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1 Introduction

In [1], Tanno classified connected almost contact metric manifolds whose au-
tomorphism groups possess the maximum dimension. For such a manifold M, the
sectional curvature of plane sections containing ¢ is a contact, say c. If ¢ > 0, M
is homogeneous Sasakian manifold of constant sectional curvature. If ¢ = 0, M is
the product of a line or circle with a Kaehler manifold of constant holomorphic
sectional curvature. If ¢ < 0, M is a warped product space R x; C™. In 1971,
Kenmotsu studied a class of contact Riemannian manifolds satisfying some special
conditions [2]. We call it Kenmotsu manifold. Recently, Kenmotsu manifolds have
been studied by many authors such as De and Pathak [3], Jun et al. [4], Prakasha
[5] and many others.

In this paper, we studied the properties of Kenmotsu manifold equipped with
conharmonic curvature tensor. We prove that conharmonically flat Kenmotsu
manifold is an 7n-Einstein manifold. Also, we study Kenmotsu manifolds in with
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C(¢,X).R = 0, where C is conharmonic curvature tensor. In this case, we show
that manifold is locally isometric to the Hyperbolic H"(—1). Then we study
Kenmotsu manifold with the irrotational conharmonic curvature tensor. Also, we
study Kenmotsu manifolds in with C'(¢, U).C = 0, where C'is concircular curvature
tensor. In this case, we show that a Kenmotsu manifold is an 7-Einstein manifold.
Next, we prove that p-conharmonically flat Kenmotsu manifold is an n-Einstein
manifold. Moreover we show that a Kenmotsu manifold satisfying C(¢,Y).C = 0,
is an n-Einstein manifold, where C' is Weyl conformal curvature tensor. Finally we
investigate conharmonic -recurrent and locally conharmonic ¢-symmetric Ken-
motsu manifold.

2 Preliminaries

If on an add dimensional differentiable manifold M,,, n = 2m + 1, of differ-
entiability class C™t!, there exist a vector real linear function ¢, a 1-form 7, the
associated vector field £ and the Riemannian metric g satisfying

@ =-T+1nQ®¢, (2.1)
n(pX) =0, (2.2)
9(pX,9Y) = g(X,Y) —n(X)n(Y), (2.3)

for all vector fields X and Y, then (M, g) is said to be an almost contact metric
manifold and structure (¢,7,£,g), is called an almost contact metric structure to
M, [1, 2, 5]. In view of above relations we get

n(§) = 1,9(X, &) = n(X),p(§) = 0. (2.4)
If moreover,
(Vx@)Y = —g(X,9Y)§ = n(Y)eX, (2.5)
and
Vx{ =X —n(X)§, (2.6)

for all vector fields X, Y. Where V denotes the operator of covariant differentiation
with respect to the Riemannian metric g, then (M, p, &, 7, g) is called a Kenmotsu
manifold [6].

Also, the following relations hold in Kenmotsu manifold [3-5, 7-10]:

9(R(X,Y)Z,£) = n(R(X,Y)Z)
= 9(X, Z)n(Y) = g(Y, Z)n(X), (2.7)
R(X,Y)E = n(X)Y —n(Y)X, (2.8)
R(&X)Y =n(Y)X —g(X, V)¢, (2.9)
R(§, X)§ = X —n(X)¢, (2.10)
S(X,8) = —(n = n(X), (2.11)
Q¢ =—(n—1)¢, (2.12)
S(eX,9Y) = S(X,Y) + (n = n(X)n(Y), (2.13)
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for any vector fields X, Y, Z, where R(X,Y)Z is the curvature tensor, and S is
the Ricci tensor.
A Kenmotsu manifold (M, g) is said to be n-Einstein if its Ricci tensor S is

of the form
S(Xa Y) = ag(Xa Y) +b77(X)77(Y)7 (214)

for any vector fields X, Y where a, b are functions on (M,,g). If b = 0, then
n-Einstein manifold becomes to Einstein manifold. Kenmotsu [2], proved that if
(M, g) is an n-Einstein manifold, then a + b= —(n — 1).

In view of (2.4) and (2.14), we have

QX =aX +bn(X)E, (2.15)
where @ is the Ricci operator defined by
S(X,Y) =g(QX,Y). (2.16)
Again, contracting (2.15) with respect to X and using (2.4), we have
r=na+b, (2.17)

where 7 is the scalar curvature.
Now, substituting X = ¢ and Y = ¢ in (2.14) and then using (2.4) and (2.9),
we obtain
a+b=—-(n-1). (2.18)

Equations (2.17) and (2.18) gives

a:(ni1+1>,b:—<ni1+n). (2.19)

Definition 2.1. The conharmonic curvature tensor C of type (1, 3) on Kenmotsu
manifold M of dimensional n is defined by

C(X,Y)Z =R(X,Y)Z — ﬁ[S(Y, Z)X — S(X,2)Y
+9(Y,2)QX — g(X, Z)QY], (2.20)

for any vector fields X, Y, Z, on M. The manifold is said to be conharmonically
flat if C' vanishes identically on M.

Definition 2.2. The concircular curvature tensor C' on Kenmotsu manifold M
of dimensional n is defined by

~ T

C(X,Y)Z=R(X,Y)Z - m[g(Y, )X —g(X,2)Y], (2.21)

for any vector fields X, Y, Z, where R is the curvature tensor and r is the scalar
curvature.
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Definition 2.3. The Weyl conformal curvature tensor C' on Kenmotsu manifold
M of dimensional n is defined b

C(X,Y)Z=R(X,Y)Z — ﬁ[sm 2)X - S(X, 2)Y +g(Y, 2)QX

—9(X,2)QY] + Y, 2)X —g9(X,2)Y], (2.22)

(CENCERR

for all vector fields X, Y, Z on M.

3 Main Results

In this section, we prove the following theorems:

Theorem 3.1. An n-dimensional conharmonically flat Kenmotsu manifold is an
n-FEinstein manifold.

Proof. If C = 0 then we get from (2.20) that

+9(Y,2)QX — g(X, Z)QY].

R(X,Y)Z = %[S(Y, 2)X - S(X, 2)Y (3.1)

Putting Z = ¢ in (3.1) and using (2.4), (2.8) and (2.11) we obtain

NXY ~n(¥)X = o [(n = Da(¥)X + (- Da(X)Y (32

+n(Y)QX —n(X)QY].
Taking Y = ¢ in (3.2) and using (2.4) we get

NX)E~ X = ——[~(n = DX + (0= Dy(X)E + QX +(n~ In(X)g]. (33)

Therefore with simplify of the above equation we get

QX =X —nn(X)E. (3.4)
Similarly, We obtain

QY =Y —nn(Y)¢E. (3.5)
Now, putting (3.4) and (3.5) in (3.1) we obtain

R(X,Y)Z = S(Y,Z)X — S(X,2)Y + g(Y, Z2)X (3.6)

n—2
—ng(Y, Z)n(X)¢ — g(X, Z2)Y +ng(X, Z)n(Y )&,
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putting X = ¢ and using (2.9) and (2.11) we get

WEY — gV, 2)6 = 5 [S(V 2)6 + (0 — V(Z)Y +g(Y, 2)¢
—ng(Y, 2)§ =n(2)Y + nn(Z)n(Y)g].
With simplify of the above equation we obtain
S, 2) = g(Y, Z) = nn(Y)n(Z).
Therefore, in view of (2.14), manifold is an n-Einstein. O

Theorem 3.2. Let M be an n-dimensional n-Einstein Kenmotsu manifold. Then
M satisfies in condition C'(§,X).R =0, if and only if M is locally isometric to the
Hyperbolic H"(—1).

Proof. It M is an n-Einstein Kenmotsu manifold then in view of (2.4), (2.9), (2.14),
(2.15) and (2.19), (2.20) becomes

r

CeYZ= 0 hm g

m(Y)Z —g(Y, Z)g].

Since C'(&, X).R = 0, we have
(C(§, X).R)(Y, Z)U =0,
this implies that

0=C(¢, X)R(Y, Z)U — R(C(¢, X)Y, Z)U (3.7)
—R(Y,C(§,X)Z)U - R(Y, Z)C(&, X)U.

In view of (3.7) and using (2.4), (2.7), (2.8) and (2.9) we obtain

0= { Gz WA D)X R 2.0 )¢

+9(X, Z)R(Y, U —n(U)R(Y, Z)X + g(X,U)R(Y, Z)¢],
where
R(X,Y,2,U) = g(R(X,Y, 2),U).
Taking the inner product of the last equation with £ we get

0= {m} n(R(Y, Z)U)n(X) —R(Y, Z,U, X)
—n(Y)n(R(X, Z)U) + g(X,Y)n(R(E, Z)U) = n(Z)n(R(Y, X)U)

)+
+9(X, 2)n(R(Y.U) —nU)n(R(Y, Z)X) + g(X, U)n(R(Y, Z)E)].
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With simplify of the above equation we obtain

{(n—l)(n—Q)} [FR(Y,Z,U,X)—g(X,Y)g(Z,U) + g(X, Z)g(Y,U)] = 0.

Finally we obtain
R(Y,Z,U, X) =g(X,Z)g(Y,U) — g(X,Y)g(Z,U),

this implies that
R(Y,Z2)U = —[g(Z,U)Y — g(Y,U)Z].

The above equation implies that M is of constant curvature —1 and consequently
it is locally isometric with the Hyperbolic H™(—1). This the completes the proof
of the theorem. O

Theorem 3.3. If the conharmonic curvature tensor C on a Kenmotsu manifold
is irrotational, then C given by

- r

CHYNZ = gy X 2)Y =Y, 2)X], (3.8)

where r s the scalar curvature.

Proof. The rotation (Curl) of conharmonic curvature tensor C' on a Riemannian
manifold is given by

RotC = (VyO)(X,Y)Z + (VxC)(U,Y)Z (3.9)
+(VyO)(X,U)Z — (V,C)(X,Y)U,

where V denotes the Rimannian connection. By virtue of second Bianchi identity,

we have
(VuCO)(X,Y)Z + (VxC)U,Y)Z + (VyC)(X,U)Z = 0. (3.10)

Therefore in view of (3.9), (3.10) reduces to
RotC = —(VzC)(X,Y)U. (3.11)

Now, if the conharmonic curvature tensor is irrotational, then CurlC = 0 and so
by (3.11) we obtain B
(VzC) (X, YU =0,

this implies that
VzC(X,Y)U =C(VzX,Y)U + C(X,VzY)U + C(X,Y)VU.
Putting U = £ in the above equation we get

VzO(X,Y)E=C(VzX,Y)E+ O(X,VzY)E+ CO(X,Y)V4E (3.12)
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Replacing Z = £ in (2.20) and using (2.4), (2.8), (2.5) and (2.19) we obtain

C(X,Y)¢ = m[ﬁ@f)y —n(Y)X]. (3.13)
Using (3.13) in (3.12) we get
C(X,Y)Z = m[g(Xa 2)Y —g(Y,Z)X].
The proof is complete. O

Theorem 3.4. Let M be an n-dimensional Kenmotsu manifold. Then M satisfies
in condition C(&,U).C' = 0, if and only if either M has scalar curvature r = n(1—n)
or M is an n-FEinstein manifold.

Proof. Since C(&,U).C' = 0 we have
C(6,U).C(X, Y)W =0,
this implies that
[CE,U),C(X, Y)W - C(CE, U)X, Y)W — C(X,C(£,U) Y)W =0,

in view of (2.21) we get

+ 77( )C(X,Y)U — Q(U,W)C'(X7Y)§]~
Therefore M has scalar curvature r = n(1 — n) or

0=—n(C(X,Y)W)U + C(X,Y,W,U)§ + n(X)C(U,Y)W
—9(U, X)C(E. Y)W +n(Y)C(X, U)W — g(U,Y)C(X, )W
+n(W)C(X, YU — g(UW)C(X,Y)E.

Taking the inner product of the last equation with £ we get

0——n( C(XY)W)n(U) + C(X, Y, W, U)
(X) (CWU.Y)W) = g(U, X)n(C(§, V)W)
+0(Y)n(C(X, U)W) — g(U,Y)n(C(X, )W)
+n(W)n(C(X,Y)U) — g(U, W)n(C(X,Y)E).

Finally, with simplify we get
C(X,Y,W,U) =0,

which implies that M is conharmonically flat. Thus in view of Theorem 3.1, M is
an n-Einstein manifold. The converse is trivial. O
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Definition 3.5. An n-dimensional, (n > 3), Kenmotsu manifold satisfying the
condition B
P*C(pX,9Y)pZ =0, (3.14)

is called p-conharmonically flat manifold.

Theorem 3.6. Let M be an n-dimensional, (n > 3), @-conharmonically flat
Kenmotsu manifold. Then M is an n-FEinstein manifold.

Proof. If M is ¢- conharmonically flat Kenmotsu manifold then we get from (3.14)
that

P*ClpX, Y )pZ =0,
this implies that -

9(C(eX, oY )pZ, W) =0,
for any vector fields X, Y, Z, W on M. Using (2.20) we obtain

1
9(R(0X, 0Y)pZ, oW ) = s [S(0Y,0Z)g(pX, oW)

= S(eX,0Z)g(Y, W)

+9(eY, 02)S(pX, W)

— 90X, 0Z)S(pY, pW)]. (3.15)
Let {e1,...,en_1,&} be alocal orthonormal basis of vector fields in M. Using that

{pe1,...,pen_1,&} is also a local orthonormal basis, if we put X = W = ¢; in
(3.15) and sum up with respect to i, then

n—1

n—1
1
9(R(pei, oY), 07, pei) = —— > [S(¢Y, 9Z)g(peis pei)
=1 =1

— S(pei, 0Z)g(pY, pe;)
+ 9(0Y, 0 Z)S(pes, ve;)

— g(pei, pZ)S(pY, pei)]. (3.16)
It can be easily verify that
n—1
9(R(pei, oY )pZ, ei) = S(¢Y, 0Z) + g(Y, 0 Z), (3.17)
i=1
n—1
> S(pei,pei) =1 —(n—1), (3.18)
i=1
n—1
Z g(pei, pe;) =n—1, (3.19)
i=1

n—1
> 9(pY, pei)S(pei, pZ) = S(oY, 9 Z). (3:20)
=1
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So by virtue of - the equation can be written as

L[ = 3)S(oY, 92) + (r — (n— 1)g(eY, 02)],

S(0Y,pZ) + g(0Y,¢Z) =

this implies that
S(pY,pZ) = (r—(2n - 3))g(¢Y, ¢Z).

In view of and we get
S, 2) + (n—n(Y)n(Z) = (r = (2n = 3))g9(Y, 2) = (r = (2n = 3))n(Y)n(Z).
Finally we obtain
S(Y,2) = (r—(2n=3))g(Y,Z) = (r —n+2)n(Y)n(2).
Therefore, in view of , M is an n-Einstein manifold. The proof is complete. O

Theorem 3.7. Let M be an n-dimensional Kenmotsu manifold. Then M satisfies
in condition C(£,Y).C = 0, if and only if either M has scalar curvature r = (1—n)
or M is an n-Einstein manifold.

Proof. Since C(£,Y).C = 0 we have
C(§,Y).C(Z,U)V =
this implies that

in view of (2.22) we get
n—1+r A A
m[—ﬁ(c(xa Y)W)U + C(X,Y, W, U)¢
+n(X)C(U Y)W — g(U, X)C(§, Y)W
+n(V)C(X, )W — g(U,Y)C(X, )W
+n(W)C(X,Y)U - g(U,W)C(X,Y)E].

0:

Therefore M has scalar curvature r =1 — n or

O:—n(C(X,Y) )U+C(X YWU)§+77( )C(U,Y)W
+ n(W)é(X, Y)U — g(U, W)O(X, Y)E.

Taking the inner product of the last equation with £ we get

0——77( (X, Y)W)n(U) + C(X,Y,W,U)
(X) (C’(U7Y) ) = g(U, X)n(C(&,Y)W)
+ (Y )n(C(X, )W) — g(U,Y)n(C(X, )W)
+n(W)n(C(X,Y)U) — g(U, W)n(C(X,Y)E).
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Finally, with simplify we get

C(X,Y,W,U) = 0.

Therefore in view of Theorem 3.1, M is an 7-Einstein manifold. The converse is
trivial. This the completes the proof of the theorem. O

Definition 3.8. A Kenmotsu manifold is said to be conharmonic ¢-recurrent
Manifold if there exist a non-zero 1-form A such that

O*(VwO)(X,Y)Z) = AW)C(X,Y)Z, (3.21)

for arbitrary vector fields X,Y,Z W. If the 1-form A vanishes, then the manifold
reduces to the locally conharmonic p-symmetric manifold.

Theorem 3.9. A conharmonic p-recurrent Kenmotsu manifold is an Einstein
manifold.

Proof. Let us consider a conharmonic ¢-recurrent Kenmotsu manifold. Then by
virtue of (2.20) and Definition 3.8, we have

—(VwCO)(X,Y)Z) +n((VwC)(X,Y)Z)¢ = AW)C(X,Y)Z, (3.22)
from which it follows that

—9(VwC(X,Y)2)) + n((VwC)(X,Y) Z)n(U) = AW)g(C(X,Y)Z,U).

Let {e;}, i =1,...,n, be a locally orthonormal basis of the tangent space at any
point of the manifold. Let us put X = U = ¢; in (3.23), where, 1 <i < n, we get
(T S)Y, 2) — —— [ (T S)en, 2)g(Ys ) (3.23)

w ) n—2 w iy gy, e .

= (VwS)(e, Z)gles, E)n(Y)]
T
=AW) [_Hg(y’ Z)} :
substitute Z by ¢ in (3.23), following due to (2.1), (2.4) and (2.11) we obtain

— (VwS)(Y,6) = (S (VwS)(es (Y1) (3.24)

— > (Vw8 (e, &)gles, (V)]
=~ (5 ) nAm),

n—2

On the other hand since (Vyyn)(Y)) = g(W,Y) — n(Y)n(W) and in view of (2.6)
and (2.11) we have

(VwS)(Y,§) = =(n—1)g(¥, W) = S(Y, W). (3.25)
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By substituting (Vi S)(Y, ) from (3.25) in (3.24)it results

n—1 (n—1)2 B
n s+ g - - (

r
n—2

) n(Y)A(W). (3.26)

Replacing Y by @Y and W by ¢W in (3.26), using (2.3) and (2.13) we get
S(Y, W) = —(n — 1)g(Y, W).
This completes the proof. O

Theorem 3.10. A locally conharmonic p-symmetric Kenmotsu manifold is a
manifold of constant curvature.

Proof. From Definition 3.8 we have
(V) (X,Y)Z) =0.
in view (2.1) it follows
— (VwO) (X, Y)Z +n((VwC)(X,Y)Z) = 0. (3.27)
Substituting ¢ with Z in (3.27)
— (VwC) (X, Y)E + (Vi O)(X, V)¢) = 0. (3.28)
On the other hand we have
(Vi O)(X, V)6 = (Vi R)(X, V)€ — — [~ (n — 1)g(¥, W)X
—SY, W)X +(n—1)g(X, W)Y 4+ S(X,W)Y],

and -
n(VwC)(X,Y)§) = 0.
Therefore we get from (3.28)

~ ROCY)W = (0 = 1g(¥, W)X
— S(Y, W)X + (n— 1)g(X, W)Y + S(X,W)Y] = 0. (3.29)
From which it follows that
GR(X, YI,0) =~ [ (0 = 1)g(¥, W)g(X,0) — (Y, W)g(X, V)
+ (0= 1g(X, W)g(Y,U) + S(X,W)S(Y, V)], (3.30)

Let {e;}, i = 1,...,n, be an orthonormal basis of the tangent space at any point
of manifold. Let us put Y = W = ¢; in (3.30), where, 1 < i < n, we get

S(X,U) = (n— 1)g(X,U) + ﬁg(X, U). (3.31)
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Using (3.31) in (3.30) we obtain

2(n—1)2+r
(n—1)(n—2)
This proves the theorem. O

R(X, Y)W = [g(Y, W)X — g(X,W)Y].
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