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1 Introduction

The notions of compactness and connectedness are very useful and fundamen-
tal notions of general topology also in the other advanced branches of mathematics.
Many researchers [1–6] have investigated the basic properties of compactness and
connectedness.

Recently, Benchalli et al. [7, 8] introduced and studied a new class of closed
sets called ωα-closed sets and continuous maps in topological space. The aim of
this paper is to introduce the concept of ωα-compactness and ωα-connectedness
in topological spaces and is to give some characterization of ωα-compactness and
ωα-connectedness. Further it is proved that ωα-connectedness is preserved under
ωα- irresolute surjections.
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2 Preliminaries

Throughout this paper (X, τ), (Y, σ) and (Z, η)(or simply X, Y and Z) repre-
sent topological spaces on which no separation axioms are assumed unless other-
wise metioned. For a subset A of (X, τ), cl(A), Int(A), αcl(A) and Ac denote the
closure of A, inerior of A, α-closure of A and the compliment of A in X respecively.

The following definitions are useful in the sequel.

Definition 2.1. Let (X, τ) be a topological space.Then,

1. A subset A of X is called ωα-closed set [7] if αcl(A) ⊆ U whenever A ⊆ U
and U is ω-open in (X, τ).

2. A topological space (X, τ) is said to beGO-compact [1] (resp. αGO-compact
[2]) if every g-open(resp. αg-open) cover of (X, τ) has a finite subcover.

3. A topological space (X, τ) is said to be GPR-compact [4] (resp. ω-compact
[6]) if every GPR-open(resp. ω-open) cover of (X, τ) has a finite subcover.

4. A map f : (X, τ) → (Y, σ) is called ωα-continuous [8] (resp. ωα-irresolute) if
the inverse image of every closed (resp. ωα-closed) set in (Y, σ) is ωα-closed
in (X, τ).

5. f : (X, τ) → (Y, σ) is called strongly ωα-continuous [9] (resp. perfectly ωα-
continuous) if the inverse image of every ωα-closed (resp. ωα-closed) set in
(Y, σ) is closed (resp. clopen) in (X, τ).

6. f : (X, τ) → (Y, σ) is called strongly g∗-continuous [5] if the inverse image
of every strongly g closed set in (Y, σ) is closed in (X, τ)

7. A topological space (X, τ) is said to be Tωα-space [7] (resp αgTωα, ωαTstg

space) if every ωα-closed (resp. αg-closed, ωα-closed) set is closed (resp.
ωα-closed, strongly g-closed).

3 ωα-Compactness in Topological Spaces

In this section, we introduce the concept of ωα-compactness and studied some
of their properties.

Definition 3.1. A collection {Ai : i ∈ I} of ωα-open sets in a topological space
(X, τ) is called a ωα- open cover of a subset A in (X, τ) if A ⊆

∪
i∈I Ai.

Definition 3.2. A topological space(X, τ) is called ωα-compact if every ωα-open
cover of (X, τ) has a finite subcover.

Definition 3.3. A subset A of a topological space (X, τ) is called ωα-compact
relative to (X, τ) if for every collection {Ai : i ∈ I} of ωα-open subsets of (X, τ)
such that A ⊆

∪
i∈I Ai, there exists a finite subset I0 of I such that A ⊆

∪
i∈I0

Ai.
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Theorem 3.1. A ωα-closed subset of ωα- compact space (X, τ) is ωα- compact
relative to (X, τ).

Proof. Let A be a ωα- closed subset of a topological space (X, τ). Then Ac is
ωα-open in (X, τ). Let S = {Ai : i ∈ I} be an ωα-open cover of A by ωα-
open subsets in (X, τ). Then S∗ = S ∪ Ac is a ωα- open cover of (X, τ).That
is X = (

∪
i∈I Ai)

∪
Ac. By hypothesis (X, τ) is ωα-compact and hence S∗ is

reducible to a finite subcover of (X, τ) say X = Ai1 ∪Ai2 ∪· · ·∪Ain ∪Ac, Aik ∈ S∗.
But A and Ac are disjoint. Hence A ⊆ Ai1 ∪ Ai2 ∪ · · · ∪ Ain ∈ S. Thus a ωα-
open cover S of A contains a finite subcover. Hence A is ωα-compact relative to
(X, τ).

Theorem 3.2. Every ωα-compact space is compact.

Proof. Let (X, τ) be a ωα-compact space. Let {Ai : i ∈ I} be an open cover of
(X, τ). By [7], {Ai : i ∈ I} is a ωα-open cover of (X, τ). Since (X, τ) is ωα-
compact,ωα-open cover{Ai : i ∈ I} of (X, τ) has a finite subcover say {Ai : i =
1, . . . , n} for X. Hence (X, τ) is compact.

Theorem 3.3. If (X, τ) is compact and Tωα -space, then (X, τ) is ωα- compact.

Theorem 3.4. Every αGO-compact space is ωα-compact.

Proof. Let (X, τ) be a αGO-compact space. Let {Ai : i ∈ I} be an ωα-open
cover of (X, τ) by ωα-open sets in (X, τ). From [7], {Ai : i ∈ I} is αg-open
cover of (X, τ) by αg-open sets. Since (X, τ) is αGO compact, the αg-open cover
{Ai : i ∈ I} of (X, τ) has a finite subcover say {Ai : i = 1, . . . , n} of (X, τ).Hence
(X, τ) is ωα-compact.

Theorem 3.5. If (X, τ) is ωα-compact and αgTωα, then (X, τ) is αGO-compact.

Theorem 3.6. Every GPR compact space is ωα-compact.

Proof. Let (X, τ) be a GPR-copmact space. Let {Ai : i ∈ I} be an ωα-open cover
of (X, τ) by ωα-open sets. From [7], {Ai : i ∈ I} is gpr-open cover of (X, τ), since
(X, τ) is GPR-compact, the gpr-open cover {Ai : i ∈ I} of (X, τ) has a finite sub
cover say {Ai : i = 1, . . . , n}. Hence (X, τ) is ωα-compact.

Theorem 3.7. A ωα-closed subset of αGO-compact space (X, τ) is αGO-compact
relative to (X, τ).

Proof. From [7], every ωα-closed set is αg-closed and since αg-closed subset of a
αGO-compact space is αGO-compact relative to (X, τ) [2], the result follows.

Theorem 3.8. The image of a ωα-compact space under ωα-continuous onto map
is compact.
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Proof. Let f : (X, τ) → (Y, σ) be a ωα-continuoous map from ωα-compact space
(X, τ) on to a topological space (Y, σ). Let {Ai : i ∈ I} be an open cover of
(Y, σ). Then {f−1(Ai) : i ∈ I} is a ωα open cover of (X, τ), as f is ωα- continuous.
Since (X, τ) is ωα-compact, the ωα-open cover of (X, τ),{f−1(Ai) : i ∈ I} has a
finite subcover say {f−1(Ai) : i = 1, . . . , n}. Therefore X =

∪n
i=1 f

−1(Ai) which
implies f(X) =

∪n
i=1(Ai). Then Y =

∪n
i=1(Ai).That is {A1, A2, . . . , An} is a finite

subcover of {Ai : i ∈ I} for (Y, σ). Hence (Y, σ) is compact.

Theorem 3.9. If a map f : (X, τ) → (Y, σ) is ωα-irresolute and a subset S of
X is ωα-compact relative to (X, τ), then the image f(S) is ωα-compact relative to
(Y, σ).

Proof. Let {Ai : i ∈ I} be a collection of ωα-open sets in (Y, σ), such that f(S) ⊆∪
i∈I Ai. Then S ⊆

∪n
i=1 f

−1(Ai), where {f−1(Ai : i ∈ I} is ωα-open set in
(X, τ). Since S is ωα-compact relative to (X, τ), there exists finite subcollection
{A1, A2, . . . , An} such that S ⊆

∪n
i=1 f

−1(Ai). That is f(S) ⊆
∪n

i=1 Ai. Hence
f(S) is ωα-compact relative to (Y, σ).

Theorem 3.10. If a map f : (X, τ) → (Y, σ) is strongly ωα-continuous map from
a compact space (X, τ) onto a topological space (Y, σ), then (Y, σ) is ωα-compact.

Proof. Let {Ai : i ∈ I} be an ωα-open cover of (Y σ). Since f is strongly ωα-
continuous, {f−1(Ai : i ∈ I} is an open cover of (X, τ). Again since (X, τ) is
compact, the open cover {f−1(Ai) : i ∈ I} of (X, τ) has a finite subcover say
{f−1(Ai) : i = 1, . . . , n}. Therefore X =

∪n
i=1 f

−1(Ai), which implies f(X) =∪n
i=1 Ai, so that Y =

∪n
i=1 Ai. That is {A1, A2, . . . , An} is a finite subcover of

{Ai : i ∈ I} for (Y σ). Hence (Y, σ) is compact.

Theorem 3.11. If a map f : (X, τ) → (Y, σ) is perfectly ωα-continuous map from
a compact spce (X, τ) onto a topological space (Y, σ), then (Y, σ) is ωα-compact.

Theorem 3.12. A topological space (X, τ) is ωα-compact if and only if every
family of ωα-closed sets of (X, τ) having finite intersection property has a non-
empty intersection.

Proof. Suppose (X, τ) is ωα-compact. Let {Ai : i ∈ I} be a family of ωα closed
sets with finite intersection property.

Suppose
∩

i∈I Ai = ϕ. Then X −
∩

i∈I Ai = X. This implies
∪

i∈I(X −Ai) =
X. Thus the cover {X − Ai : i ∈ I} is a ωα-open cover of (X, τ). Then, the ωα-
open cover {X − Ai : i ∈ I} has a finite subcover say {X − Ai : i = 1, . . . , n}.
This implies X =

∪
i∈I(X − Ai) which implies X = X −

∩n
i=1 Ai, which implies

X − X = X − [X −
∩n

i=1 Ai] which implies ϕ =
∩n

i=1 Ai. This contradicts the
assumption. Hence

∩
i∈I Ai ̸= ϕ.

Conversely suppose (X, τ) is not ωα-compact. Then there exists an ωα-open
cover of (X, τ) say {Gi : i ∈ I} having no finite subcover. This implies for any
finite subfamily {Gi : i = 1, . . . , n} of {Gi : i ∈ I}, we have

∪n
i=1 Gi ̸= X,

which implies X −
∪n

i=1 Gi ̸= X − X, which implies
∩

i∈I(X − Gi) ̸= ϕ. Then
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the family {X − Gi : i ∈ I} of ωα- closed sets has a finite intersection property.
Also by assumption

∩
i∈I(X − Gi) ̸= ϕ which implies X −

∪n
i=1 Gi ̸= ϕ, so that∪n

i=1 Gi ̸= X. This implies {Gi : i ∈ I} is not a cover of (X, τ). This contradicts
the fact that {Gi : i ∈ I} is a cover for (X, τ). Therefore a ωα-open cover
{Gi : i ∈ I} of (X, τ) has a finite subcover {Gi : i = 1, . . . , n}. Hence (X, τ) is
ωα-compact.

Theorem 3.13. The image of a ωα-compact space under a strongly ωα-continuous
map is ωα-compact.

Theorem 3.14. The image of a ωα-compact space under a ωα-irresolute map is
ωα-compact.

Proof. Let f : (X, τ) → (Y, σ) is ωα-irresolute map from a compact space (X, τ)
onto a topological space (Y, σ). Let {Ai : i ∈ I} be an ωα-open cover of (Y, σ).
Then {f−1(Ai) : i ∈ I} is a ωα-open cover of (X, τ), since f is ωα-irresolute.
As (X, τ) is ωα- compact, the ωα-open cover {f−1(Ai) : i ∈ I} of (X, τ) has a
finite subcover say {f−1(Ai) : i = 1, . . . , n}. Therefore X =

∪n
i=1 f

−1(Ai).Then
f(X) =

∪n
i=1 Ai, that is Y =

∪n
i=1 Ai. Thus {A1, A2, . . . , An} is a finite subcover

of {Ai : i ∈ I} for (Y, σ). Hence (Y, σ) is ωα- compact.

4 Countably ωα-Compactness in Topological
Spaces

In this section, we study the concept of Countably ωα-compactness and their
properties.

Definition 4.1. A topological space (X, τ) is said to be countably ωα-compact if
every countable ωα-open cover of (X, τ) has a finite subcover.

Theorem 4.1. If (X, τ) is a countably ωα-compact space, then (X, τ) is countably
compact

Theorem 4.2. If (X, τ) is a countably compact and Tωα-space, then (X, τ) is
countably ωα-compact.

Theorem 4.3. Every ωα-compact space is countably ωα-compact.

Theorem 4.4. If f : (X, τ) → (Y, σ) is ωα-continuous map form a countably
ωα-compact space (X, τ) onto a topological space (Y, σ), then (Y, σ) is countably
compact.

Theorem 4.5. Let f : (X, τ) → (Y, σ) is strongly ωα-continuous map form
a countably compact space (X, τ) onto a topological space (Y, σ), then (Y, σ)) is
countably ωα-compact.
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Theorem 4.6. Let f : (X, τ) → (Y, σ) is strongly g∗-continuous map form a
countably compact space (X, τ) onto a topological space (Y, σ) and if (Y, σ) is

ωαTstg -space, then (Y, σ) countably ωα-compact.

Proof. Let {Ai : i ∈ I} be an countably ωα-open cover of (Y, σ) by ωα-open sets.
Since (Y, σ) is ωαTstg-space ,{Ai : i ∈ I} is countably strongly g-open cover of
(Y, σ). Then {f−1(Ai) : i ∈ I} is a countable open cover of (X, τ), since f is
strongly g∗-continuous map. As (X, τ) is countably compact, the countable open
cover {f−1(Ai) : i ∈ I} of (X, τ) has a finite subcove say {f−1(Ai) : i = 1, . . . , n}.
Therefore X =

∪n
i=1 f

−1(Ai).Then f(X) =
∪n

i=1 Ai, that is Y =
∪n

i=1 Ai. Thus
{A1, A2, . . . , An} is a finite subcover of {Ai : i ∈ I} for (Y, σ). Hence (Y, σ) is
ωα-compact.

Theorem 4.7. If a map f : (X, τ) → (Y, σ)) is perfectly ωα-continuous map form
a countably compact space (X, τ) onto a topological space (Y, σ), then (Y, σ) is
countably ωα-compact.

Theorem 4.8. The image of a countably ωα-compact space under ωα-irresolute
map is countably ωα-compact.

Theorem 4.9. A space (X, τ) is countably ωα-compact if and only if every count-
able family of ωα-closed sets of (X, τ) having finite intersection property has a
non-empty intersection.

Theorem 4.10. A ωα-closed subset of a countably ωα-compact space is countably
ωα-compact.

Definition 4.2. A topological space (X, τ) is said to be ωα-Lindelöf space if every
ωα-open cover of (X, τ) has a countable subcover.

Theorem 4.11. Every ωα-Lindelöf space is Lindelöf space.

Theorem 4.12. If (X, τ) is Lindelöf and Tωα- space, then (X, τ) is ωα-Lindelöf
space.

Theorem 4.13. Every ωα-compact space is ωα-Lindelöf space.

Proof. Let (X, τ) is ωα-compact space. Let {Ai : i ∈ I} be an ωα-open cover
of (X, τ). Then {Ai : i ∈ I} has a finite subcover say {Ai : i = 1, . . . , n}, since
(X, τ) is ωα-compact. Since every finite subcover is always a countable subcover
and therefore, {Ai : i = 1, . . . , n} is countable subcover of {Ai : i ∈ I} for (X, τ).
Hence (X, τ) is ωα-Lindelöf space.

Theorem 4.14. If a map f : (X, τ) → (Y, σ) is ωα-continuous map form a ωα-
Lindelöf space (X, τ) onto a topological space (Y, σ), then (Y, σ) is Lindelöf space.

Theorem 4.15. The image of a ωα-Lindelöf space under ωα-irresolute map is
ωα-Lindelöf.
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Proof. f : (X, τ) → (Y, σ) is ωα-irresolute map form a ωα-Lindelöf space (X, τ)
onto a topological space (Y, σ). Let {Ai : i ∈ I} be an ωα-open cover of (Y, σ), then
{f−1(Ai) : i ∈ I} is an ωα-open cover of (X, τ) as f is ωα-irresolute. Since (X, τ)
is ωα- Lindelöf, the ωα-open cover{f−1(Ai) : i ∈ I} of (X, τ) has a countable
subcover say {f−1(Ai) : i = 1, . . . , n}. Therefore X =

∪n
i=1 f

−1(Ai) which implies
f(X) = Y =

∪n
i=1 Ai that is {A1, A2, . . . , An} is a countable subfamily of {Ai :

i ∈ I} for (Y, σ). Hence (Y, σ) is Lindelöf space.

Theorem 4.16. If (X, τ) is ωα-Lindelöf and countably ωα-compact space then
(X, τ) is ωα-compact.

Proof. Suppose (X, τ) is ωα-Lindelöf and countably ωα-compact space. Let {Ai :
i ∈ I} be an ωα- open cover of (X, τ). Since (X, τ) is ωα-Lindelöf, {Ai : i ∈ I} has
a countable sucover say {Ain : n ∈ N}. Therefore, {Ain : n ∈ N} is a countable
subcover of (X, τ) and {Ain : n ∈ N} is subfamily of {Ai : i ∈ I} and so {Ain : n ∈
N} is a countably ωα-open cover of (X, τ). Again since (X, τ) is countably ωα-
compact, {Ain : n ∈ N} has a finite subcover say {Aik : k = 1, . . . , n}. Therefore
{Aik : k = 1, . . . , n} ⊆ {Ain : n ∈ N} and {Ain : n ∈ N} ⊆ {Ai : i ∈ I}. Therefore
{Aik : k = 1, . . . , n} is a finite subcover of {Ai : i ∈ I} for (X, τ). Hence (X, τ) is
ωα-compact space.

Theorem 4.17. A ωα-closed subspace of a ωα-Lindelöf space is ωα-Lindelöf.

Proof. Let (X, τ) be a ωα-Lindelöf space. Let (Y, τy) be a ωα-closed subspace of
(X, τ). Let G = {Gi : i ∈ I} be an ωα-open cover of (Y, τy). Now Gi is open
in (Y, τy) for all i ∈ I. Now Gi can be expressed as Y ∩Hi,that is Gi = Y

∩
Hi

for all i ∈ I where Hi is ωα-open in (X, τ). Then {Hi : i ∈ I} ∪ (X − Y ) is an
ωα-open cover of (X, τ). Since (X, τ) is ωα-Lindelöf space, there is an ωα-open
cover of (X, τ) which has a countable subcover say {Hin : n ∈ N} ∪ (X − Y ).
Let u = {Y ∩ Hin : n ∈ N}. But Y ∩ Hin = Gin , for all i ∈ I. Therefore
u = {Gin : n ∈ N} ⊆ {Gi : n ∈ I}, u is a countable subcover of G for (Y τy).
Therefore every ωα-open cover of (Y, τy) has a countable subcover u. Hence (Y τy)
is ωα-Lindelöf space.

5 ωα-Connectedness in Topological Spaces

Definition 5.1. A topological space (X, τ) is said to be ωα-connected if X cannot
be written as a disjoint union of two non empty ωα-open sets.

A subset of (X, τ) is ωα-connected if it is ωα-connected as a subspace.

Theorem 5.1. For a topological space (X, τ) the following are equivalent:

1. (X, τ) is ωα-connected

2. The only subsets of (X, τ) which are both ωα-open and ωα-closed are the
empty set ϕ and X.
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3. Each ωα-continuous map of (X, τ) into a discrete space (Y, σ) with at least
two points is a constant map.

Proof. 1 ⇒ 2: Let G be a ωα-open and ωα-closed subset of (X, τ). Then X−G is
also both ωα-open and ωα-closed. Then X = G∪ (X −G) a disjoint union of two
non-empty ωα-open sets which contradicts the fact that (X, τ) is ωα-connected.
Hence G = ϕ or X.

2 ⇒ 1: Suppose that X = A ∪ B where A and B are disjoint non-empty
ωα-open subsets of (X, τ). Since A = X − B, then A is both ωα-open and ωα-
closed. By assumption A = ϕ or X, which is a contradiction. Hence (X, τ) is
ωα-connected.

2 ⇒ 3: Let f : (X, τ) → (Y, σ) be a ωα-continuous map, where (Y, σ) is
discrete space with at least two points. Then f−1({y}) is ωα- closed and ωα-open
for each y ∈ Y . That is (X, τ) is covered by ωα -closed and ωα-open covering
{f−1({y}) : y ∈ Y }. By assumption, {f−1({y}) = ϕ or X for each y ∈ Y . If
{f−1({y}) = ϕ for each y ∈ Y , then f fails to be a map. Therefore there exist at
least one point say f−1({y1}) ̸= ϕ, y1 ∈ Y such that f−1({y1}) = X. This shows
that f is a constant map.

3 ⇒ 2: Let G be both ωα-open and ωα-closed in (X, τ). Suppose G ̸= ϕ.
Let f : (X, τ) → (Y, σ) be a ωα-continuous map defined by f(G) = {a} and
f(X − G) = {b} where a ̸= b and a, b ∈ Y . By assumption, f is constant so
G = X.

Theorem 5.2. Every ωα-connected space is connected but converse need not true
in general.

Example 5.3. Let X = {a, b, c} and τ = {ϕ,X}. Then (X, τ) is connected but
not an ωα-connected space because X = {a} ∪ {b, c} wherer {a} and {b, c} are
ωα-open sets in (X, τ).

Theorem 5.4. Let f : (X, τ) → (Y, σ) be a ωα-continuous surjection and (X, τ)
is ωα-connected, then (Y, σ) is connected

Proof. Suppose that (Y, σ) is not connected. Let Y = A ∪ B where A and B
are disjoint non-empty open subsets in (Y, σ)). Since f is ωα-continuous, X =
f−1(A) ∪ f−1(B), where f−1(A) and f−1(B) are disjoint non-empty ωα-open
subsets in (X, τ). This contradicts the fact that (X, τ) is ωα-connected. Hence
(Y, σ) is connected.

Theorem 5.5. Suppose that (X, τ) is Tωα- space, then (X, τ) is connected if and
only if (X, τ) is ωα-connected.

Theorem 5.6. Let f : (X, τ) → (Y, σ) be a ωα-irresolute surjection and (X, τ) is
ωα-connected, then (Y, σ) is ωα-connected.

Theorem 5.7. The image of a connected space under strongly ωα-continuous map
is ωα-connected.
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