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1 Introduction

The original motivation to introduce the class of nonassociative algebras known
as Jordan algebras came from quantum mechanics (see [1]). Let L(H) be the real
vector space of all bounded self-adjoint linear operators on H, interpreted as the
(bounded) observables of the system. In 1932, Jordan observed that L(H) is
the (nonassociative) algebra via the anticommutator product x ◦ y := xy+yx

2 . A
commutative algebra X with product x◦y is called a Jordan algebra. A Jordan C∗-
subalgebra of a C∗-algebra, endowed with the anticommutator product, is called
a JC∗-algebra.

A C∗-algebra C, endowed with the Lie product [x, y] = xy−yx
2 on C, is called

a Lie C∗-algebra. A C∗-algebra C, endowed with the Lie product [., .] and the
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anticommutator product ◦, is called a Lie JC∗-algebra if (C, ◦) is a JC∗-algebra
and (C, [., .]) is a Lie C∗-algebra (see [2, 3, 4]). During the last decades several Lie
theory arguments related to functional equations and functional inequalities have
been investigated by a number of mathematicians; cf. [5, 6, 7, 8] and references
therein.

In this paper we study Lie JC∗-algebra homomorphisms in Lie JC∗-algebras.
Our results generalize the JC∗-algebra isomorphisms posed by Park, An and Cui
[9] in JC∗-algebras. Moreover, we present the Lie JC∗-algebras derivations on Lie
JC∗-algebras associated by the following functional inequality∥∥∥f(x− y

2
+ z)− f(x)− 2f(z)

∥∥∥ 6
∥∥∥f(x+ y

2
+ z)

∥∥∥. (1.1)

2 Homomorphisms between Lie JC∗-algebras and
Isomorphisms in JC∗-algebras

At the first of this section we would like to investigate Lie JC∗-algebra ho-
momorphisms between two Lie JC∗-algebras and then ,as corollaries, result JC∗-
algebra isomorphisms between two JC∗-algebras associated with the functional
inequality (1.1). Throughout this section, assume that A and B are two Lie JC∗-
algebra respectively with norm ∥.∥A and ∥.∥B, and also assume that X and Y
are two JC∗-algebra respectively with norm ∥.∥X and ∥.∥Y . First we need the
following proposition.

Definition 2.1. [10] A C-linear mapping H : A → B is called a Lie JC∗-algebra
homomorphism if H satisfies

H(x ◦ y) = H(x) ◦H(y),

H([x, y]) = [H(x),H(y)],

H(x∗) = H(x)∗

for all x, y ∈ A.

Definition 2.2. [10, 11] For two JC∗-algebras A and B, a bijective C-linear
mapping H : A → B is called a JC∗-algebra isomorphism if H satisfies

H(x ◦ y) = H(x) ◦H(y),

for all x, y ∈ A.

Proposition 2.3. Suppose f : A :→ B be a mapping such that∥∥∥f(x− y

2
+ z)− f(x)− 2f(z)

∥∥∥
B
6

∥∥∥f(x+ y

2
+ z)

∥∥∥
B

(2.1)

for all x, y, z ∈ A. Then f is Cauchy additive.
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Proof. Assume that x = y = z = 0 in (2.1), we get

∥ − 2f(0)∥B 6 ∥f(0)∥B,

so f(0) = 0.
Let y = x, z = −x in (2.1), it follows that

∥f(−x)− f(x)− 2f(−x)∥B = ∥ − f(x)− f(−x)∥B 6 ∥f(0)∥B = 0

for all x ∈ A. Hence f(−x) = −f(x) for all x ∈ A.
Let us suppose x = 0, y = −2z in (2.1), we get

∥f(2z)− 2f(z)∥B 6 ∥f(0)∥B = 0

for all z ∈ A. Thus f(2z) = 2f(z) for all z ∈ A.

Let z = − (x+y)
2 in (2.1), it follows that∥∥∥f(−y)− f(x)− 2f(−x+ y

2
)
∥∥∥
B
= ∥ − f(y)− f(x) + f(x+ y)∥B 6 ∥f(0)∥B = 0

for all x, y ∈ A, which this proves that

f(x+ y) = f(x) + f(y)

for all x, y ∈ A and so that f is Cauchy additive.

Theorem 2.1. Suppose r ̸= 1 and θ be nonnegative real numbers, and let f : A →
B be a mapping such that∥∥∥f(µx− y

2
+ z)− µf(x)− 2f(z)

∥∥∥
B
6

∥∥∥f(µx+ y

2
+ z)

∥∥∥
B
, (2.2)

∥f([x, y])− [f(x), f(y)]∥B 6 θ(∥x∥2rA + ∥y∥2rB ), (2.3)

∥f(x ◦ y)− f(x) ◦ f(y)∥B 6 θ(∥x∥2rA + ∥y∥2rB ), (2.4)

∥f(x∗)− f(x)∗∥B 6 θ(∥x∥rA + ∥x∥rA) (2.5)

for all µ ∈ T1 := {λ ∈ C : ∥λ∥ = 1} and all x, y, z ∈ A. Then the mapping
f : A → B is a Lie JC∗-algebra homomorphism.

Proof. Assume r < 1.
Suppose µ = 1 in (2.2), then by Proposition 2.3, implies the mapping f : A → B
is a Cauchy additive. So f(0) = 0. Assume y = −µx and z = 0 in (2.2), so that

∥f(µx)− µf(x)∥B 6 ∥f(0)∥B = 0

for all x ∈ A and all µ ∈ T1. Therefore it is concluded that f(µx) = µf(x) for all
x ∈ A and all µ ∈ T1. Now by Theorem 2.1 of [12], the mapping f is a C-linear.
So one can consider f(x) = limn→∞

1
2n f(2

nx) for all x ∈ A.
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It follows from (2.3) that

∥f([x, y])− [f(x), f(y)]∥B = lim
n→∞

1

4n
∥f([2nx, 2ny]− [f(2nx), f(2ny)]∥B

6 lim
n→∞

4nr θ

4n
(∥x∥2rA + ∥y∥2rA ) = 0

for all x, y ∈ A, which proves

f([x, y]) = [f(x), f(y)],

for all x, y ∈ A.
It follows from (2.4) that

∥f(x ◦ y)− f(x) ◦ f(y)∥B = lim
n→∞

1

4n
∥f(2nx ◦ 2ny)− f(2nx) ◦ f(2ny)∥

6 lim
n→∞

4nr θ

4n
(∥x∥2rA + ∥y∥2rA ) = 0

for all x, y ∈ A. Then we obtain

f(x ◦ y) = f(x) ◦ f(y)

for all x, y ∈ A.
And also from (2.5) is concluded that

∥f(x∗)− f(x)∗∥B = lim
n→∞

1

2n

∥∥∥f(2nx∗
)
− f

(
2nx

)∗∥∥∥
B

6 lim
n→∞

2nr θ

2n
(∥x∥rA + ∥x∥rA)

for all x ∈ A. Thus we proved

f(x∗) = f(x)∗

for all x ∈ A, which this completes the proof. Similarly, one can obtains the result
for the case r > 1.

Theorem 2.2. Suppose r ̸= 1 and θ be nonnegative real numbers, and let f : A →
B be a mapping satisfying (2.2) such that

∥f([x, y])− [f(x), f(y)]∥B 6 θ(∥x∥rA.∥y∥rB), (2.6)

∥f(x ◦ y)− f(x) ◦ f(y)∥B 6 θ(∥x∥rA.∥y∥rB), (2.7)

∥f(x∗)− f(x)∗∥B 6 θ(∥x∥
r
2

A.∥x∥
r
2

A) (2.8)

for all x, y, z ∈ A. Then the mapping f : A → B is a Lie JC∗-algebra homomor-
phism.



Homomorphisms and Derivations in Lie JC*-Algebras 485

Proof. Assume r > 1.
By the same reasoning as in the proof of Theorem 2.1, the mapping f is a C-linear.
So one can consider f(x) = limn→∞ 2nf( x

2n ) for all x ∈ A.
It follows from (2.6) that

∥f([x, y])− [f(x), f(y)]∥B = lim
n→∞

4n∥f([ x
2n

,
y

2n
]− [f(

x

2n
), f(

y

2n
)]∥B

6 lim
n→∞

4n θ

4nr
(∥x∥rA.∥y∥rA) = 0

for all x, y ∈ A, which proves

f([x, y]) = [f(x), f(y)],

for all x, y ∈ A.
It follows from (2.7) that

∥f(x ◦ y)− f(x) ◦ f(y)∥B = lim
n→∞

4n∥f( x
2n

◦ y

2n
)− f(

x

2n
) ◦ f( y

2n
)∥

6 lim
n→∞

4n θ

4nr
(∥x∥rA.∥y∥rA) = 0

for all x, y ∈ A. This implies

f(x ◦ y) = f(x) ◦ f(y),

for all x, y ∈ A.
And also from (2.8) is derived that

∥f(x∗)− f(x)∗∥B = lim
n→∞

2n
∥∥∥f(x∗

2n

)
− f

( x

2n

)∗∥∥∥
B

6 lim
n→∞

2n θ

2nr
(∥x∥

r
2

A.∥x∥
r
2

A)

for all x ∈ A, and this proves

f(x∗) = f(x)∗

for all x ∈ A. Therefore we conclude f : A → B is a Lie JC∗-algebra homomor-
phism. Similarly, one can obtains the result for the case r < 1.

Now we investigate JC∗-algebra isomorphisms in the remaining of this section
as the results of above Theorems.

Corollary 2.4. Suppose r ̸= 1 and θ be nonnegative real numbers, and let f :
X → Y be a bijective mapping satisfying (2.2) such that

∥f(x ◦ y)− f(x) ◦ f(y)∥Y 6 θ(∥x∥2rX + ∥y∥2rY ) (2.9)

for all x, y, z ∈ X . Then the mapping f : X → Y is a JC∗-algebra isomorphism.
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Proof. Assume r > 1.
Similarly in the proof of Theorem 2.1, the mapping f is a C-linear. So one can
consider f(x) = limn→∞ 2nf( x

2n ) for all x ∈ X .

It follows from (2.9) that

∥f(x ◦ y)− f(x) ◦ f(y)∥Y = lim
n→∞

4n∥f( x
2n

◦ y

2n
)− f(

x

2n
) ◦ f( y

2n
)∥Y

6 lim
n→∞

4n θ

4nr
(∥x∥2rX + ∥y∥2rX ) = 0

for all x, y ∈ X . Thus

f(x ◦ y) = f(x) ◦ f(y)

for all x, y ∈ X . Hence the mapping f is a JC∗-algebra isomorphism, as desired.
Similarly, one can obtains the result for the case r < 1.

Corollary 2.5. Suppose r ̸= 1 and θ be nonnegative real numbers, and let f :
X → Y be a bijective mapping satisfying (2.2) such that

∥f(x ◦ y)− f(x) ◦ f(y)∥Y 6 θ(∥x∥rX .∥y∥rY) (2.10)

for all x, y ∈ X . Then the mapping f : X → Y is a JC∗-algebra isomorphism.

Proof. Assume r < 1.
Similarly in the proof of Theorem 2.1, the mapping f is a C-linear. So one can
consider f(x) = limn→∞

1
2n f(2

nx) for all x ∈ X .

It follows from (2.10) that

∥f(x ◦ y)− f(x) ◦ f(y)∥Y = lim
n→∞

1

4n
∥f(2nx ◦ 2ny)− f(2nx) ◦ f(2ny)∥

6 lim
n→∞

4nr θ

4n
(∥x∥2rX + ∥y∥2rX ) = 0

for all x, y ∈ X . Thus

f(x ◦ y) = f(x) ◦ f(y)

for all x, y ∈ X , which this completes the proof of this case. And by same reasons,
we obtain the result for the case r > 1.

3 Derivations on Lie JC∗-algebras

In this section, we are going to investigate Lie JC∗-algebra derivations on
Lie JC∗-algebras associated with the functional inequality (1.1). Throughout this
section, assume that A is a Lie JC∗-algebra with norm ∥.∥.
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Definition 3.1. [10] A C-linear mapping D : A → A is called a Lie JC∗-algebra
derivation if D satisfies

D(x ◦ y) = (Dx) ◦ y + x ◦ (Dy),

D([x, y]) = [Dx, y] + [x,Dy],

D(x∗) = D(x)∗

for all x, y ∈ A.

Theorem 3.1. Suppose r ̸= 1 and θ be nonnegative real numbers, and let f : A →
A be a mapping satisfying (2.2) and (2.5) such that

∥f([x, y])− [f(x), y]− [x, f(y)]∥ 6 θ(∥x∥2r + ∥y∥2r), (3.1)

∥f(x ◦ y)− f(x) ◦ y − x ◦ f(y)∥ 6 θ(∥x∥2r + ∥y∥2r), (3.2)

for all x, y ∈ A. Then the mapping f : A → A is a Lie JC∗-algebra derivation.

Proof. Assume r > 1.
By the same reasoning as in the proof of Theorem 2.1, the mapping f is a C-linear.
So we can consider f(x) = limn→∞ 2nf( x

2n ) for all x ∈ A.
It follows from (3.1) that

∥f([x, y])− [f(x), y]− [x, f(y)∥ = lim
n→∞

1

4n
∥f([2nx, 2ny])− [f(2nx), 2ny]− [2nx, f(2ny)]∥

6 lim
n→∞

4nr θ

4n
(∥x∥2r + ∥y∥2r) = 0

for all x, y ∈ A. Therefore we obtain

f([x, y]) = [f(x), y] + [x, f(y)]

for all x, y ∈ A.
It follows from (3.2) that

∥f(x ◦ y)− f(x) ◦ y − x ◦ f(y)∥ = lim
n→∞

1

4n
∥f(2nx ◦ 2ny)− f(2nx) ◦ 2ny − 2nx ◦ f(2ny)∥

6 lim
n→∞

4nr θ

4n
(∥x∥2r + ∥y∥2r) = 0

for all x, y ∈ A. Then

f(x ◦ y) = f(x) ◦ y + x ◦ f(y)

for all x, y ∈ A. And from (2.5) by the same explanation in the proof of Theorem
2.1 we derive that f(x∗) = f(x)∗ for all x ∈ A. Therefore we conclude f : A → A
is a Lie JC∗-algebra derivation. Similarly, by the same arguments, we can obtain
the result for the case r < 1.
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Theorem 3.2. Suppose r ̸= 1 and θ be nonnegative real numbers, and let f : A →
A be a mapping satisfying (2.2) and (2.8) such that

∥f([x, y])− [f(x), y]− [x, f(y)]∥ 6 θ(∥x∥r.∥y∥r), (3.3)

∥f(x ◦ y)− f(x) ◦ y − x ◦ f(y)∥ 6 θ(∥x∥r.∥y∥r), (3.4)

for all x, y ∈ A. Then the mapping f : A → A is a Lie JC∗-algebra derivation.

Proof. Assume r > 1.
By the same reasoning as in the proof of Theorem 2.1, the mapping f is a C-linear.
So we can assume f(x) = limn→∞ 2nf( x

2n ) for all x ∈ A.
It follows from (3.3) that

∥f([x, y])− [f(x), y]− [x, f(y)]∥ = lim
n→∞

4n∥f([ x
2n

,
y

2n
])− [f(

x

2n
),

y

2n
]− [

x

2n
, f(

y

2n
)]∥

6 lim
n→∞

4n θ

4nr
(∥x∥r.∥y∥r) = 0

for all x, y ∈ A. Hence

f([x, y]) = [f(x), y] + [x, f(y)]

for all x, y ∈ A.
It follows from (3.4) that

∥f(x ◦ y)− f(x) ◦ y − x ◦ f(y)∥ = lim
n→∞

4n∥f( x
2n

◦ y

2n
)− f(

x

2n
) ◦ y

2n
− x

2n
◦ f( y

2n
)∥

6 lim
n→∞

4n θ

4nr
(∥x∥r.∥y∥r) = 0

for all x, y ∈ A. Therefore

f(x ◦ y) = f(x) ◦ y + x ◦ f(y)

for all x, y ∈ A. And from (2.8) by the same explanation in the proof of Theorem
2.2 it is obtained that f(x∗) = f(x)∗ for all x ∈ A. Therefore we conclude
f : A → A is a Lie JC∗-algebra derivation. Similarly, one can obtains the result
for the case r < 1.
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