Thai Journal of Mathematics Volume 12 (2014) Number 2 : 491–497

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

A Fundamental Theorem of Co-Homomorphisms for Semirings

S. Ebrahimi Atani¹, S. Dolati Pish Hesari, and M. Khoramdel

Department of Mathematics, University of Guilan, Iran e-mail : ebrahimi@guilan.ac.ir saboura_dolati@yahoo.com mehdikhoramdel@gmail.com

Abstract : The quotient structure of a semiring with non-zero identity modulo a Q-strong co-ideal has been introduced and studied in [1]. In this paper, we will introduce the notions of co-homomorphisms and Maximal co-homomorphisms for semirings. Using these notions, the fundamental theorem of co-homomorphisms will be generalized to include a large class of semirings.

Keywords : semiring; co-ideal; strong co-ideal; partitioning strong co-ideal; sub-tractive co-ideal; co-homomorphism; maximal co-homomorphism.
2010 Mathematics Subject Classification : 16Y60.

1 Introduction

P. J. Allen [2] introduced the notion of a Q-ideal and a construction process was presented by which one can build the quotient structure of a semiring modulo a Q-ideal. Maximal homomorphisms were defined and examples of such homomorphisms were given. Using these notions, the fundamental theorem of homomorphisms for rings was generalized to include a large class of semirings. The present authors [3] have presented the notion of a Q-strong co-ideal I in the semiring R and constructed the quotient semiring R/I. In this paper, we extend the definition and results given by Allen to a more general Q-strong co-ideal case. In this paper, we introduce the notion of co-homomorphism and maximal co-homomorphism. We show if I is a Q-strong co-ideal of semiring R and $\phi : R \to R/I$ with $\phi(a) = qI$,

Copyright 2014 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

where q is the unique element of Q such that $a \in qI$, then ϕ is a maximal cohomomorphism. Also, it is shown if ϕ is a co-homomorphism from the semiring R onto R' that is maximal, then $R/co - Ker(\phi) \cong R'$.

For the sake of completeness, we state some definitions and notations used throughout. A commutative semiring R is defined as an algebraic system (R, +, .)such that (R, +) and (R, .) are commutative semigroups, connected by a(b + c) = ab + ac for all $a, b, c \in R$, and there exists $0, 1 \in R$ such that r + 0 = r and r0 = 0r = 0 and r1 = 1r = r for each $r \in R$. In this paper all semirings considered will be assumed to be commutative semirings with non-zero identity. In this paper, \mathcal{B} denotes the boolean semiring $\{0, 1\}$, which 1 + 1 = 1.

Definition 1.1. Let R be a semiring.

(1) A non-empty subset I of R is called co-ideal, denoted by $I \leq^c R$, if it is closed under multiplication and satisfies the condition $r + a \in I$ for all $a \in I$ and $r \in R$ (clearly, $0 \in I$ if and only if I = R) ([3], [4]). A co-ideal I is called strong co-ideal if $1 \in I$ [1].

(2) A co-ideal I of R is called subtractive if for each $x, y \in R$ with $x, xy \in I$, then $y \in I$ [4].

(3) A proper co-ideal I of R is said to be maximal if J is a co-ideal of R with $I \subsetneq J$, then J = R. It is known that maximal co-ideals are strong co-ideal [5].

(4) A mapping φ from the semiring R into the semiring R' will be called a homomorphism if $\varphi(a+b) = \varphi(a) + \varphi(b)$ and $\varphi(a.b) = \varphi(a) \cdot \varphi(b)$ for each $a, b \in R$. An isomorphism is a one-to-one homomorphism. The semirings R and R' will be called isomorphic (denoted by $R \cong R'$) if there exists an isomorphism from R onto R' [2].

Definition 1.2. (See [1]) A strong co-ideal I of a semiring R is called a partitioning co-ideal (= Q-strong co-ideal) if there exists a subset Q of R such that

(1) $R = \bigcup \{ qI : q \in Q \}, where qI = \{ qt : t \in I \}.$

(2) If $q_1, q_2 \in Q$, then $(q_1I) \cap (q_2I) \neq \emptyset$ if and only if $q_1 = q_2$.

Lemma 1.3. (See [1]) Let I be a Q-strong co-ideal of the semiring R. If $x \in R$, then there exists a unique $q \in Q$ such that $xI \subseteq qI$. In particular, x = qa for some $a \in I$.

Let I be a Q-strong co-ideal of a semiring R and let $R/I = \{qI : q \in Q\}$. Then R/I forms a semiring under the binary operations \oplus and \odot defined as follows:

(1) $(q_1I) \oplus (q_2I) = q_3I$, where q_3 is the unique element in Q such that $(q_1I + q_2I) \subseteq q_3I$; and

(2) $(q_1I) \odot (q_2I) = q_3I$, where q_3 is the unique element in Q such that $(q_1q_2)I \subseteq q_3I$ (see [1]).

Proposition 1.4. (See [1]) Every Q-strong co-ideal I of a semiring R is subtractive.

Lemma 1.5. (See [5]) If D is a maximal co-ideal of a semiring R, then R - D is an ideal.

A Fundamental Theorem of Co-Homomorphisms for Semirings

2 Co-Homomorphism of semirings

We begin with the key definition of this paper.

Definition 2.1. Let R and R' be two semirings. The map $\phi : R \to R'$ is called co-homomorphism if satisfies the following conditions:

(1) $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in R$.

(2) $\phi(a+b) = \phi(a) + \phi(b)$ for all $a, b \in R$.

(3) $\phi(0) = 0.$

(4) $\phi(1) = 1$.

(5) If $\phi(r) = 1$ for some $r \in R$, then $\phi(a + r) = 1$ for all $a \in R$.

One can easily see that every co-homomorphism is a semiring homomorphism. The following example shows that a homomorphism need not be a co-homomorphism.

Example 2.2. Let $\mathbb{Z}^+ \cup \{0\}$ be the semiring of positive integers with the usual addition and multiplication and *i* be the identity homomorphism of semiring $\mathbb{Z}^+ \cup \{0\}$. It is clear that i(1) = 1 and $i(r+1) \neq 1$ for each $r \in \mathbb{Z}^+ \cup \{0\}$. So *i* is not a co-homomorphism.

Proposition 2.3. Let D be a co-ideal of a semiring R such that R - D is an ideal of R. Then D is a subtractive strong co-ideal of R.

Proof. Let $xy \in D$ and $x \in D$ for some $x, y \in R$. If $y \notin D$, then $y \in R - D$. By hypothesis, R - D is an ideal of R, therefore $xy \in R - D$, a contradiction. Thus D is a subtractive co-ideal of R. Clearly, $1 \in D$ since D is a subtractive co-ideal. \Box

The converse of Proposition 2.3 is not true, as the following example shows.

Example 2.4. Let $X = \{a, b, c\}$. Then $R = (P(X), \cup, \cap)$ is a semiring, where P(X) is the set of all subsets of X. An inspection will show that $I = \{X, \{a, b\}\}$ is a Q-strong co-ideal of R, where $Q = \{\{c\}, \{a, c\}, \{b, c\}, X\}$. Thus I is a subtractive co-ideal of R by Proposition 1.4. It can be seen R - I is not an ideal of R, because $\{a\}, \{b\} \in R - I$ and $\{a\} \cup \{b\} = \{a, b\} \notin R - I$.

Proposition 2.5. If D is a maximal co-ideal of R, then D is subtractive.

Proof. Apply Lemma 1.5 and Proposition 2.3.

The following example shows that the converse of Proposition 2.5 is not true.

Example 2.6. Let R be the set of all non-negative integers. Define $a + b = \gcd(a, b)$ and $a \times b = \operatorname{lcm}(a, b)$, (take 0 + 0 = 0 and $0 \times 0 = 0$). Then $(R, +, \times)$ is easily checked to be a commutative semiring. Let I be the set of all non-negative odd integers, then I is a co-ideal of R. An inspection shows that R - I is an ideal of R. It can be seen I is not a maximal co-ideal of R, because $I \subsetneq R - \{0\}$ and $R - \{0\}$ is a maximal co-ideal of R.

Theorem 2.7. Let D be a co-ideal of R such that R - D is an ideal of R. Then there exists a co-homomorphism from R onto \mathcal{B} .

Proof. Let $\phi : R \to \mathcal{B}$ with

$$\phi(x) = \begin{cases} 0 & \text{if } x \notin D, \\ 1 & \text{if } x \in D \end{cases}$$

We will show that ϕ is a co-homomorphism.

(1) $\phi(a+b) = \phi(a) + \phi(b)$ for all $a, b \in R$. We consider the various possibilities for a, b.

Case 1: $a, b \in D$. Since D is a co-ideal, $a + b \in D$. So $\phi(a + b) = 1$. Also $\phi(a) + \phi(b) = 1 + 1 = 1$. Thus $\phi(a + b) = \phi(a) + \phi(b)$.

Case 2: $a \notin D$ and $b \notin D$. Since I = R - D is an ideal of R and $a, b \in I$, $a + b \in I$ and so $a + b \notin D$. It is clear that $\phi(a + b) = \phi(a) + \phi(b) = 0$.

Case 3: $(a \in D, b \notin D)$ or $(a \notin D, b \in D)$. In these two, we have $a + b \in D$. So $1 = \phi(a + b) = \phi(a) + \phi(b) = 1 + 0 = 1$.

(2) $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in R$. We consider the various possibilities for a, b.

Case 1: $a, b \in D$. Since D is a co-ideal, $ab \in D$, and so $\phi(ab) = 1$. Since $a, b \in D$, $\phi(a) = 1$ and $\phi(b) = 1$. Therefore $\phi(ab) = \phi(a)\phi(b)$.

Case 2: $a \notin D$ and $b \notin D$. Since I = R - D is an ideal of R, $ab \in I$ and so $ab \notin D$. Thus $\phi(ab) = 0$. Therefore $0 = \phi(ab) = \phi(a)\phi(b)$.

Case 3: $(a \in D, b \notin D)$ or $(a \notin D, b \in D)$. Since R - D is an ideal, D is a subtractive co-ideal by Proposition 2.3. Therefore $ab \notin D$. So $0 = \phi(ab) = \phi(a)\phi(b)$.

- (3) $\phi(1) = 1$ is clear, since $1 \in D$.
- (4) $\phi(0) = 0$ is clear, since $0 \notin D$.

(5) If $\phi(r) = 1$, then $r \in D$. Hence $a + r \in D$ for each $a \in R$. Thus $\phi(a + r) = 1$.

It is clear that ϕ is onto.

Definition 2.8. Let R and R' be two semirings and $\phi : R \to R'$ be a cohomomorphism. Set $co - Ker(\phi) = \{r \in R : \phi(r) = 1\}$.

Remark 2.9. It is clear that $co-Ker(\phi)$ is a strong co-ideal of R and in Theorem 2.7, $co-Ker(\phi) = \{x \in R : \phi(x) = 1\} = D$.

Definition 2.10. A co-homomorphism ϕ with $co - Ker(\phi) = K$ from a semiring R onto the semiring R' is said to be maximal if for each $a \in R'$ there exists $q_a \in \phi^{-1}(\{a\})$ such that $xK \subseteq q_a K$ for each $x \in \phi^{-1}(\{a\})$.

A Fundamental Theorem of Co-Homomorphisms for Semirings

Example 2.11. Let $R = \mathbb{Z}^+ \cup \{0\}$ be the semiring of positive integers and ϕ : $R \to \mathcal{B}$ with

$$\phi(x) = \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{if } x \in R - \{0\}. \end{cases}$$

It can be checked that ϕ is a co-homomorphism. Put $q_1 = 1$ and $q_0 = 0$. Then for each $x \in R - \{0\}$, we have $x(co - Ker(\phi)) \subseteq q_1(co - Ker(\phi))$ and for x = 0, $x(co - Ker(\phi)) \subseteq q_0(co - Ker(\phi))$. Therefore ϕ is a maximal co-homomorphism.

Proposition 2.12. Let R be a semiring and I be a Q-strong co-ideal of R. If $\phi: R \to R/I$ with $\phi(a) = qI$, where q is the unique element of Q such that $a \in qI$, then ϕ is a maximal co-homomorphism.

Proof. We prove the proposition in six steps.

(1) $\phi(ab) = \phi(a) \odot \phi(b)$ for all $a, b \in R$. Let q_1, q_2, q be elements of Q such that $ab \in qI$, $a \in q_1I$ and $b \in q_2I$. Hence $\phi(a) = q_1I$, $\phi(b) = q_2I$ and $\phi(ab) = qI$. Let $q' \in Q$ such that $q_1q_2I \subseteq q'I$ then $\phi(a) \odot \phi(b) = q_1I \odot q_2I = q'I$. We will show that q = q'. Since $ab \in q_1Iq_2I \subseteq q_1q_2I \subseteq q'I$, $ab \in (q'I) \cap (qI)$ and so q = q'. Therefore $\phi(ab) = \phi(a) \odot \phi(b)$.

(2) $\phi(a+b) = \phi(a) \oplus \phi(b)$, for all $a, b \in R$. Let $q \in I$ such that $a+b \in qI$, then $\phi(a+b) = qI$. Let $q_1 \in Q$ and $q_2 \in Q$ such that $a \in q_1I$ and $b \in q_2I$, then $\phi(a) = q_1I$ and $\phi(b) = q_2I$. Let $q' \in Q$ such that $q_1I + q_2I \subseteq q'I$, then $\phi(a) \oplus \phi(b) = q_1I \oplus q_2I = q'I$. Since $a+b \in q_1I + q_2I$, $a+b \in q'I$ and hence $a+b \in (q'I) \cap (qI)$. Therefore q = q' and so $\phi(a+b) = \phi(a) \oplus \phi(b)$.

(3) $\phi(0) = 0$. Let $q_0 \in Q$ be unique element such that $0 \in q_0 I$. Therefore $\phi(0) = q_0 I$ where $q_0 I$ is zero element of R/I.

(4) $\phi(1) = 1$ is clear.

(5) Let $\phi(r) = q_e I = I$ where $q_e I$ is the identity element of R/I, then by definition of $\phi, r \in I$. Thus for each $a \in R$, $a + r \in I$ (since I is a co-ideal), and hence $\phi(a + r) = I$ as desired.

(6) It is clear that $co - Ker(\phi) = I$. Since I is a Q-strong co-ideal, for each $qI \in R/I$ and $x \in \phi^{-1}(qI), xI \subseteq qI$. Thus ϕ is a maximal co-homomorphism. \Box

Lemma 2.13. Let ϕ be a co-homomorphism from the semiring R onto semiring R'. If ϕ is maximal, then $co - Ker(\phi) = K$ is a Q-strong co-ideal of R.

Proof. As ϕ is a maximal co-homomorphism, for each $a \in R'$ there exists $q_a \in \phi^{-1}(\{a\})$ such that $xK \subseteq q_aK$ for each $x \in \phi^{-1}(\{a\})$. First, we show that $R = \cup\{q_aK : a \in R'\}$. Let $r \in R$, then $\phi(r) \in R'$. Let $\phi(r) = b$. Then $r \in \phi^{-1}(\{b\})$. Since ϕ is maximal, there exists $q_b \in \phi^{-1}(\{b\})$ such that $rK \subseteq q_bK$. As $1 \in K$, we have $r \in q_bK$. Thus $R \subseteq \cup\{q_aK : a \in R'\}$. The other side is clear. Next, let $a, b \in R'$ and $x \in q_aK \cap q_bK$, so $x \in \phi^{-1}(\{b\}) \cap \phi^{-1}(\{a\})$. Hence $\phi(x) = a = b$. As $q_a \in \phi^{-1}(\{a\}), \phi(q_a) = a$. Since a = b and for each $x \in \phi^{-1}(\{b\}), xK \subseteq q_bK$, we have $q_aK \subseteq q_bK$. Similarly $q_bK \subseteq q_aK$. Hence $q_aK = q_bK$. Also, if $q_a = q_b$, then $q_a = q_b \in q_aK \cap q_bK$ because $1 \in K$). Hence K is a Q-strong co-ideal. □

Lemma 2.14. Let R, R', ϕ and Q be as stated in Lemma 2.13 and let q_a, q_b and q_c be elements in Q and $K = co - Ker(\phi)$. (1) If $(q_aK + q_bK) \subseteq q_cK$, then a + b = c. (2) If $q_aq_bK \subseteq q_cK$, then ab = c.

Proof. (1) Since $q_a + q_b \in (q_a K + q_b K) \subseteq q_c K$, there exists $k \in K$ such that $q_a + q_b = q_c k$. Thus $a + b = \phi(q_a) + \phi(q_b) = \phi(q_a + q_b) = \phi(q_c k) = \phi(q_c)\phi(k) = c$. (2) It can be proved by a similar way as in (1).

Theorem 2.15. If ϕ is a co-homomorphism from the semiring R onto R' that is maximal, then $R/co - Ker(\phi) \cong R'$.

Proof. Let $co - Ker(\phi) = K$. By Lemma 2.13, K is a Q-strong co-ideal and $R = \bigcup \{q_a K : a \in R'\}$. Let $\overline{\phi} : R/K \to R'$ with $\overline{\phi}(q_a K) = a$ (for each $x \in \phi^{-1}(\{a\}), xK \subseteq q_a K$). Let $q_a K = q_b K$. Since K is a Q-strong co-ideal, $q_a = q_b$. So $a = \phi(q_a) = \phi(q_b) = b$. Thus $\overline{\phi}$ is well-defined. Now we show $\overline{\phi}$ is a isomorphism.

 $(1)\overline{\phi}(q_aK \odot q_bK) = \overline{\phi}(q_aK)\overline{\phi}(q_bK)$. Let $q_c \in Q$ such that $q_aq_bK \subseteq q_cK$. Then $q_aK \odot q_bK = q_cK$. Thus by Lemma 2.14, ab = c and so $\overline{\phi}(q_aK \odot q_bK) = \overline{\phi}(q_aK)\overline{\phi}(q_bK)$.

(2) $\bar{\phi}(q_a K \oplus q_b K) = \bar{\phi}(q_a K) + \bar{\phi}(q_b K)$. Let $q_c \in Q$ such that $q_a K + q_b K \subseteq q_c K$, then $q_a K \oplus q_b K = q_c K$. By Lemma 2.14, a + b = c. Thus $\bar{\phi}(q_a K \oplus q_b K) = \bar{\phi}(q_a K) + \bar{\phi}(q_b K)$.

(3) $\bar{\phi}$ is monomorphism. Let $\bar{\phi}(q_a K) = \bar{\phi}(q_b K)$. Hence a = b. Since for each $x \in \phi^{-1}(\{b\}), xK \subseteq q_b K$, we have $q_a K \subseteq q_b K$. Similarly $q_b K \subseteq q_a K$. Hence $q_a K = q_b K$.

(4) $\bar{\phi}$ is epimorphism. Let $a \in R'$. Since ϕ is epic, $\phi^{-1}(\{a\}) \neq \emptyset$. Since ϕ is maximal, there exists $q_a \in Q$ such that $q_a \in \phi^{-1}(\{a\})$ and for each $x \in \phi^{-1}(\{a\})$, $xK \subseteq q_a K$. Thus $\bar{\phi}(q_a K) = a$. Thus $\bar{\phi}$ is epic. \Box

Acknowledgement : We would like to thank the referees for valuable comments.

References

- S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel, Strong Co-ideal theory in quotients of semirings, J. Advanced Research in Pure Math., 5 (3) (2013) 19–32.
- [2] P.J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21 (1969) 412–416.
- [3] J.S. Golan, *Semirings and their Applications*, Kluwer Academic Publisher Dordrecht, 1999.
- [4] J.N. Chaudhari, K.J. Ingale, Prime avoidance theorem for co-ideals in semirings, Research J. Pure Algebra, 1 (9) (2011) 213–216.

A Fundamental Theorem of Co-Homomorphisms for Semirings

[5] H. Wang, On rational series and rational language, Theor. Comput. Sci. 205 (1998) 329–336.

(Received 19 November 2012) (Accepted 17 July 2013)

 $\mathbf{T}\textsc{hai}$ $\mathbf{J.}$ $\mathbf{M}\textsc{ath}.$ Online @ http://thaijmath.in.cmu.ac.th