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Abstract : The quotient structure of a semiring with non-zero identity modulo
a Q-strong co-ideal has been introduced and studied in [1]. In this paper, we will
introduce the notions of co-homomorphisms and Maximal co-homomorphisms for
semirings. Using these notions, the fundamental theorem of co-homomorphisms
will be generalized to include a large class of semirings.
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1 Introduction

P. J. Allen [2] introduced the notion of a Q-ideal and a construction process
was presented by which one can build the quotient structure of a semiring modulo
a Q-ideal. Maximal homomorphisms were defined and examples of such homomor-
phisms were given. Using these notions, the fundamental theorem of homomor-
phisms for rings was generalized to include a large class of semirings. The present
authors [3] have presented the notion of a Q-strong co-ideal I in the semiring R and
constructed the quotient semiring R/I. In this paper, we extend the definition and
results given by Allen to a more general Q-strong co-ideal case. In this paper, we
introduce the notion of co-homomorphism and maximal co-homomorphism. We
show if I is a Q-strong co-ideal of semiring R and ϕ : R → R/I with ϕ(a) = qI,
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where q is the unique element of Q such that a ∈ qI, then ϕ is a maximal co-
homomorphism. Also, it is shown if ϕ is a co-homomorphism from the semiring R
onto R′ that is maximal, then R/co−Ker(ϕ) ∼= R′.

For the sake of completeness, we state some definitions and notations used
throughout. A commutative semiring R is defined as an algebraic system (R,+, .)
such that (R,+) and (R, .) are commutative semigroups, connected by a(b+ c) =
ab + ac for all a, b, c ∈ R, and there exists 0, 1 ∈ R such that r + 0 = r and
r0 = 0r = 0 and r1 = 1r = r for each r ∈ R. In this paper all semirings
considered will be assumed to be commutative semirings with non-zero identity.
In this paper, B denotes the boolean semiring {0, 1}, which 1 + 1 = 1.

Definition 1.1. Let R be a semiring.
(1) A non-empty subset I of R is called co-ideal, denoted by I �c R, if it is

closed under multiplication and satisfies the condition r + a ∈ I for all a ∈ I and
r ∈ R (clearly, 0 ∈ I if and only if I = R) ([3], [4]). A co-ideal I is called strong
co-ideal if 1 ∈ I [1].

(2) A co-ideal I of R is called subtractive if for each x, y ∈ R with x, xy ∈ I,
then y ∈ I [4].

(3) A proper co-ideal I of R is said to be maximal if J is a co-ideal of R with
I $ J , then J = R. It is known that maximal co-ideals are strong co-ideal [5].

(4) A mapping φ from the semiring R into the semiring R′ will be called a
homomorphism if φ(a+b) = φ(a)+φ(b) and φ(a.b) = φ(a).φ(b) for each a, b ∈ R.
An isomorphism is a one-to-one homomorphism. The semirings R and R′ will be
called isomorphic (denoted by R ∼= R′) if there exists an isomorphism from R onto
R′ [2].

Definition 1.2. (See [1]) A strong co-ideal I of a semiring R is called a parti-
tioning co-ideal (= Q-strong co-ideal) if there exists a subset Q of R such that

(1) R =
∪
{qI : q ∈ Q}, where qI = {qt : t ∈ I}.

(2) If q1, q2 ∈ Q, then (q1I) ∩ (q2I) ̸= ∅ if and only if q1 = q2.

Lemma 1.3. (See [1]) Let I be a Q-strong co-ideal of the semiring R. If x ∈ R,
then there exists a unique q ∈ Q such that xI ⊆ qI. In particular, x = qa for some
a ∈ I.

Let I be a Q-strong co-ideal of a semiring R and let R/I = {qI : q ∈ Q}. Then
R/I forms a semiring under the binary operations ⊕ and ⊙ defined as follows:

(1) (q1I)⊕ (q2I) = q3I, where q3 is the unique element in Q such that (q1I +
q2I) ⊆ q3I; and

(2) (q1I)⊙(q2I) = q3I, where q3 is the unique element in Q such that (q1q2)I ⊆
q3I (see [1]).

Proposition 1.4. (See [1]) Every Q-strong co-ideal I of a semiring R is subtrac-
tive.

Lemma 1.5. (See [5]) If D is a maximal co-ideal of a semiring R, then R−D is
an ideal.
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2 Co-Homomorphism of semirings

We begin with the key definition of this paper.

Definition 2.1. Let R and R′ be two semirings. The map ϕ : R → R′ is called
co-homomorphism if satisfies the following conditions:
(1) ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R.
(2) ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ R.
(3) ϕ(0) = 0.
(4) ϕ(1) = 1.
(5) If ϕ(r) = 1 for some r ∈ R, then ϕ(a+ r) = 1 for all a ∈ R.

One can easily see that every co-homomorphism is a semiring homomorphism.
The following example shows that a homomorphism need not be a co-homomorphism.

Example 2.2. Let Z+ ∪ {0} be the semiring of positive integers with the usual
addition and multiplication and i be the identity homomorphism of semiring Z+ ∪
{0}. It is clear that i(1) = 1 and i(r+1) ̸= 1 for each r ∈ Z+ ∪ {0}. So i is not a
co-homomorphism.

Proposition 2.3. Let D be a co-ideal of a semiring R such that R−D is an ideal
of R. Then D is a subtractive strong co-ideal of R.

Proof. Let xy ∈ D and x ∈ D for some x, y ∈ R. If y /∈ D, then y ∈ R −D. By
hypothesis, R−D is an ideal of R, therefore xy ∈ R−D, a contradiction. Thus D
is a subtractive co-ideal of R. Clearly, 1 ∈ D since D is a subtractive co-ideal.

The converse of Proposition 2.3 is not true, as the following example shows.

Example 2.4. Let X = {a, b, c}. Then R = (P (X),∪,∩) is a semiring, where
P (X) is the set of all subsets of X. An inspection will show that I = {X, {a, b}} is
a Q-strong co-ideal of R, where Q = {{c}, {a, c}, {b, c}, X}. Thus I is a subtractive
co-ideal of R by Proposition 1.4. It can be seen R− I is not an ideal of R, because
{a}, {b} ∈ R− I and {a} ∪ {b} = {a, b} /∈ R− I.

Proposition 2.5. If D is a maximal co-ideal of R, then D is subtractive.

Proof. Apply Lemma 1.5 and Proposition 2.3.

The following example shows that the converse of Proposition 2.5 is not true.

Example 2.6. Let R be the set of all non-negative integers. Define a + b =
gcd(a, b) and a× b = lcm(a, b),(take 0 + 0 = 0 and 0× 0 = 0 ). Then (R,+,×) is
easily checked to be a commutative semiring. Let I be the set of all non-negative
odd integers, then I is a co-ideal of R. An inspection shows that R− I is an ideal
of R. It can be seen I is not a maximal co-ideal of R, because I $ R − {0} and
R− {0} is a maximal co-ideal of R.
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Theorem 2.7. Let D be a co-ideal of R such that R −D is an ideal of R. Then
there exists a co-homomorphism from R onto B.

Proof. Let ϕ : R → B with

ϕ(x) =

{
0 if x /∈ D,
1 if x ∈ D

We will show that ϕ is a co-homomorphism.

(1) ϕ(a+ b) = ϕ(a)+ϕ(b) for all a, b ∈ R. We consider the various possibilities
for a, b.
Case 1: a, b ∈ D. Since D is a co-ideal, a + b ∈ D. So ϕ(a + b) = 1. Also
ϕ(a) + ϕ(b) = 1 + 1 = 1. Thus ϕ(a+ b) = ϕ(a) + ϕ(b).
Case 2: a /∈ D and b /∈ D. Since I = R−D is an ideal of R and a, b ∈ I, a+ b ∈ I
and so a+ b /∈ D. It is clear that ϕ(a+ b) = ϕ(a) + ϕ(b) = 0.
Case 3: (a ∈ D, b /∈ D) or (a /∈ D, b ∈ D). In these two, we have a+ b ∈ D. So
1 = ϕ(a+ b) = ϕ(a) + ϕ(b) = 1 + 0 = 1.

(2) ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R. We consider the various possibilities for
a, b.
Case 1: a, b ∈ D. Since D is a co-ideal, ab ∈ D, and so ϕ(ab) = 1. Since a, b ∈ D,
ϕ(a) = 1 and ϕ(b) = 1. Therefore ϕ(ab) = ϕ(a)ϕ(b).
Case 2: a /∈ D and b /∈ D. Since I = R − D is an ideal of R, ab ∈ I and so
ab /∈ D. Thus ϕ(ab) = 0. Therefore 0 = ϕ(ab) = ϕ(a)ϕ(b).
Case 3: (a ∈ D, b /∈ D) or (a /∈ D, b ∈ D). Since R−D is an ideal, D is a sub-
tractive co-ideal by Proposition 2.3. Therefore ab /∈ D. So 0 = ϕ(ab) = ϕ(a)ϕ(b).

(3) ϕ(1) = 1 is clear, since 1 ∈ D.

(4) ϕ(0) = 0 is clear, since 0 /∈ D.

(5) If ϕ(r) = 1, then r ∈ D. Hence a+r ∈ D for each a ∈ R. Thus ϕ(a+r) = 1.

It is clear that ϕ is onto.

Definition 2.8. Let R and R′ be two semirings and ϕ : R → R′ be a co-
homomorphism. Set co−Ker(ϕ) = {r ∈ R : ϕ(r) = 1}.

Remark 2.9. It is clear that co−Ker(ϕ) is a strong co-ideal of R and in Theorem
2.7, co−Ker(ϕ) = {x ∈ R : ϕ(x) = 1} = D.

Definition 2.10. A co-homomorphism ϕ with co−Ker(ϕ) = K from a semiring
R onto the semiring R′ is said to be maximal if for each a ∈ R′ there exists
qa ∈ ϕ−1({a}) such that xK ⊆ qaK for each x ∈ ϕ−1({a}).
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Example 2.11. Let R = Z+ ∪ {0} be the semiring of positive integers and ϕ :
R → B with

ϕ(x) =

{
0 if x = 0,
1 if x ∈ R−{0}.

It can be checked that ϕ is a co-homomorphism. Put q1 = 1 and q0 = 0. Then
for each x ∈ R−{0}, we have x(co −Ker(ϕ)) ⊆ q1(co −Ker(ϕ)) and for x = 0,
x(co−Ker(ϕ)) ⊆ q0(co−Ker(ϕ)). Therefore ϕ is a maximal co-homomorphism.

Proposition 2.12. Let R be a semiring and I be a Q-strong co-ideal of R. If
ϕ : R → R/I with ϕ(a) = qI, where q is the unique element of Q such that a ∈ qI,
then ϕ is a maximal co-homomorphism.

Proof. We prove the proposition in six steps.
(1) ϕ(ab) = ϕ(a) ⊙ ϕ(b) for all a, b ∈ R. Let q1, q2, q be elements of Q such

that ab ∈ qI, a ∈ q1I and b ∈ q2I. Hence ϕ(a) = q1I, ϕ(b) = q2I and ϕ(ab) = qI.
Let q′ ∈ Q such that q1q2I ⊆ q′I then ϕ(a) ⊙ ϕ(b) = q1I ⊙ q2I = q′I. We will
show that q = q′. Since ab ∈ q1Iq2I ⊆ q1q2I ⊆ q′I, ab ∈ (q′I)∩ (qI) and so q = q′.
Therefore ϕ(ab) = ϕ(a)⊙ ϕ(b).

(2) ϕ(a + b) = ϕ(a) ⊕ ϕ(b), for all a, b ∈ R. Let q ∈ I such that a + b ∈ qI,
then ϕ(a + b) = qI. Let q1 ∈ Q and q2 ∈ Q such that a ∈ q1I and b ∈ q2I,
then ϕ(a) = q1I and ϕ(b) = q2I. Let q′ ∈ Q such that q1I + q2I ⊆ q′I , then
ϕ(a) ⊕ ϕ(b) = q1I ⊕ q2I = q′I. Since a + b ∈ q1I + q2I, a + b ∈ q′I and hence
a+ b ∈ (q′I) ∩ (qI). Therefore q = q′ and so ϕ(a+ b) = ϕ(a)⊕ ϕ(b).

(3) ϕ(0) = 0. Let q0 ∈ Q be unique element such that 0 ∈ q0I. Therefore
ϕ(0) = q0I where q0I is zero element of R/I.

(4) ϕ(1) = 1 is clear.
(5) Let ϕ(r) = qeI = I where qeI is the identity element of R/I, then by

definition of ϕ, r ∈ I. Thus for each a ∈ R, a + r ∈ I (since I is a co-ideal), and
hence ϕ(a+ r) = I as desired.

(6) It is clear that co − Ker(ϕ) = I. Since I is a Q-strong co-ideal, for each
qI ∈ R/I and x ∈ ϕ−1(qI), xI ⊆ qI. Thus ϕ is a maximal co-homomorphism.

Lemma 2.13. Let ϕ be a co-homomorphism from the semiring R onto semiring
R′. If ϕ is maximal, then co−Ker(ϕ) = K is a Q-strong co-ideal of R.

Proof. As ϕ is a maximal co-homomorphism, for each a ∈ R′ there exists qa ∈
ϕ−1({a}) such that xK ⊆ qaK for each x ∈ ϕ−1({a}). First, we show that
R = ∪{qaK : a ∈ R′}. Let r ∈ R, then ϕ(r) ∈ R′. Let ϕ(r) = b. Then
r ∈ ϕ−1({b}). Since ϕ is maximal, there exists qb ∈ ϕ−1({b}) such that rK ⊆ qbK.
As 1 ∈ K, we have r ∈ qbK. Thus R ⊆ ∪{qaK : a ∈ R′}. The other side
is clear. Next, let a, b ∈ R′ and x ∈ qaK ∩ qbK, so x ∈ ϕ−1({b}) ∩ ϕ−1({a}).
Hence ϕ(x) = a = b. As qa ∈ ϕ−1({a}), ϕ(qa) = a. Since a = b and for each
x ∈ ϕ−1({b}), xK ⊆ qbK, we have qaK ⊆ qbK. Similarly qbK ⊆ qaK. Hence
qaK = qbK. Also, if qa = qb, then qa = qb ∈ qaK ∩ qbK( because 1 ∈ K). Hence
K is a Q-strong co-ideal.
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Lemma 2.14. Let R, R′, ϕ and Q be as stated in Lemma 2.13 and let qa, qb and
qc be elements in Q and K = co−Ker(ϕ).
(1) If (qaK + qbK) ⊆ qcK, then a+ b = c.
(2) If qaqbK ⊆ qcK, then ab = c.

Proof. (1) Since qa + qb ∈ (qaK + qbK) ⊆ qcK, there exists k ∈ K such that
qa + qb = qck. Thus a+ b = ϕ(qa) + ϕ(qb) = ϕ(qa + qb) = ϕ(qck) = ϕ(qc)ϕ(k) = c.
(2) It can be proved by a similar way as in (1).

Theorem 2.15. If ϕ is a co-homomorphism from the semiring R onto R′ that is
maximal, then R/co−Ker(ϕ) ∼= R′.

Proof. Let co − Ker(ϕ) = K. By Lemma 2.13, K is a Q-strong co-ideal and
R = ∪{qaK : a ∈ R′}. Let ϕ̄ : R/K → R′ with ϕ̄(qaK) = a (for each x ∈
ϕ−1({a}), xK ⊆ qaK). Let qaK = qbK. Since K is a Q-strong co-ideal, qa = qb.
So a = ϕ(qa) = ϕ(qb) = b. Thus ϕ̄ is well-defined. Now we show ϕ̄ is a isomorphism.

(1)ϕ̄(qaK ⊙ qbK) = ϕ̄(qaK)ϕ̄(qbK). Let qc ∈ Q such that qaqbK ⊆ qcK.
Then qaK ⊙ qbK = qcK. Thus by Lemma 2.14, ab = c and so ϕ̄(qaK ⊙ qbK) =
ϕ̄(qaK)ϕ̄(qbK).

(2) ϕ̄(qaK⊕qbK) = ϕ̄(qaK)+ϕ̄(qbK). Let qc ∈ Q such that qaK+qbK ⊆ qcK,
then qaK ⊕ qbK = qcK. By Lemma 2.14, a + b = c. Thus ϕ̄(qaK ⊕ qbK) =
ϕ̄(qaK) + ϕ̄(qbK).

(3) ϕ̄ is monomorphism. Let ϕ̄(qaK) = ϕ̄(qbK). Hence a = b. Since for each
x ∈ ϕ−1({b}), xK ⊆ qbK, we have qaK ⊆ qbK. Similarly qbK ⊆ qaK. Hence
qaK = qbK.

(4) ϕ̄ is epimorphism. Let a ∈ R′. Since ϕ is epic, ϕ−1({a}) ̸= ∅. Since ϕ is
maximal, there exists qa ∈ Q such that qa ∈ ϕ−1({a}) and for each x ∈ ϕ−1({a}),
xK ⊆ qaK. Thus ϕ̄(qaK) = a. Thus ϕ̄ is epic.
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