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1 Introduction

The notions of compactness and connectedness are very useful and fundamen-
tal notions of general topology also in the other advanced branches of mathematics.
Many researchers [1-6] have investigated the basic properties of compactness and
connectedness.

Recently, Benchalli et al. [7, 8] introduced and studied a new class of closed
sets called wa-closed sets and continuous maps in topological space. The aim of
this paper is to introduce the concept of wa-compactness and wa-connectedness
in topological spaces and is to give some characterization of wa-compactness and
wa-connectedness. Further it is proved that wa-connectedness is preserved under
wa- irresolute surjections.
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2 Preliminaries

Throughout this paper (X, 1), (Y,0) and (Z,n)(or simply X, Y and Z) repre-
sent topological spaces on which no separation axioms are assumed unless other-
wise metioned. For a subset A of (X, 7), cl(A), Int(A), acl(A) and A¢ denote the
closure of A, inerior of A, a-closure of A and the compliment of A in X respecively.

The following definitions are useful in the sequel.

Definition 2.1. Let (X, 7) be a topological space.Then,

1. A subset A of X is called wa-closed set [7] if acl(A) C U whenever A C U
and U is w-open in (X, 7).

2. A topological space (X, 7) is said to be GO-compact [1] (resp. aGO-compact
[2]) if every g-open(resp. ag-open) cover of (X, 7) has a finite subcover.

3. A topological space (X, 7) is said to be GP R-compact [4] (resp. w-compact
[6]) if every GPR-open(resp. w-open) cover of (X, 7) has a finite subcover.

4. Amap f: (X,7) = (Y, 0) is called wa-continuous [8] (resp. wa-irresolute) if
the inverse image of every closed (resp. wa-closed) set in (Y, o) is wa-closed
in (X, 7).

5. f:(X,7) = (Y,0) is called strongly wa-continuous [9] (resp. perfectly wa-
continuous) if the inverse image of every wa-closed (resp. wa-closed) set in
(Y, o) is closed (resp. clopen) in (X, 7).

6. f:(X,7) = (Y,0) is called strongly g*-continuous [5] if the inverse image
of every strongly g closed set in (Y, o) is closed in (X, 7)

7. A topological space (X, 7) is said to be T,n-space [7] (resp agTiwa, walstg
space) if every wa-closed (resp. ag-closed, wa-closed) set is closed (resp.
wa-closed, strongly g-closed).

3 wa-Compactness in Topological Spaces

In this section, we introduce the concept of wa-compactness and studied some
of their properties.

Definition 3.1. A collection {A; : i € I'} of wa-open sets in a topological space
(X,7) is called a wa- open cover of a subset A in (X,7) if A CJ;c; Ai

Definition 3.2. A topological space(X, 7) is called wa-compact if every wa-open
cover of (X, 7) has a finite subcover.

Definition 3.3. A subset A of a topological space (X, 7) is called wa-compact
relative to (X, 7) if for every collection {A; : i € I'} of wa-open subsets of (X, )
such that A C J,c; Ai, there exists a finite subset I of I such that A C UZ-GIO A;.
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Theorem 3.1. A wa-closed subset of wa- compact space (X, T) is wa- compact
relative to (X, 7).

Proof. Let A be a wa- closed subset of a topological space (X, 7). Then A€ is
wa-open in (X,7). Let S = {A; : i € I} be an wa-open cover of A by wa-
open subsets in (X,7). Then S* = S U A€ is a wa- open cover of (X, 7). That
is X = (U;er Ai) U A By hypothesis (X,7) is wa-compact and hence S* is
reducible to a finite subcover of (X, 7) say X = A;; UA;,U---UA; UA®, A, € S*.
But A and A° are disjoint. Hence A C A;, UA,;,,U---UA; € S. Thus a wa-
open cover S of A contains a finite subcover. Hence A is wa-compact relative to
(X,7). O

Theorem 3.2. Fvery wa-compact space is compact.

Proof. Let (X, 7) be a wa-compact space. Let {A; : ¢ € I} be an open cover of
(X,7). By [7], {A; : i € I} is a wa-open cover of (X, 7). Since (X,7) is wa-
compact,wa-open cover{4; : i € I'} of (X,7) has a finite subcover say {4; : i =
1,...,n} for X. Hence (X, 7) is compact. O

Theorem 3.3. If (X, 1) is compact and T, -space, then (X, T) is wa- compact.
Theorem 3.4. Fvery aGO-compact space is wa-compact.

Proof. Let (X,7) be a aGO-compact space. Let {4; : i € I} be an wa-open
cover of (X,7) by wa-open sets in (X, 7). From [7], {A; : ¢ € I} is ag-open
cover of (X, 7) by ag-open sets. Since (X, 1) is GO compact, the ag-open cover
{4; :i € I} of (X, 7) has a finite subcover say {4; : i =1,...,n} of (X, 7).Hence
(X,7) is wa-compact. O

Theorem 3.5. If (X, 7) is wa-compact and ogT,a, then (X, T) is aGO-compact.
Theorem 3.6. Every GPR compact space is wa-compact.

Proof. Let (X, 7) be a GPR-copmact space. Let {A; : ¢ € I} be an wa-open cover
of (X, 7) by wa-open sets. From [7], {A; : i € I} is gpr-open cover of (X, 7), since
(X, 7) is GPR-compact, the gpr-open cover {4; : i € I} of (X, 7) has a finite sub

cover say {A;:i=1,...,n}. Hence (X, 7) is wa-compact. O

Theorem 3.7. A wa-closed subset of aGO-compact space (X, 7) is «GO-compact
relative to (X, ).

Proof. From [7], every wa-closed set is ag-closed and since ag-closed subset of a
aGO-compact space is «GO-compact relative to (X, 7) [2], the result follows. [

Theorem 3.8. The image of a wa-compact space under wa-continuous onto map
1S compact.
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Proof. Let f: (X,7) — (Y,0) be a wa-continuoous map from wa-compact space
(X,7) on to a topological space (Y,o). Let {A; : i« € I} be an open cover of
(Y,0). Then {f~1(A;) : i € I} is a wa open cover of (X, 7), as f is wa- continuous.
Since (X, 7) is wa-compact, the wa-open cover of (X, 7),{f *(4;) :i € I'} has a
finite subcover say {f~'(A4;) : i =1,...,n}. Therefore X = J;_, f~*(A;) which
implies f(X) =U;—,(Ai). Then Y = |J;_,(A;).That is {A;, As,..., A,} is a finite
subcover of {A; : i € I'} for (Y,0). Hence (Y,0) is compact. O

Theorem 3.9. If a map f : (X,7) = (Y,0) is wa-irresolute and a subset S of
X is wa-compact relative to (X, T), then the image f(S) is wa-compact relative to
(V,0).

Proof. Let {A; : i € I} be a collection of wa-open sets in (Y, o), such that f(.S) C
User Ai- Then S € Ui, f1(As), where {f~'(4; : i € I} is wa-open set in
(X, 7). Since S is wa-compact relative to (X, 7), there exists finite subcollection
{A1,As,..., Ay} such that S C |J;_, f~'(4;). That is f(S) € U, A;. Hence
f(S) is wa-compact relative to (Y, o). O

Theorem 3.10. If amap [ : (X,7) — (Y, 0) is strongly wa-continuous map from
a compact space (X, T) onto a topological space (Y, o), then (Y, o) is wa-compact.

Proof. Let {A; : i € I} be an wa-open cover of (Yo). Since f is strongly wa-
continuous, {f~(A; : i € I} is an open cover of (X, 7). Again since (X,7) is
compact, the open cover {f~1(A4;) : i € I} of (X,7) has a finite subcover say
{f7*(A;) i =1,....,n}. Therefore X = [J;_, f~*(4;), which implies f(X) =
Ui, A;, so that Y = (JI_, A;. That is {4y, As,..., A} is a finite subcover of
{4; :i eI} for (Yo). Hence (Y,0) is compact. O

Theorem 3.11. If amap [ : (X,7) = (Y, 0) is perfectly wa-continuous map from
a compact spce (X, T) onto a topological space (Y, o), then (Y, 0) is wa-compact.

Theorem 3.12. A topological space (X, T) is wa-compact if and only if every
family of wa-closed sets of (X, T) having finite intersection property has a non-
empty intersection.

Proof. Suppose (X, 7) is wa-compact. Let {A; : ¢ € I} be a family of wa closed
sets with finite intersection property.

Suppose [);c; Ai = ¢. Then X —(,.; A; = X. This implies (J;, (X — A;) =
X. Thus the cover {X — A; : i € I'} is a wa-open cover of (X, 7). Then, the wa-
open cover {X — A; : ¢ € I} has a finite subcover say {X — 4; : i = 1,...,n}.
This implies X = (J;;(X — A;) which implies X = X — N, A;, which implies
X —-X =X—-[X -, 4] which implies ¢ = (;_, A;. This contradicts the
assumption. Hence [);c; Ai # ¢.

Conversely suppose (X, 7) is not wa-compact. Then there exists an wa-open
cover of (X, 1) say {G; : ¢ € I} having no finite subcover. This implies for any
finite subfamily {G; : i = 1,...,n} of {G; : i € I}, we have |, G; # X,
which implies X — |J;_; G; # X — X, which implies (;c,;(X — G;) # ¢. Then
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the family {X — G, : i € I} of wa- closed sets has a finite intersection property.
Also by assumption (,c;(X — G;) # ¢ which implies X — i, G; # ¢, so that
Ui, Gi # X. This implies {G, : i € I} is not a cover of (X, 7). This contradicts
the fact that {G; : ¢ € I} is a cover for (X,7). Therefore a wa-open cover
{G; : i € I} of (X,7) has a finite subcover {G; : ¢ = 1,...,n}. Hence (X,7) is
wa-compact. O

Theorem 3.13. The image of a wa-compact space under a strongly wa-continuous
map 18 wa-compact.

Theorem 3.14. The image of a wa-compact space under a wa-irresolute map is
wa-compact.

Proof. Let f:(X,7) = (Y,0) is wa-irresolute map from a compact space (X, 7)
onto a topological space (Y,0). Let {A; : i € I} be an wa-open cover of (Y, 0).
Then {f~1(A;) : i € I} is a wa-open cover of (X,7), since f is wa-irresolute.
As (X,7) is wa- compact, the wa-open cover {f~1(A;) : i € I} of (X,7) has a
finite subcover say {f~'(4;) : i = 1,...,n}. Therefore X = |J_, f~*(4;).Then
f(X)=UL, 4, that is Y = J_, A;. Thus {4y, As,..., A, } is a finite subcover
of {A; :i €I} for (Y,0). Hence (Y, 0) is wa- compact. O

4 Countably wa-Compactness in Topological
Spaces

In this section, we study the concept of Countably wa-compactness and their
properties.

Definition 4.1. A topological space (X, 7) is said to be countably wa-compact if
every countable wa-open cover of (X, 7) has a finite subcover.

Theorem 4.1. If (X, 1) is a countably wa-compact space, then (X, 1) is countably
compact

Theorem 4.2. If (X,7) is a countably compact and T,.-space, then (X,T) is
countably wa-compact.

Theorem 4.3. Fvery wa-compact space is countably wa-compact.

Theorem 4.4. If [ : (X,7) — (Y,0) is wa-continuous map form a countably
wa-compact space (X, T) onto a topological space (Y,0), then (Y,0) is countably
compact.

Theorem 4.5. Let [ : (X,7) = (Y,0) is strongly wa-continuous map form
a countably compact space (X,T) onto a topological space (Y, o), then (Y,0)) is
countably wa-compact.
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Theorem 4.6. Let f : (X,7) — (Y,0) is strongly g*-continuous map form a
countably compact space (X,T) onto a topological space (Y,o) and if (Y,0) is
waTstg -space, then (Y, o) countably wa-compact.

Proof. Let {A; :i € I} be an countably wa-open cover of (Y, o) by wa-open sets.
Since (Y, 0) is waTstg-space ,{A4; : i € I} is countably strongly g-open cover of
(Y,0). Then {f1(A;) : i € I} is a countable open cover of (X,7), since f is
strongly g*-continuous map. As (X, 7) is countably compact, the countable open
cover {f~1(A;) :i € I} of (X, 7) has a finite subcove say {f~*(4;):i=1,...,n}.
Therefore X = |J_, f~*(4;).Then f(X) = U, A;, that is Y = (JI_, A;. Thus
{41, As,...,A,} is a finite subcover of {A4; : i € I} for (Y,0). Hence (Y,0) is
wa-compact. O

Theorem 4.7. If amap [ : (X,7) = (Y, 0)) is perfectly wa-continuous map form
a countably compact space (X,7) onto a topological space (Y,o), then (Y,o) is
countably wa-compact.

Theorem 4.8. The image of a countably wa-compact space under wa-irresolute
map is countably wa-compact.

Theorem 4.9. A space (X, 1) is countably wa-compact if and only if every count-
able family of wa-closed sets of (X,T) having finite intersection property has a
non-empty intersection.

Theorem 4.10. A wa-closed subset of a countably wa-compact space is countably
wa-compact.

Definition 4.2. A topological space (X, 7) is said to be wa-Lindelof space if every
wa-open cover of (X, 7) has a countable subcover.

Theorem 4.11. Every wa-Lindelof space is Lindelof space.

Theorem 4.12. If (X,7) is Lindelof and T, space, then (X, T) is wa-Lindelof
space.

Theorem 4.13. Every wa-compact space is wa-Lindelof space.

Proof. Let (X, 1) is wa-compact space. Let {A; : i € I} be an wa-open cover
of (X, 7). Then {4; : i € I} has a finite subcover say {A; : 4 = 1,...,n}, since
(X, 7) is wa-compact. Since every finite subcover is always a countable subcover
and therefore, {A; : i = 1,...,n} is countable subcover of {4; : i € I} for (X, 7).
Hence (X, 7) is wa-Lindelof space. O

Theorem 4.14. If a map f: (X,7) = (Y,0) is wa-continuous map form a wao-
Lindelof space (X, 7) onto a topological space (Y, o), then (Y, o) is Lindelof space.

Theorem 4.15. The image of a wa-Lindelof space under wa-irresolute map is
wa-Lindelof.
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Proof. f:(X,7) — (Y,0) is wa-irresolute map form a wa-Lindeldf space (X, 7)
onto a topological space (Y, o). Let {A; : i € I} be an wa-open cover of (Y, o), then
{f~Y(A;) : i € I} is an wa-open cover of (X, 7) as f is wa-irresolute. Since (X, 7)
is wa- Lindeldf, the wa-open cover{f~1(A;) : i € I'} of (X,7) has a countable
subcover say {f~!(A4;) :i=1,...,n}. Therefore X = (J;_, f~'(A;) which implies
f(X) =Y =J, 4; that is {41, As,..., A, } is a countable subfamily of {4; :
i € I} for (Y,0). Hence (Y,0) is Lindelsf space. O

Theorem 4.16. If (X,7) is wa-Lindelof and countably wa-compact space then
(X, 7) is wa-compact.

Proof. Suppose (X, 7) is wa-Lindelof and countably wa-compact space. Let {4, :
i € I'} be an wa- open cover of (X, 7). Since (X, 7) is wa-Lindeldf, {A; : i € I} has
a countable sucover say {A; :m € N}. Therefore, {4; :n € N} is a countable
subcover of (X, 7) and {4;, : n € N} is subfamily of {4; : i € I} andso {A;, :n €
N7} is a countably wa-open cover of (X, 7). Again since (X, 7) is countably wa-
compact, {A;, :n € N} has a finite subcover say {4;, : k =1,...,n}. Therefore
{4, :k=1,....,n} C{A;, :ne N}and {A;, :ne N} C{A;:iecI}. Therefore
{4;, : k=1,...,n} is a finite subcover of {4; : i € I'} for (X, 7). Hence (X, 7) is
wa-compact space. O

Theorem 4.17. A wa-closed subspace of a wa-Lindelof space is wa-Lindeldf.

Proof. Let (X, 7) be a wa-Lindeldf space. Let (Y, 7,) be a wa-closed subspace of
(X,7). Let G = {G; : i € I} be an wa-open cover of (Y, 7). Now G; is open
in (Y,7,) for all i € I. Now G; can be expressed as Y N H;,that is G; = Y () H;
for all ¢ € I where H; is wa-open in (X, 7). Then {H; : i € I} U (X —Y) is an
wa-open cover of (X, 7). Since (X, 7) is wa-Lindelof space, there is an wa-open
cover of (X,7) which has a countable subcover say {H; :n € N} U (X —Y).
Let w={YNH;, :ne N} Bt YNH,;, =G, foral i € I. Therefore
u=1{G,;, :ne€ N} C{G;:n €I}, uis a countable subcover of G for (Yr,).
Therefore every wa-open cover of (Y, 7,) has a countable subcover u. Hence (Y1)
is wa-Lindelof space. [

5 wa-Connectedness in Topological Spaces

Definition 5.1. A topological space (X, 7) is said to be wa-connected if X cannot
be written as a disjoint union of two non empty wa-open sets.

A subset of (X, 7) is wa-connected if it is wa-connected as a subspace.

Theorem 5.1. For a topological space (X, T) the following are equivalent:
1. (X, 1) is wa-connected

2. The only subsets of (X,7) which are both wa-open and wa-closed are the
empty set ¢ and X .
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3. Each wa-continuous map of (X, 7) into a discrete space (Y, o) with at least
two points is a constant map.

Proof. 1 = 2: Let G be a wa-open and wa-closed subset of (X, 7). Then X —G is
also both wa-open and wa-closed. Then X = GU (X — G) a disjoint union of two
non-empty wa-open sets which contradicts the fact that (X, 7) is wa-connected.
Hence G = ¢ or X.

2 = 1: Suppose that X = AU B where A and B are disjoint non-empty
wa-open subsets of (X, 7). Since A = X — B, then A is both wa-open and wa-
closed. By assumption A = ¢ or X, which is a contradiction. Hence (X,7) is
wao-connected.

2 =3 Let f: (X,7) = (Y,0) be a wa-continuous map, where (Y,0) is
discrete space with at least two points. Then f~!({y}) is wa- closed and wa-open
for each y € Y. That is (X, 7) is covered by wa -closed and wa-open covering
{f7'({y}) : y € Y}. By assumption, {f'({y}) = ¢ or X for each y € Y. If
{f~*({y}) = ¢ for each y € Y, then f fails to be a map. Therefore there exist at
least one point say f~1({y1}) # ¢, y1 € Y such that f~*({y1}) = X. This shows
that f is a constant map.

3 = 2: Let G be both wa-open and wa-closed in (X, 7). Suppose G # ¢.
Let f : (X,7) = (Y,0) be a wa-continuous map defined by f(G) = {a} and
f(X — G) = {b} where a # b and a,b € Y. By assumption, f is constant so
G=X. O

Theorem 5.2. Every wa-connected space is connected but converse need not true
m general.

Example 5.3. Let X = {a,b,c} and 7 = {¢, X}. Then (X,7) is connected but
not an wa-connected space because X = {a} U {b,c} wherer {a} and {b,c} are
wa-open sets in (X, 7).

Theorem 5.4. Let f: (X,7) — (Y,0) be a wa-continuous surjection and (X, T)
is wa-connected, then (Y, o) is connected

Proof. Suppose that (Y,o) is not connected. Let Y = AU B where A and B
are disjoint non-empty open subsets in (Y,0)). Since f is wa-continuous, X =
Y (A) U f~YB), where f~1(A) and f~1(B) are disjoint non-empty wa-open
subsets in (X, 7). This contradicts the fact that (X, 7) is wa-connected. Hence
(Y, 0) is connected. O

Theorem 5.5. Suppose that (X, 7) is T,a- space, then (X, T) is connected if and
only if (X, 1) is wa-connected.

Theorem 5.6. Let f: (X,7) = (Y,0) be a wa-irresolute surjection and (X, 1) is
wa-connected, then (Y, o) is wa-connected.

Theorem 5.7. The image of a connected space under strongly wa-continuous map
is wa-connected.
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