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Abstract : The aim of this paper is to provide some existence theorems of a
Lipschitz pseudo-contraction by the way of a hybrid shrinking projection method
involving some necessary and sufficient conditions. The method allows us to obtain
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a Lipschitz monotone operator along with its convergent results.
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1 Introduction

There are several attempts to establish an iteration method to find a fixed
point of some well-known nonlinear mappings, for instant, nonexpansive mapping.
We note that Mann’s iterations [1] have only weak convergence even in a Hilbert
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space (see e.g., [2]). Nakajo and Takahashi [3] modified the Mann iteration method
so that strong convergence is guaranteed, later well known as a hybrid projection
method. Since then, the hybrid method has received rapid developments. For the
details, the readers are referred to papers [4–24] and the references cited therein.
In 2008, Takahashi, Takeuchi and Kobota [19] introduced an alternative projection
method, subsequently well known as the shrinking projection method, and they
showed several strong convergence theorems for a family of nonexpansive map-
pings; see also [25]. In 2009, Aoyama, Kohsaka and Takahashi [26] applied the
hybrid shrinking projection method along with creating some necessary and suf-
ficient conditions to confirm the existence of a fixed point of firmly nonexpansive
mapping.

Let H be a real Hilbert space, a mapping T with domain D(T ) and range
R(T ) in H is called firmly nonexpansive if

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩, ∀x, y ∈ D(T ),

nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ D(T ),

Throughout this paper, I stands for an identity mapping. The mapping T is said
to be a strict pseudo-contraction if there exists a constant 0 ≤ k < 1 such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ D(T ). (1.1)

In this case, T may be called as k-strict pseudo-contraction. In the even that
k = 1, T is said to be a pseudo-contraction, i.e.,

∥Tx− Ty∥2 6 ∥x− y∥2 + ∥(I − T )x− (I − T )y∥2, ∀x, y ∈ D(T ). (1.2)

It is easy to see that (1.2) is equivalent to

⟨x− y, (I − T )x− (I − T )y⟩ > 0, ∀x, y ∈ D(T ).

We use F (T ) to denote the set of fixed point of T (i.e. F (T ) = {x ∈ D(T ) :
Tx = x}). The class of pseudo-contractions extendclass of the class of strict
pseudo-contractions, the class of nonexpansive mappings and firmly nonexpansive
mappings. That is

firmly nonexpansive ⇒ nonexpansive ⇒ strict pseudo-contraction ⇒
pseudo-contraction .

However, the following examples show that the converse is not true.

Example 1.1 (Chidume, Mutangadura [27]). Take H = R2, B = {x ∈ R2 : ∥x∥ ≤
1}, B1 = {x ∈ B : ∥x∥ ≤ 1

2}, B2 = {x ∈ B : 1
2 ≤ ∥x∥ ≤ 1}. If x = (a, b) ∈ H we

define x⊥ to be (b,−a) ∈ H. Define T : B → B by

Tx =

x+ x⊥, x ∈ B1,
x

∥x∥
− x+ x⊥, x ∈ B2.
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Example 1.2 (Zhou [28]). Take H = R and define T : H → H by

Tx =



1, x ∈ (−∞,−1) ,√
1− (1 + x)

2
, x ∈ [−1, 0) ,

−
√
1− (x− 1)

2
, x ∈ [0, 1] ,

1, x ∈ (1,∞) .

Then, T is a Lipschitz and pseudo-contraction but not a strict pseudo-contraction.

Example 1.3. Let H be a real Hilbert space and α ∈ (1,∞). Define Tα : H → H
by

Tαx = −αx, ∀x ∈ H.

Then, Tα is a strict pseudo-contraction but not a nonexpansive mapping.

Indeed, it is clear that Tα is not nonexpansive. On the other hand, let us
consider

∥Tαx− Tαy∥2 = ∥(−αx)− (−αy)∥2 = α2∥x− y∥2 =

(
1 +

α2 − 1

(1 + α)
2 (1 + α)

2

)
∥x− y∥2

= ∥x− y∥2 + α2 − 1

(1 + α)
2 ∥(1− (−α))x− (1− (−α))y∥2

= ∥x− y∥2 + α− 1

α+ 1
∥(I − Tα)x− (I − Tα)y∥2

≤ ∥x− y∥2 + κ∥(I − Tα)x− (I − Tα)y∥2

for all κ ∈
[
α−1
α+1 , 1

)
. Thus Tα is a strict pseudo-contraction.

Example 1.4. Take H ̸= {0} and let T = −I, it is not hard to verify that T is
nonexpansive but not firmly nonexpansive.

From a practical point of view, strict pseudo-contractions have more power-
ful applications than nonexpansive mappings do in solving inverse problems (see
Scherzer [29]). Therefore, it is important to develop theory of iterative methods
for strict pseudo-contractions. Within the past several decades, many authors
have been devoted to the studies on the existence and convergence of fixed points
for strict pseudocontractions. In 1967, Browder and Petryshyn [30] introduced a
convex combination method to study strict pseudo-contractions in Hilbert spaces.
On the other hand, Marino and Xu [12] and Zhou [31] developed some iterative
scheme for finding a fixed point of a strict pseudocontraction mapping.

In 2009, Yao, Liou, Marino [32] introduced the hybrid iterative algorithm for
pseudo-contractive mapping in Hilbert spaces as follows:
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Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → C be a pseudo-contraction. Let {αn} be a sequence in (0, 1). Let x0 ∈ H.
For C1 = C and x1 = PC1(x0), define a sequence {xn} of C as follows:

yn = (1− αn)xn + αnTxn,

Cn+1 =
{
v ∈ Cn : ∥αn(I − T )yn∥2 ≤ 2αn ⟨xn − v, (I − T )yn⟩

}
,

xn+1 = PCn+1
(x0).

(1.3)

Theorem 1.5 (Yao, Liou, Marino [32]). Let C be a nonempty closed convex subset
of a real Hilbert space H. Let T : C → C be a L-Lipschitz pseudo-contraction such

that F (T ) ̸= ∅. Assume the sequence {αn} ⊂ [a, b] for some a, b ∈
(
0, 1

L+1

)
.

Then the sequence {xn} generated by (1.3) converges strongly to PF (T )(x0).

In 2009, Aoyama, Kohsaka and Takahashi [26] provided the useful and inter-
esting lemma to confirm that the sequence generated by the shrinking projection
method is well defined even if the firmly nonexpansive mapping T has no fixed
points:

Lemma 1.6 (Aoyama, Kohsaka, Takahashi [26, Lemma 4.2]). Let H be a Hilbert
space, C a nonempty closed convex subset of H, T : C → C a firmly nonexpansive
mapping and x0 ∈ H. Let {xn} be a sequence in C and {Cn} a sequence of closed
convex subsets of H generated by C1 = C and{

xn = PCn(x0),

Cn+1 = {z ∈ Cn : ⟨Txn − z, xn − Txn⟩ ≥ 0} ,

for all n ∈ N. Then Cn is nonempty for every n ∈ N, and consequently, {xn} is
well defined.

By using the lemma mentioned above, they proved the following theorem:

Theorem 1.7 (Aoyama, Kohsaka, Takahashi [26, Theorem 4.3]). Let H be a
Hilbert space, C a nonempty closed convex subset of H, T : C → C a firmly
nonexpansive mapping and x0 ∈ H. Let {xn} be a sequence in C and {Cn} a
sequence of closed convex subsets of H generated by C1 = C and{

xn = PCn(x0),

Cn+1 = {z ∈ Cn : ⟨Txn − z, xn − Txn⟩ ≥ 0} ,

for all n ∈ N. Then the following are equivalent:

1.
∞∩

n=1
Cn is nonempty;

2. {xn} is bounded;

3. F (T ) is nonempty.
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Motivated and inspired by the results mentioned above, in this paper, we pro-
vide some existence theorems of a Lipschitz pseudo-contraction by the way of the
shrinking projection method involving some necessary and sufficient conditions.
Then we prove a strong convergence theorem and present its applications to con-
firm the existence of the zeros of a Lipschitz monotone operator along with its
convergent results.

Throughout the paper, we will use the notation:

1. → for strong convergence and ⇀ for weak convergence,

2. ωw(xn) = {x : ∃xni ⇀ x} denotes the weak ω-limit set of {xn}.

2 Preliminaries

In this section, some definitions are provided and some relevant lemmas which
are useful to prove in the next section are collected. Most of them are known
others are not hard to find and understand the proof.

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥ and let
C be a closed convex subset of H. For every point x ∈ H there exists a unique
nearest point in C, denoted by PC(x), such that

∥x− PCx∥ 6 ∥x− y∥, ∀y ∈ C.

The mapping PC is called the metric projection of H onto C. It is well known
that PC is a firmly nonexpansive mapping of H onto C, that is

∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ , ∀x, y ∈ H.

Furthermore, for any x ∈ H and z ∈ C,

z = PCx ⇔ ⟨x− z, z − y⟩ ≥ 0, ∀y ∈ C.

Moreover, PCx is characterized by the following:

∥x− y∥2 ≥ ∥x− PCx∥2 + ∥y − PCx∥2, ∀y ∈ C.

It is obvious that the following equality holds for all x, y ∈ H:

∥x− y∥2 = ∥x∥2 − ∥y∥2 − 2 ⟨x− y, y⟩ , ∀x, y ∈ H. (2.1)

Lemma 2.1 ([33, Problem 1.2(2)]). Let {an} be a sequence of real numbers. Then,
lim
n→∞

an = 0 if and only if for any subsequence {ani} of {an}, there exists a sub-

sequence
{
anij

}
of {ani} such that lim

j→∞
anij

= 0.

Lemma 2.2 ([34]). Let H be a real Hilbert space, C a closed convex subset of H
and T : C → C a continuous pseudo-contractive mapping, then
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1. F (T ) is closed convex subset of C.

2. I−T is demiclosed at zero, i.e., if {xn} is a sequence in C such that xn ⇀ z
and (I − T )xn → 0, then (I − T )z = 0.

Lemma 2.3 ([35, Theorem 7.1.8]). Let K be a bounded closed convex subset of
a Hilbert space H and A : K → H a continuous monotone mapping. Then there
exists an element u0 ∈ K such that ⟨v − u0, Au0⟩ ≥ 0 for all v ∈ K.

3 Main Results

In this section, motivated by Aoyama, Kohsaka and Takahashi [26] (see also,
Matsushita and Takahashi [36]), we discuss the existence of fixed point of a Lip-
schitz pseudo-contraction by using the shrinking projection technique playing as
the tool to guarantee the existence of fixed point of a Lipschitz pseudo-contraction.

Every iteration process generated by the shrinking projection method for a
Lipschitz pseudo-contraction T is well defined even if T is fixed point free.

Lemma 3.1. Let H be a Hilbert space, C a nonempty closed convex subset of H,
T : C → C a L-Lipschitz pseudo-contraction and x0 ∈ H. Let {xn} be a sequence
in C and {Cn} a sequence of closed convex subsets of H generated by C1 = C and

x1 = PC1(x0),

yn = (1− αn)xn + αnTxn; 0 ≤ αn ≤ 1

L+ 1
,

Cn+1 =
{
z ∈ Cn : ∥αn(I − T )yn∥2 ≤ 2αn ⟨xn − z, (I − T )yn⟩

}
,

xn+1 = PCn+1(x0),

(3.1)

for all n ∈ N. Then Cn is nonempty for every n ∈ N, and consequently, {xn} is
well defined.

Proof Clearly, C1 is nonempty. Suppose that Cn is nonempty for some n ∈ N.
Since Cn ⊂ Cn−1 ⊂ . . . ⊂ C1, we have C1, C2, . . . , Cn are nonempty and hence
{x1, x2, . . . , xn} is well define. Put r = max {∥yi∥ : i = 1, 2, . . . , n} and Br =
{z ∈ H : ∥z∥ ≤ r}. Obviously C∩Br is a nonempty bounded closed convex subset
of H. Let I denote the identity mapping on C. Since I − T is continuous and
monotone, it follows from Lemma 2.3 that there exists u ∈ C ∩Br such that

⟨y − u, (I − T )u⟩ ≥ 0 ∀y ∈ C ∩Br.

In particular, we have

⟨yi − u, (I − T )u⟩ ≥ 0 (3.2)
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for every i = 1, 2 . . . , n. On the other hand, by employing the identity (2.1) and
then adding and subtracting the terms yi and (I − T )u, we obtain

∥xi − u− αi(I − T )yi∥2

=∥xi − u∥2 − ∥αi(I − T )yi∥2 − 2αi ⟨xi − u− αi(I − T )yi, (I − T )yi⟩

=∥xi − u∥2 − ∥αi(I − T )yi∥2 − 2αi ⟨xi − yi − αi(I − T )yi, (I − T )yi⟩
− 2αi ⟨yi − u, (I − T )yi⟩

=∥xi − u∥2 −
(
∥αi(I − T )yi∥2 + 2 ⟨xi − yi − αi(I − T )yi, αi(I − T )yi⟩

)
− 2αi ⟨yi − u, (I − T )yi − (I − T )u⟩ − 2αi ⟨yi − u, (I − T )u⟩ .

(3.3)

By using the identity (2.1) again, it follows that

∥αi(I − T )yi∥2 + 2 ⟨xi − yi − αi(I − T )yi, αi(I − T )yi⟩

= ∥αi(I − T )yi∥2 + ∥xi − yi∥2 − ∥αi(I − T )yi∥2 − ∥xi − yi − αi(I − T )yi∥2

= ∥xi − yi∥2 − ∥xi − yi − αi(I − T )yi∥2.
(3.4)

Substituting (3.4) in (3.3), and by αn ≥ 0 for all n ∈ N, the monotonicity of
(I − T ) and (3.2), we have

∥xi − u− αi(I − T )yi∥2

=∥xi − u∥2 − ∥xi − yi∥2 + ∥xi − yi − αi(I − T )yi∥2

− 2αi ⟨yi − u, (I − T )yi − (I − T )u⟩ − 2αi ⟨yi − u, (I − T )u⟩

=∥xi − u∥2 − ∥xi − yi∥2 − ∥xi − yi − αi(I − T )yi∥2 + 2∥xi − yi − αi(I − T )yi∥2

− 2αi ⟨yi − u, (I − T )yi − (I − T )u⟩ − 2αi ⟨yi − u, (I − T )u⟩

≤∥xi − u∥2 − ∥xi − yi∥2 − ∥xi − yi − αi(I − T )yi∥2 + 2∥xi − yi − αi(I − T )yi∥2.
(3.5)

We observe that

∥xi − yi − αi(I − T )yi∥2

= ⟨xi − yi − αi(I − T )yi, xi − yi − αi(I − T )yi⟩
= αi ⟨(I − T )xi − (I − T )yi, xi − yi − αi(I − T )yi⟩
≤ αi ∥(I − T )xi − (I − T )yi∥ ∥xi − yi − αi(I − T )yi∥ (3.6)

≤ αi (L+ 1) ∥xi − yi∥ ∥xi − yi − αi(I − T )yi∥

≤ αi (L+ 1)

2

(
∥xi − yi∥2 + ∥xi − yi − αi(I − T )yi∥2

)
.

Joining (3.5) for the term ∥xi − yi − αi(I − T )yi∥2 with (3.6) and by 0 ≤ αn ≤
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1
L+1 , we have

∥xi − u− αi(I − T )yi∥2

≤ ∥xi − u∥2 − ∥xi − yi∥2 − ∥xi − yi − αi(I − T )yi∥2 + 2∥xi − yi − αi(I − T )yi∥2

≤ ∥xi − u∥2 − ∥xi − yi∥2 − ∥xi − yi − αi(I − T )yi∥2

+ αi (L+ 1)
(
∥xi − yi∥2 + ∥xi − yi − αi(I − T )yi∥2

)
(3.7)

= ∥xi − u∥2 + (αi (L+ 1)− 1)
(
∥xi − yi∥2 + ∥xi − yi − αi(I − T )yi∥2

)
≤ ∥xi − u∥2.

Notice that

∥xi − u− αi(I − T )yi∥2 = ∥xi − u∥2 − 2αi ⟨xi − u, (I − T )yi⟩+ ∥αi(I − T )yi∥2.
(3.8)

Combining (3.7) and (3.8), we have

∥αi(I − T )yi∥2 ≤ 2αi ⟨xi − u, (I − T )yi⟩ . (3.9)

for every i = 1, 2, . . . , n. This shows that u ∈ Cn+1. By induction on n, we obtain
the desired result.

The following theorem provides some necessary and sufficient conditions to
confirm the existence of a fixed point of a Lipschitz pseudo-contraction in Hilbert
spaces.

Theorem 3.2. Let all the assumptions be as in Lemma 3.1 and 0 < a ≤ αn ≤
b < 1

L+1 for all n ∈ N. Then the following are equivalent:

1.
∞∩

n=1
Cn is nonempty;

2. {xn} is bounded;

3. F (T ) is nonempty.

Proof [(i)⇒(ii)] Suppose that
∞∩

n=1
Cn ̸= ∅. Let u ∈

∞∩
n=1

Cn, it follows from the

nonexpansiveness of PCn that

∥xn − u∥ ≤ ∥PCnx0 − PCnu∥ ≤ ∥x0 − u∥ , ∀n ∈ N.

This shows that {xn} is bounded.
[(ii)⇒(iii)] Suppose that {xn} is bounded, we observe that

0 ≤ ∥xn+1 − xn∥2 = ∥xn+1 − PCnx0∥2

≤ ∥xn+1 − x0∥2 − ∥PCnx0 − x0∥2

= ∥xn+1 − x0∥2 − ∥xn − x0∥2.

(3.10)
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This shows that {∥xn − x0∥} is non-decreasing and then with the boundedness of
{xn}, we have lim

n→∞
∥xn − x0∥ exists. By using (3.10), we obtain

∥xn+1 − xn∥ → 0 as n → ∞.

Since xn+1 ∈ Cn+1 and 0 < a ≤ αn ≤ b < 1
L+1 , so we have

∥αn(I − T )yn∥2 ≤ 2αn ⟨xn − xn+1, (I − T )yn⟩ → 0 as n → ∞,

and then
∥yn − Tyn∥ → 0 as n → ∞.

Furthermore, it follows from the Lipschitzian of T that

∥xn − Txn∥ ≤ ∥xn − yn∥+ ∥yn − Tyn∥+ ∥Tyn − Txn∥
≤ ∥xn − yn∥+ ∥yn − Tyn∥+ L ∥yn − xn∥
= αn(L+ 1) ∥xn − Txn∥+ ∥yn − Tyn∥ .

By simple calculation, we have

∥xn − Txn∥ ≤
(

1

1− αn(L+ 1)

)
∥yn − Tyn∥

≤
(

1

1− b (L+ 1)

)
∥yn − Tyn∥ → 0 as n → ∞.

(3.11)

Since {xn} is bounded, the reflexivity of H allows a subsequence {xni} of {xn}
such that xni ⇀ p ∈ C as i → ∞. By using (3.11) and Lemma 2.2 (ii) the
demicloseness of (I − T ), we obtain p− Tp = 0 that is p ∈ F (T ) ̸= ∅.

[(iii)⇒(i)] Suppose that F (T ) ̸= ∅. We will show that F (T ) ⊂ Cn for every
n ∈ N. Let p ∈ F (T ), then we have (I − T )p = 0. Let us replace u in the proof
of Lemma 3.1 with p, it is not difficult to see that all equalities and inequalities
are satisfied until (3.9). This implies that p ∈ Cn for all n ∈ N. Therefore

F (T ) ⊂
∞∩

n=1
Cn ̸= ∅.

Theorem 3.3. Let all the assumptions be as in Lemma 3.2. Then, if
∞∩

n=1
Cn ̸= ∅

(⇔ {xn} is bounded ⇔ F (T ) ̸= ∅), then the sequence {xn} generated by (3.1)
converges strongly to some points of C and its strong limit point is a member of
F (T ), that is lim

n→∞
xn = PF (T )x0 ∈ F (T ).

Proof We will show that lim
n→∞

xn exists. Furthermore, the limit point p =

lim
n→∞

xn = PF (T )x0 ∈ F (T ).

Suppose that
∞∩

n=1
Cn ̸= ∅, then by Theorem 3.2 ensures that the sequence

{xn} is bounded. Let {xni} be any subsequence of {xn}, then the reflexivity of
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H allows a subsequence {xnij
} of {xni} such that xnij

⇀ p ∈ C as j → ∞ and

then applying Lemma 2.1 we can conclude that xn ⇀ p ∈ C as n → ∞. By using
(3.11) and the demicloseness of (I − T ), we obtain p − Tp = 0 that is p ∈ F (T ).
Since PF (T )x0 ∈ F (T ) ⊂ Cn, we observe that

∥xn − x0∥ ≤ ∥PCnx0 − x0∥ ≤
∥∥PF (T )x0 − x0

∥∥ (3.12)

for every n ∈ N. Since ∥ · ∥2 is weakly lower semicontinuous and {∥xn − x0∥} is
convergent, it follows from (3.12) that

∥p− x0∥2 ≤ lim inf
n→∞

∥xn − x0∥2 = lim
n→∞

∥xn − x0∥2 ≤
∥∥PF (T )x0 − x0

∥∥2.
Taking into account p ∈ F (T ), we obtain p = PF (T )x0. This shows that xn ⇀
PF (T )x0 and ∥xn − x0∥ → ∥PF (T )x0 − x0∥. Consequently, from (2.1), we obtain∥∥xn − PF (T )x0

∥∥2 =
∥∥xn − x0 −

(
PF (T )x0 − x0

)∥∥2
= ∥xn − x0∥2 −

∥∥PF (T )x0 − x0

∥∥2
− 2

⟨
xn − PF (T )x0, PF (T )x0 − x0

⟩
→ 0.

This completes the proof.

4 Deduced Theorems and Applications

In this section, some deduced theorems and applications of the main results
are provided in order to guarantee the existence of fixed points of a nonexpansive
mapping, the existence of the zeros of a Lipschitz monotone operator. Moreover,
we also have the methods that can be used to find fixed points and zero points
mentioned above.

If T : C → C is nonexpansive (⇔ T is 1-Lipschitz pseudo-contraction), then
we have the following corollaries.

Every iteration process generated by the shrinking projection method for a
nonexpansive mapping T is well defined even if T is fixed point free.

Corollary 4.1. Let H be a Hilbert space, C a nonempty closed convex subset of
H, T : C → C a nonexpansive mapping and x0 ∈ H. Let {xn} be a sequence in C
and {Cn} a sequence of closed convex subsets of H generated by C1 = C and

x1 = PC1x0,

yn = (1− αn)xn + αnTxn; 0 ≤ αn ≤ 1

2
,

Cn+1 =
{
z ∈ Cn : ∥αn(I − T )yn∥2 ≤ 2αn ⟨xn − z, (I − T )yn⟩

}
,

xn+1 = PCn+1x0,

(4.1)

for all n ∈ N. Then Cn is nonempty for every n ∈ N, and consequently, {xn} is
well defined.
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Corollary 4.2. Let all the assumptions be as in Lemma 4.1 and 0 < a ≤ αn ≤
b < 1

2 . Then the following are equivalent:

1.
∞∩

n=1
Cn is nonempty;

2. {xn} is bounded;

3. F (T ) is nonempty.

Corollary 4.3. Let all the assumptions be as in Lemma 4.2. Then, if
∞∩

n=1
Cn ̸= ∅

(⇔ {xn} is bounded ⇔ F (T ) ̸= ∅), then {xn} converges strongly to some points of
C and its strong limit point is a member of F (T ), that is lim

n→∞
xn = PF (T )(x0) ∈

F (T ).

Recall that a mapping A is said to be monotone, if ⟨x− y,Ax−Ay⟩ > 0 for
all x, y ∈ H and inverse strongly monotone if there exists a real number γ > 0
such that ⟨x− y,Ax−Ay⟩ > γ∥Ax− Ay∥2 for all x, y ∈ H. For the second case,
A is said to be γ-inverse strongly monotone. It follows immediately that if A is
γ-inverse strongly monotone, then A is monotone and Lipschitz continuous, that
is, ∥Ax−Ay∥ 6 1

γ ∥x− y∥. It is well known (see, e.g., [37]) that if A is monotone,
then the solutions of the equation Ax = 0 correspond to the equilibrium points
of some evolution systems. Therefore, it is important to focus on finding the
zero points of monotone mappings. The pseudo-contractive mapping and strictly
pseudo-contractive mapping are strongly related to the monotone mapping and
inverse strongly monotone mapping, respectively. It is well known that

1. A is monotone ⇔ T := (I −A) is pseudo-contractive.

2. A is inverse strongly monotone⇔ T := (I−A) is strictly pseudo-contractive.

Indeed, for (ii), we notice that the following equality always holds in a real Hilbert
space

∥(I−A)x− (I−A)y∥2 = ∥x−y∥2+∥Ax−Ay∥2−2 ⟨x− y,Ax−Ay⟩ ∀x, y ∈ H,
(4.2)

with out loss of generality we can assume that γ ∈ (0, 1
2 ] and then it yields

⟨x− y,Ax−Ay⟩ > γ∥Ax−Ay∥2 ⇔ −2 ⟨x− y,Ax−Ay⟩ 6 −2γ∥Ax−Ay∥2

⇔ ∥(I −A)x− (I −A)y∥2 6 ∥x− y∥2 + (1− 2γ)∥Ax−Ay∥2

(via (4.2))

⇔ ∥Tx− Ty∥2 6 ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2

(where T := (I −A) and k := 1− 2γ).

Every iteration process generated by the shrinking projection method for a LA-
Lipschitz monotone operator A is well defined even if A has no zeros.
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Corollary 4.4. Let H be a Hilbert space and A : H → H be a LA-Lipschitz
monotone operator. Let x0 ∈ H, C1 = C and {xn} be a sequence generated by

x1 = PC1x0,

yn = (I − αnA)xn; 0 ≤ αn ≤ 1

LA + 2
,

Cn+1 =
{
z ∈ Cn : ∥αnAyn∥2 ≤ 2αn ⟨xn − z,Ayn⟩

}
,

xn+1 = PCn+1x0,

(4.3)

for all n ∈ N. Then Cn is nonempty for every n ∈ N, and consequently, {xn} is
well defined.

Proof Let T := (I −A). Then T is (LA + 1)-Lipschitz pseudo-contraction,

yn = (I − αnA)xn = (I − αn (I − (I −A)))xn = (1− αn)xn + αnTxn.

Hence, applying Theorem 3.1, we have the desired result.
The following theorem provides some necessary and sufficient conditions to

confirm the existence of a zeros of a LA-Lipschitz monotone operator in Hilbert
spaces.

Corollary 4.5. Let all the assumptions be as in Corollary 4.4 and 0 < a ≤ αn ≤
b < 1

LA+2 for all n ∈ N. Then the following are equivalent:

1.
∞∩

n=1
Cn is nonempty;

2. {xn} is bounded;

3. A−1(0) is nonempty.

Proof Let T := (I −A). Then T is (LA +1)-Lipschitz pseudo-contraction, it is
not difficult to show that F (T ) = A−1(0). Hence, applying Theorem 3.2, we have
the desired result.

Corollary 4.6. Let all the assumptions be as in Corollary 4.5. Then, if
∞∩

n=1
Cn ̸= ∅

(⇔ {xn} is bounded ⇔ A−1(0) ̸= ∅), then the sequence {xn} generated by (4.3)
converges strongly to some points of H and its strong limit point is a member of
A−1(0), that is lim

n→∞
xn = PA−1(0)x0 ∈ A−1(0).

Proof Let T := (I − A) and by applying Theorem 3.3, we have the desired
result.
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