Thai Journal of Mathematics Volume 12 (2014) Number 2 : 499–507 Thai J. Math

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

$\omega\alpha$ -Compactness and $\omega\alpha$ -Connectedness in Topological Spaces

P. G. Patil

Department of Mathematics SKSVM Agadi College of Engineering and Technology Laxmeshwar-582116, Karnataka, India e-mail : pgpatil01@gmail.com

Abstract : In this paper the concepts of $\omega\alpha$ -compactness and $\omega\alpha$ -connectedness are introduced and some of their properties are obtained using $\omega\alpha$ -closed sets.

Keywords : $\omega\alpha$ -closed; $\omega\alpha$ -continuous; $\omega\alpha$ -compactness; $\omega\alpha$ -connectedness. 2010 Mathematics Subject Classification : 54D05; 54D30.

1 Introduction

The notions of compactness and connectedness are very useful and fundamental notions of general topology also in the other advanced branches of mathematics. Many researchers [1–6] have investigated the basic properties of compactness and connectedness.

Recently, Benchalli et al. [7, 8] introduced and studied a new class of closed sets called $\omega\alpha$ -closed sets and continuous maps in topological space. The aim of this paper is to introduce the concept of $\omega\alpha$ -compactness and $\omega\alpha$ -connectedness in topological spaces and is to give some characterization of $\omega\alpha$ -compactness and $\omega\alpha$ -connectedness. Further it is proved that $\omega\alpha$ -connectedness is preserved under $\omega\alpha$ - irresolute surjections.

Copyright \bigodot 2014 by the Mathematical Association of Thailand. All rights reserved.

2 Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) (or simply X, Y and Z) represent topological spaces on which no separation axioms are assumed unless otherwise metioned. For a subset A of (X, τ) , cl(A), Int(A), $\alpha cl(A)$ and A^c denote the closure of A, inerior of A, α -closure of A and the compliment of A in X respectively.

The following definitions are useful in the sequel.

Definition 2.1. Let (X, τ) be a topological space. Then,

- 1. A subset A of X is called $\omega \alpha$ -closed set [7] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open in (X, τ) .
- 2. A topological space (X, τ) is said to be *GO*-compact [1] (resp. α GO-compact [2]) if every *g*-open(resp. αg -open) cover of (X, τ) has a finite subcover.
- 3. A topological space (X, τ) is said to be *GPR*-compact [4] (resp. ω -compact [6]) if every *GPR*-open(resp. ω -open) cover of (X, τ) has a finite subcover.
- 4. A map $f: (X, \tau) \to (Y, \sigma)$ is called $\omega \alpha$ -continuous [8] (resp. $\omega \alpha$ -irresolute) if the inverse image of every closed (resp. $\omega \alpha$ -closed) set in (Y, σ) is $\omega \alpha$ -closed in (X, τ) .
- 5. $f: (X, \tau) \to (Y, \sigma)$ is called strongly $\omega \alpha$ -continuous [9] (resp. perfectly $\omega \alpha$ continuous) if the inverse image of every $\omega \alpha$ -closed (resp. $\omega \alpha$ -closed) set in (Y, σ) is closed (resp. clopen) in (X, τ) .
- f: (X, τ) → (Y, σ) is called strongly g^{*}-continuous [5] if the inverse image of every strongly g closed set in (Y, σ) is closed in (X, τ)
- 7. A topological space (X, τ) is said to be $T_{\omega\alpha}$ -space [7] (resp $_{\alpha g}T_{\omega\alpha}, _{\omega\alpha}T_{stg}$ space) if every $\omega\alpha$ -closed (resp. αg -closed, $\omega\alpha$ -closed) set is closed (resp. $\omega\alpha$ -closed, strongly g-closed).

3 $\omega\alpha$ -Compactness in Topological Spaces

In this section, we introduce the concept of $\omega \alpha$ -compactness and studied some of their properties.

Definition 3.1. A collection $\{A_i : i \in I\}$ of $\omega\alpha$ -open sets in a topological space (X, τ) is called a $\omega\alpha$ - open cover of a subset A in (X, τ) if $A \subseteq \bigcup_{i \in I} A_i$.

Definition 3.2. A topological space (X, τ) is called $\omega \alpha$ -compact if every $\omega \alpha$ -open cover of (X, τ) has a finite subcover.

Definition 3.3. A subset A of a topological space (X, τ) is called $\omega\alpha$ -compact relative to (X, τ) if for every collection $\{A_i : i \in I\}$ of $\omega\alpha$ -open subsets of (X, τ) such that $A \subseteq \bigcup_{i \in I} A_i$, there exists a finite subset I_0 of I such that $A \subseteq \bigcup_{i \in I_0} A_i$.

Theorem 3.1. A $\omega\alpha$ -closed subset of $\omega\alpha$ - compact space (X, τ) is $\omega\alpha$ - compact relative to (X, τ) .

Proof. Let A be a $\omega\alpha$ - closed subset of a topological space (X, τ) . Then A^c is $\omega\alpha$ -open in (X, τ) . Let $S = \{A_i : i \in I\}$ be an $\omega\alpha$ -open cover of A by $\omega\alpha$ -open subsets in (X, τ) . Then $S^* = S \cup A^c$ is a $\omega\alpha$ - open cover of (X, τ) . That is $X = (\bigcup_{i \in I} A_i) \bigcup A^c$. By hypothesis (X, τ) is $\omega\alpha$ -compact and hence S^* is reducible to a finite subcover of (X, τ) say $X = A_{i_1} \cup A_{i_2} \cup \cdots \cup A_{i_n} \cup A^c$, $A_{i_k} \in S^*$. But A and A^c are disjoint. Hence $A \subseteq A_{i_1} \cup A_{i_2} \cup \cdots \cup A_{i_n} \in S$. Thus a $\omega\alpha$ -open cover S of A contains a finite subcover. Hence A is $\omega\alpha$ -compact relative to (X, τ) .

Theorem 3.2. Every $\omega \alpha$ -compact space is compact.

Proof. Let (X, τ) be a $\omega\alpha$ -compact space. Let $\{A_i : i \in I\}$ be an open cover of (X, τ) . By [7], $\{A_i : i \in I\}$ is a $\omega\alpha$ -open cover of (X, τ) . Since (X, τ) is $\omega\alpha$ -compact, $\omega\alpha$ -open cover $\{A_i : i \in I\}$ of (X, τ) has a finite subcover say $\{A_i : i = 1, \ldots, n\}$ for X. Hence (X, τ) is compact. \Box

Theorem 3.3. If (X, τ) is compact and $T_{\omega\alpha}$ -space, then (X, τ) is $\omega\alpha$ - compact.

Theorem 3.4. Every αGO -compact space is $\omega \alpha$ -compact.

Proof. Let (X, τ) be a αGO -compact space. Let $\{A_i : i \in I\}$ be an $\omega \alpha$ -open cover of (X, τ) by $\omega \alpha$ -open sets in (X, τ) . From [7], $\{A_i : i \in I\}$ is αg -open cover of (X, τ) by αg -open sets. Since (X, τ) is αGO compact, the αg -open cover $\{A_i : i \in I\}$ of (X, τ) has a finite subcover say $\{A_i : i = 1, \ldots, n\}$ of (X, τ) .Hence (X, τ) is $\omega \alpha$ -compact.

Theorem 3.5. If (X, τ) is $\omega \alpha$ -compact and $\alpha_{q}T_{\omega\alpha}$, then (X, τ) is αGO -compact.

Theorem 3.6. Every GPR compact space is $\omega\alpha$ -compact.

Proof. Let (X, τ) be a *GPR*-copmact space. Let $\{A_i : i \in I\}$ be an $\omega\alpha$ -open cover of (X, τ) by $\omega\alpha$ -open sets. From [7], $\{A_i : i \in I\}$ is gpr-open cover of (X, τ) , since (X, τ) is *GPR*-compact, the gpr-open cover $\{A_i : i \in I\}$ of (X, τ) has a finite sub cover say $\{A_i : i = 1, \ldots, n\}$. Hence (X, τ) is $\omega\alpha$ -compact.

Theorem 3.7. A $\omega\alpha$ -closed subset of αGO -compact space (X, τ) is αGO -compact relative to (X, τ) .

Proof. From [7], every $\omega \alpha$ -closed set is αg -closed and since αg -closed subset of a αGO -compact space is αGO -compact relative to (X, τ) [2], the result follows. \Box

Theorem 3.8. The image of a $\omega\alpha$ -compact space under $\omega\alpha$ -continuous onto map is compact.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\omega \alpha$ -continuous map from $\omega \alpha$ -compact space (X, τ) on to a topological space (Y, σ) . Let $\{A_i : i \in I\}$ be an open cover of (Y, σ) . Then $\{f^{-1}(A_i) : i \in I\}$ is a $\omega \alpha$ open cover of (X, τ) , as f is $\omega \alpha$ - continuous. Since (X, τ) is $\omega \alpha$ -compact, the $\omega \alpha$ -open cover of $(X, \tau), \{f^{-1}(A_i) : i \in I\}$ has a finite subcover say $\{f^{-1}(A_i) : i = 1, \ldots, n\}$. Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$ which implies $f(X) = \bigcup_{i=1}^n (A_i)$. Then $Y = \bigcup_{i=1}^n (A_i)$. That is $\{A_1, A_2, \ldots, A_n\}$ is a finite subcover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is compact.

Theorem 3.9. If a map $f : (X, \tau) \to (Y, \sigma)$ is $\omega \alpha$ -irresolute and a subset S of X is $\omega \alpha$ -compact relative to (X, τ) , then the image f(S) is $\omega \alpha$ -compact relative to (Y, σ) .

Proof. Let $\{A_i : i \in I\}$ be a collection of $\omega \alpha$ -open sets in (Y, σ) , such that $f(S) \subseteq \bigcup_{i \in I} A_i$. Then $S \subseteq \bigcup_{i=1}^n f^{-1}(A_i)$, where $\{f^{-1}(A_i : i \in I\}$ is $\omega \alpha$ -open set in (X, τ) . Since S is $\omega \alpha$ -compact relative to (X, τ) , there exists finite subcollection $\{A_1, A_2, \ldots, A_n\}$ such that $S \subseteq \bigcup_{i=1}^n f^{-1}(A_i)$. That is $f(S) \subseteq \bigcup_{i=1}^n A_i$. Hence f(S) is $\omega \alpha$ -compact relative to (Y, σ) .

Theorem 3.10. If a map $f : (X, \tau) \to (Y, \sigma)$ is strongly $\omega \alpha$ -continuous map from a compact space (X, τ) onto a topological space (Y, σ) , then (Y, σ) is $\omega \alpha$ -compact.

Proof. Let $\{A_i : i \in I\}$ be an $\omega\alpha$ -open cover of $(Y\sigma)$. Since f is strongly $\omega\alpha$ continuous, $\{f^{-1}(A_i : i \in I\}$ is an open cover of (X, τ) . Again since (X, τ) is compact, the open cover $\{f^{-1}(A_i) : i \in I\}$ of (X, τ) has a finite subcover say $\{f^{-1}(A_i) : i = 1, \ldots, n\}$. Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$, which implies $f(X) = \bigcup_{i=1}^n A_i$, so that $Y = \bigcup_{i=1}^n A_i$. That is $\{A_1, A_2, \ldots, A_n\}$ is a finite subcover of $\{A_i : i \in I\}$ for $(Y\sigma)$. Hence (Y, σ) is compact. \Box

Theorem 3.11. If a map $f : (X, \tau) \to (Y, \sigma)$ is perfectly $\omega \alpha$ -continuous map from a compact spec (X, τ) onto a topological space (Y, σ) , then (Y, σ) is $\omega \alpha$ -compact.

Theorem 3.12. A topological space (X, τ) is $\omega\alpha$ -compact if and only if every family of $\omega\alpha$ -closed sets of (X, τ) having finite intersection property has a non-empty intersection.

Proof. Suppose (X, τ) is $\omega \alpha$ -compact. Let $\{A_i : i \in I\}$ be a family of $\omega \alpha$ closed sets with finite intersection property.

Suppose $\bigcap_{i \in I} A_i = \phi$. Then $X - \bigcap_{i \in I} A_i = X$. This implies $\bigcup_{i \in I} (X - A_i) = X$. Thus the cover $\{X - A_i : i \in I\}$ is a $\omega \alpha$ -open cover of (X, τ) . Then, the $\omega \alpha$ -open cover $\{X - A_i : i \in I\}$ has a finite subcover say $\{X - A_i : i = 1, \dots, n\}$. This implies $X = \bigcup_{i \in I} (X - A_i)$ which implies $X = X - \bigcap_{i=1}^n A_i$, which implies $X - X = X - [X - \bigcap_{i=1}^n A_i]$ which implies $\phi = \bigcap_{i=1}^n A_i$. This contradicts the assumption. Hence $\bigcap_{i \in I} A_i \neq \phi$.

Conversely suppose (X, τ) is not $\omega \alpha$ -compact. Then there exists an $\omega \alpha$ -open cover of (X, τ) say $\{G_i : i \in I\}$ having no finite subcover. This implies for any finite subfamily $\{G_i : i = 1, \ldots, n\}$ of $\{G_i : i \in I\}$, we have $\bigcup_{i=1}^n G_i \neq X$, which implies $X - \bigcup_{i=1}^n G_i \neq X - X$, which implies $\bigcap_{i \in I} (X - G_i) \neq \phi$. Then

the family $\{X - G_i : i \in I\}$ of $\omega \alpha$ - closed sets has a finite intersection property. Also by assumption $\bigcap_{i \in I} (X - G_i) \neq \phi$ which implies $X - \bigcup_{i=1}^n G_i \neq \phi$, so that $\bigcup_{i=1}^n G_i \neq X$. This implies $\{G_i : i \in I\}$ is not a cover of (X, τ) . This contradicts the fact that $\{G_i : i \in I\}$ is a cover for (X, τ) . Therefore a $\omega \alpha$ -open cover $\{G_i : i \in I\}$ of (X, τ) has a finite subcover $\{G_i : i = 1, \ldots, n\}$. Hence (X, τ) is $\omega \alpha$ -compact.

Theorem 3.13. The image of a $\omega\alpha$ -compact space under a strongly $\omega\alpha$ -continuous map is $\omega\alpha$ -compact.

Theorem 3.14. The image of a $\omega\alpha$ -compact space under a $\omega\alpha$ -irresolute map is $\omega\alpha$ -compact.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ is $\omega \alpha$ -irresolute map from a compact space (X, τ) onto a topological space (Y, σ) . Let $\{A_i : i \in I\}$ be an $\omega \alpha$ -open cover of (Y, σ) . Then $\{f^{-1}(A_i) : i \in I\}$ is a $\omega \alpha$ -open cover of (X, τ) , since f is $\omega \alpha$ -irresolute. As (X, τ) is $\omega \alpha$ - compact, the $\omega \alpha$ -open cover $\{f^{-1}(A_i) : i \in I\}$ of (X, τ) has a finite subcover say $\{f^{-1}(A_i) : i = 1, \ldots, n\}$. Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$. Then $f(X) = \bigcup_{i=1}^n A_i$, that is $Y = \bigcup_{i=1}^n A_i$. Thus $\{A_1, A_2, \ldots, A_n\}$ is a finite subcover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is $\omega \alpha$ - compact. \Box

4 Countably $\omega \alpha$ -Compactness in Topological Spaces

In this section, we study the concept of Countably $\omega \alpha$ -compactness and their properties.

Definition 4.1. A topological space (X, τ) is said to be countably $\omega \alpha$ -compact if every countable $\omega \alpha$ -open cover of (X, τ) has a finite subcover.

Theorem 4.1. If (X, τ) is a countably $\omega \alpha$ -compact space, then (X, τ) is countably compact

Theorem 4.2. If (X, τ) is a countably compact and $T_{\omega\alpha}$ -space, then (X, τ) is countably $\omega\alpha$ -compact.

Theorem 4.3. Every $\omega \alpha$ -compact space is countably $\omega \alpha$ -compact.

Theorem 4.4. If $f : (X, \tau) \to (Y, \sigma)$ is $\omega \alpha$ -continuous map form a countably $\omega \alpha$ -compact space (X, τ) onto a topological space (Y, σ) , then (Y, σ) is countably compact.

Theorem 4.5. Let $f : (X, \tau) \to (Y, \sigma)$ is strongly $\omega \alpha$ -continuous map form a countably compact space (X, τ) onto a topological space (Y, σ) , then (Y, σ)) is countably $\omega \alpha$ -compact. **Theorem 4.6.** Let $f : (X, \tau) \to (Y, \sigma)$ is strongly g^* -continuous map form a countably compact space (X, τ) onto a topological space (Y, σ) and if (Y, σ) is $_{\omega\alpha}T_{stq}$ -space, then (Y, σ) countably $\omega\alpha$ -compact.

Proof. Let $\{A_i : i \in I\}$ be an countably $\omega \alpha$ -open cover of (Y, σ) by $\omega \alpha$ -open sets. Since (Y, σ) is $_{\omega\alpha} T_{stg}$ -space , $\{A_i : i \in I\}$ is countably strongly g-open cover of (Y, σ) . Then $\{f^{-1}(A_i) : i \in I\}$ is a countable open cover of (X, τ) , since f is strongly g^{*}-continuous map. As (X, τ) is countably compact, the countable open cover $\{f^{-1}(A_i) : i \in I\}$ of (X, τ) has a finite subcove say $\{f^{-1}(A_i) : i = 1, \ldots, n\}$. Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$. Then $f(X) = \bigcup_{i=1}^n A_i$, that is $Y = \bigcup_{i=1}^n A_i$. Thus $\{A_1, A_2, \ldots, A_n\}$ is a finite subcover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is $\omega \alpha$ -compact.

Theorem 4.7. If a map $f : (X, \tau) \to (Y, \sigma)$ is perfectly $\omega \alpha$ -continuous map form a countably compact space (X, τ) onto a topological space (Y, σ) , then (Y, σ) is countably $\omega \alpha$ -compact.

Theorem 4.8. The image of a countably $\omega\alpha$ -compact space under $\omega\alpha$ -irresolute map is countably $\omega\alpha$ -compact.

Theorem 4.9. A space (X, τ) is countably $\omega \alpha$ -compact if and only if every countable family of $\omega \alpha$ -closed sets of (X, τ) having finite intersection property has a non-empty intersection.

Theorem 4.10. A $\omega\alpha$ -closed subset of a countably $\omega\alpha$ -compact space is countably $\omega\alpha$ -compact.

Definition 4.2. A topological space (X, τ) is said to be $\omega \alpha$ -Lindelöf space if every $\omega \alpha$ -open cover of (X, τ) has a countable subcover.

Theorem 4.11. Every $\omega \alpha$ -Lindelöf space is Lindelöf space.

Theorem 4.12. If (X, τ) is Lindelöf and $T_{\omega\alpha}$ -space, then (X, τ) is $\omega\alpha$ -Lindelöf space.

Theorem 4.13. Every $\omega \alpha$ -compact space is $\omega \alpha$ -Lindelöf space.

Proof. Let (X, τ) is $\omega\alpha$ -compact space. Let $\{A_i : i \in I\}$ be an $\omega\alpha$ -open cover of (X, τ) . Then $\{A_i : i \in I\}$ has a finite subcover say $\{A_i : i = 1, \ldots, n\}$, since (X, τ) is $\omega\alpha$ -compact. Since every finite subcover is always a countable subcover and therefore, $\{A_i : i = 1, \ldots, n\}$ is countable subcover of $\{A_i : i \in I\}$ for (X, τ) . Hence (X, τ) is $\omega\alpha$ -Lindelöf space. \Box

Theorem 4.14. If a map $f : (X, \tau) \to (Y, \sigma)$ is $\omega \alpha$ -continuous map form a $\omega \alpha$ -Lindelöf space (X, τ) onto a topological space (Y, σ) , then (Y, σ) is Lindelöf space.

Theorem 4.15. The image of a $\omega\alpha$ -Lindelöf space under $\omega\alpha$ -irresolute map is $\omega\alpha$ -Lindelöf.

 $\omega\alpha\text{-}\mathsf{Compactness}$ and $\omega\alpha\text{-}\mathsf{Connectedness}$ in Topological Spaces

Proof. $f: (X, \tau) \to (Y, \sigma)$ is $\omega \alpha$ -irresolute map form a $\omega \alpha$ -Lindelöf space (X, τ) onto a topological space (Y, σ) . Let $\{A_i : i \in I\}$ be an $\omega \alpha$ -open cover of (Y, σ) , then $\{f^{-1}(A_i) : i \in I\}$ is an $\omega \alpha$ -open cover of (X, τ) as f is $\omega \alpha$ -irresolute. Since (X, τ) is $\omega \alpha$ - Lindelöf, the $\omega \alpha$ -open cover $\{f^{-1}(A_i) : i \in I\}$ of (X, τ) has a countable subcover say $\{f^{-1}(A_i) : i = 1, \ldots, n\}$. Therefore $X = \bigcup_{i=1}^n f^{-1}(A_i)$ which implies $f(X) = Y = \bigcup_{i=1}^n A_i$ that is $\{A_1, A_2, \ldots, A_n\}$ is a countable subfamily of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is Lindelöf space. \Box

Theorem 4.16. If (X, τ) is $\omega \alpha$ -Lindelöf and countably $\omega \alpha$ -compact space then (X, τ) is $\omega \alpha$ -compact.

Proof. Suppose (X, τ) is $\omega \alpha$ -Lindelöf and countably $\omega \alpha$ -compact space. Let $\{A_i : i \in I\}$ be an $\omega \alpha$ - open cover of (X, τ) . Since (X, τ) is $\omega \alpha$ -Lindelöf, $\{A_i : i \in I\}$ has a countable succover say $\{A_{i_n} : n \in N\}$. Therefore, $\{A_{i_n} : n \in N\}$ is a countable subcover of (X, τ) and $\{A_{i_n} : n \in N\}$ is subfamily of $\{A_i : i \in I\}$ and so $\{A_{i_n} : n \in N\}$ is a countably $\omega \alpha$ -open cover of (X, τ) . Again since (X, τ) is countably $\omega \alpha$ -compact, $\{A_{i_n} : n \in N\}$ has a finite subcover say $\{A_{i_k} : k = 1, \ldots, n\}$. Therefore $\{A_{i_k} : k = 1, \ldots, n\} \subseteq \{A_{i_n} : n \in N\}$ and $\{A_{i_n} : n \in N\} \subseteq \{A_i : i \in I\}$. Therefore $\{A_{i_k} : k = 1, \ldots, n\}$ is a finite subcover of $\{A_i : i \in I\}$ for (X, τ) . Hence (X, τ) is $\omega \alpha$ -compact space. \Box

Theorem 4.17. A $\omega\alpha$ -closed subspace of a $\omega\alpha$ -Lindelöf space is $\omega\alpha$ -Lindelöf.

Proof. Let (X, τ) be a $\omega\alpha$ -Lindelöf space. Let (Y, τ_y) be a $\omega\alpha$ -closed subspace of (X, τ) . Let $G = \{G_i : i \in I\}$ be an $\omega\alpha$ -open cover of (Y, τ_y) . Now G_i is open in (Y, τ_y) for all $i \in I$. Now G_i can be expressed as $Y \cap H_i$, that is $G_i = Y \cap H_i$ for all $i \in I$ where H_i is $\omega\alpha$ -open in (X, τ) . Then $\{H_i : i \in I\} \cup (X - Y)$ is an $\omega\alpha$ -open cover of (X, τ) . Since (X, τ) is $\omega\alpha$ -Lindelöf space, there is an $\omega\alpha$ -open cover of (X, τ) . Since (X, τ) is $\omega\alpha$ -Lindelöf space, there is an $\omega\alpha$ -open cover of (X, τ) . But $Y \cap H_{i_n} = G_{i_n}$, for all $i \in I$. Therefore $u = \{G_{i_n} : n \in N\} \subseteq \{G_i : n \in I\}, u$ is a countable subcover of G for $(Y\tau_y)$. Therefore every $\omega\alpha$ -open cover of (Y, τ_y) has a countable subcover u. Hence $(Y \tau_y)$ is $\omega\alpha$ -Lindelöf space.

5 $\omega\alpha$ -Connectedness in Topological Spaces

Definition 5.1. A topological space (X, τ) is said to be $\omega\alpha$ -connected if X cannot be written as a disjoint union of two non empty $\omega\alpha$ -open sets.

A subset of (X, τ) is $\omega \alpha$ -connected if it is $\omega \alpha$ -connected as a subspace.

Theorem 5.1. For a topological space (X, τ) the following are equivalent:

- 1. (X, τ) is $\omega \alpha$ -connected
- 2. The only subsets of (X, τ) which are both $\omega \alpha$ -open and $\omega \alpha$ -closed are the empty set ϕ and X.

3. Each $\omega \alpha$ -continuous map of (X, τ) into a discrete space (Y, σ) with at least two points is a constant map.

Proof. $1 \Rightarrow 2$: Let G be a $\omega\alpha$ -open and $\omega\alpha$ -closed subset of (X, τ) . Then X - G is also both $\omega\alpha$ -open and $\omega\alpha$ -closed. Then $X = G \cup (X - G)$ a disjoint union of two non-empty $\omega\alpha$ -open sets which contradicts the fact that (X, τ) is $\omega\alpha$ -connected. Hence $G = \phi$ or X.

 $2 \Rightarrow 1$: Suppose that $X = A \cup B$ where A and B are disjoint non-empty $\omega \alpha$ -open subsets of (X, τ) . Since A = X - B, then A is both $\omega \alpha$ -open and $\omega \alpha$ -closed. By assumption $A = \phi$ or X, which is a contradiction. Hence (X, τ) is $\omega \alpha$ -connected.

 $2 \Rightarrow 3$: Let $f: (X, \tau) \to (Y, \sigma)$ be a $\omega \alpha$ -continuous map, where (Y, σ) is discrete space with at least two points. Then $f^{-1}(\{y\})$ is $\omega \alpha$ - closed and $\omega \alpha$ -open for each $y \in Y$. That is (X, τ) is covered by $\omega \alpha$ -closed and $\omega \alpha$ -open covering $\{f^{-1}(\{y\}) : y \in Y\}$. By assumption, $\{f^{-1}(\{y\}) = \phi \text{ or } X \text{ for each } y \in Y$. If $\{f^{-1}(\{y\}) = \phi \text{ for each } y \in Y, \text{ then } f \text{ fails to be a map. Therefore there exist at$ $least one point say <math>f^{-1}(\{y_1\}) \neq \phi, y_1 \in Y$ such that $f^{-1}(\{y_1\}) = X$. This shows that f is a constant map.

 $3 \Rightarrow 2$: Let G be both $\omega \alpha$ -open and $\omega \alpha$ -closed in (X, τ) . Suppose $G \neq \phi$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a $\omega \alpha$ -continuous map defined by $f(G) = \{a\}$ and $f(X - G) = \{b\}$ where $a \neq b$ and $a, b \in Y$. By assumption, f is constant so G = X.

Theorem 5.2. Every $\omega \alpha$ -connected space is connected but converse need not true in general.

Example 5.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X\}$. Then (X, τ) is connected but not an $\omega\alpha$ -connected space because $X = \{a\} \cup \{b, c\}$ where $\{a\}$ and $\{b, c\}$ are $\omega\alpha$ -open sets in (X, τ) .

Theorem 5.4. Let $f : (X, \tau) \to (Y, \sigma)$ be a $\omega \alpha$ -continuous surjection and (X, τ) is $\omega \alpha$ -connected, then (Y, σ) is connected

Proof. Suppose that (Y, σ) is not connected. Let $Y = A \cup B$ where A and B are disjoint non-empty open subsets in (Y, σ)). Since f is $\omega \alpha$ -continuous, $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty $\omega \alpha$ -open subsets in (X, τ) . This contradicts the fact that (X, τ) is $\omega \alpha$ -connected. Hence (Y, σ) is connected.

Theorem 5.5. Suppose that (X, τ) is $T_{\omega\alpha}$ - space, then (X, τ) is connected if and only if (X, τ) is $\omega\alpha$ -connected.

Theorem 5.6. Let $f : (X, \tau) \to (Y, \sigma)$ be a $\omega \alpha$ -irresolute surjection and (X, τ) is $\omega \alpha$ -connected, then (Y, σ) is $\omega \alpha$ -connected.

Theorem 5.7. The image of a connected space under strongly $\omega\alpha$ -continuous map is $\omega\alpha$ -connected.

 $\omega\alpha\text{-}\mathsf{Compactness}$ and $\omega\alpha\text{-}\mathsf{Connectedness}$ in Topological Spaces

References

- K. Balachandran, P. Sundaram, H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi Univ. Ser. A, Math. 12 (1991) 5–13.
- [2] R. Devi, Studies on Generalizations of Closed Maps and Homeomorphisms in Topological Spaces, Ph.D. Thesies, Bharathiyar University, Coimbatore, 1994.
- [3] G. Di Maio, T. Noiri, On s-Closed Spaces, Indian J. Pure Appl. Math. 18 (1987) 226–233.
- [4] Y. Gnanambal, K. Balachandran, On gpr-continuous functions in topological spaces, Indian J. Pure Appl. Math. 30 (6) (1999) 581–593.
- [5] A. Pushpalatha, Studies on Generalizations of Mappings in Topological Spaces, Ph.D. Thesies, Bharathiyar University, Coimbatore, 2000.
- [6] M. Sheik John, A Study on Generalizations of Closed Sets and Continuous Maps in Topological and Bitopological Spaces, Ph.D. Thesies, Bharathiyar University, Coimbatore, 2002.
- [7] S.S. Benchalli, P.G. Patil, T.D. Rayanagoudar, $\omega\alpha$ -Closed sets in topological spaces, The Global J. Appl. Maths Math. Sciences 2 (1-2) (2009) 53–63.
- [8] S.S. Benchalli, P.G. Patil, Some new continuous maps in topological spaces, J. Advanced Studies in Topology 1 (2) (2010) 16–21.
- [9] P.G. Patili, Some Studies in Topological Spaces, Ph.D. Thesies, Karnatak University Dharwad, Karnataka, 2007.

(Received 25 October 2012) (Accepted 10 July 2013)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th