ, Y )Z,U)V − C̄(Z,C(ξ, Y )U)V = 0,

in view of (2.22) we get

0 =
n− 1 + r

(n− 1)(n− 2)
[−η(C̄(X,Y )W )U + C̄(X,Y,W,U)ξ

+ η(X)C̄(U, Y )W − g(U,X)C̄(ξ, Y )W

+ η(Y )C̄(X,U)W − g(U, Y )C̄(X, ξ)W

+ η(W )C̄(X,Y )U − g(U,W )C̄(X,Y )ξ].

Therefore M has scalar curvature r = 1− n or

0 = −η(C̄(X,Y )W )U + C̄(X,Y,W,U)ξ + η(X)C̄(U, Y )W

− g(U,X)C̄(ξ, Y )W + η(Y )C̄(X,U)W − g(U, Y )C̄(X, ξ)W

+ η(W )C̄(X,Y )U − g(U,W )C̄(X,Y )ξ.

Taking the inner product of the last equation with ξ we get

0 = −η(C̄(X,Y )W )η(U) + C̄(X,Y,W,U)

+ η(X)η(C̄(U, Y )W )− g(U,X)η(C̄(ξ, Y )W )

+ η(Y )η(C̄(X,U)W )− g(U, Y )η(C̄(X, ξ)W )

+ η(W )η(C̄(X,Y )U)− g(U,W )η(C̄(X,Y )ξ).
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Finally, with simplify we get

C̄(X,Y,W,U) = 0.

Therefore in view of Theorem 3.1, M is an η-Einstein manifold. The converse is
trivial. This the completes the proof of the theorem.

Definition 3.8. A Kenmotsu manifold is said to be conharmonic φ-recurrent
Manifold if there exist a non-zero 1-form A such that

φ2((∇W C̄)(X,Y )Z) = A(W )C̄(X,Y )Z, (3.21)

for arbitrary vector fields X,Y ,Z,W . If the 1-form A vanishes, then the manifold
reduces to the locally conharmonic φ-symmetric manifold.

Theorem 3.9. A conharmonic φ-recurrent Kenmotsu manifold is an Einstein
manifold.

Proof. Let us consider a conharmonic φ-recurrent Kenmotsu manifold. Then by
virtue of (2.20) and Definition 3.8, we have

− ((∇W C̄)(X,Y )Z) + η((∇W C̄)(X,Y )Z)ξ = A(W )C̄(X,Y )Z, (3.22)

from which it follows that

−g((∇W C̄(X,Y )Z)) + η((∇W C̄)(X,Y )Z)η(U) = A(W )g(C̄(X,Y )Z,U).

Let {ei}, i = 1, . . . , n, be a locally orthonormal basis of the tangent space at any
point of the manifold. Let us put X = U = ei in (3.23), where, 1 ≤ i ≤ n, we get

− (∇WS)(Y,Z)− 1

n− 2
[
∑

(∇WS)(ei, Z)g(Y, ei) (3.23)

−
∑

(∇WS)(ei, Z)g(ei, ξ)η(Y )]

= A(W )

[
− r

n− 2
g(Y,Z)

]
.

substitute Z by ξ in (3.23), following due to (2.1), (2.4) and (2.11) we obtain

− (∇WS)(Y, ξ)− 1

n− 2
[
∑

(∇WS)(ei, ξ)g(Y, ei) (3.24)

−
∑

(∇WS)(ei, ξ)g(ei, ξ)η(Y )]

= −
(

r

n− 2

)
η(Y )A(W ).

On the other hand since (∇W η)(Y )) = g(W,Y )− η(Y )η(W ) and in view of (2.6)
and (2.11) we have

(∇WS)(Y, ξ) = −(n− 1)g(Y,W )− S(Y,W ). (3.25)
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By substituting (∇WS)(Y, ξ) from (3.25) in (3.24)it results

n− 1

n− 2
S(Y,W ) +

(n− 1)2

n− 2
g(Y,W ) = −

(
r

n− 2

)
η(Y )A(W ). (3.26)

Replacing Y by φY and W by φW in (3.26), using (2.3) and (2.13) we get

S(Y,W ) = −(n− 1)g(Y,W ).

This completes the proof.

Theorem 3.10. A locally conharmonic φ-symmetric Kenmotsu manifold is a
manifold of constant curvature.

Proof. From Definition 3.8 we have

φ2((∇W C̄)(X,Y )Z) = 0.

in view (2.1) it follows

− (∇W C̄)(X,Y )Z + η((∇W C̄)(X,Y )Z) = 0. (3.27)

Substituting ξ with Z in (3.27)

− (∇W C̄)(X,Y )ξ + η((∇W C̄)(X,Y )ξ) = 0. (3.28)

On the other hand we have

(∇W C̄)(X,Y )ξ = (∇WR)(X,Y )ξ − 1

n− 2
[−(n− 1)g(Y,W )X

− S(Y,W )X + (n− 1)g(X,W )Y + S(X,W )Y ],

and
η((∇W C̄)(X,Y )ξ) = 0.

Therefore we get from (3.28)

−R(X,Y )W − 1

n− 2
[−(n− 1)g(Y,W )X

− S(Y,W )X + (n− 1)g(X,W )Y + S(X,W )Y ] = 0. (3.29)

From which it follows that

g(R(X,Y )W,U) = − 1

n− 2
[−(n− 1)g(Y,W )g(X,U)− S(Y,W )g(X,U)

+ (n− 1)g(X,W )g(Y, U) + S(X,W )S(Y, U)]. (3.30)

Let {ei}, i = 1, . . . , n, be an orthonormal basis of the tangent space at any point
of manifold. Let us put Y = W = ei in (3.30), where, 1 ≤ i ≤ n, we get

S(X,U) = (n− 1)g(X,U) +
r

n− 1
g(X,U). (3.31)
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Using (3.31) in (3.30) we obtain

R(X,Y )W =
2(n− 1)2 + r

(n− 1)(n− 2)
[g(Y,W )X − g(X,W )Y ].

This proves the theorem.
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