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Abstract : In this paper, we are finding nonlinear heat equation in n-dimensional.

By method of Fourier transform in sense of Distribution theory we obtain the
solution in the convolution form. On the suitable we obtain the solution nonlinear
triharmonic heat equation.
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1 Introduction

It is well known that for the heat equation

e u(z,t) = *Au(x,t) (1.1)
with the initial condition
u(z,0) = f(x)
where A = Y7 | ;—; is the Laplace operator and (z,t) = (x1,22,...,Zn,t) €
R™ x (0,00), we obtain
1 |z —y|?
t) = ——— — d 1.2
u(xﬂ ) (4C27Tt)n/2 /Rn exp ( 4C2t f(y) y ( )
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as the solution of (1.1). Now, (1.2) can be written u(z,t) = E(z,t) * f(z) where

Bt = — e (120 (1.3)
’ (4c2mt)n/? 42t ) '

E(x,t) is called the heat kernel, where |z|?> = 22 + 23 + -+ 22 and t > 0, [1, pp.
208-209)].

Next, Nonlaopon and Kananthai [2] study the equation

9 2
— =c°0
v u(z,t) = ¢“Ou(z, t),

and O is the ultra-hyperbolic operator iterated k— times and is defined by

ok — 82+52+ +82 _372_372 ..... o (1.4)
0z?  Ox3 dx2  dxZ,,  0xl,, o2, ,

4c2t

q m _ \"Pta
E(x,t) = Zexp( 1T 2 J) , (1.5)
T

where p + ¢ = n and n is the dimension of the Euclidean space R™ and ¢ = v/—1
for finding the kernel E(x,t).

In 1996, Kananthai [3] first introduced the operator ¢* and is named Diamond
operator and is defined by

2
. P 82 2 p+q 82 2
Ok = > 57 > Py : (1.6)

Jj=p+1 J

The operator ¥ can be written as the product of the operators in the form
OF = AFDF = Ok A, (1.7)

where AF is the Laplacian operator iterated k— times and is defined by

2 o 92 \"*
Ab= (T ) 1.
<8x% * 0x3 o ax%) (18)

The Fourier transform of the Diamond operator also has been studied and the
elementary solution of such operator, [4]. In 2009, Satsanit [5] has first introduced
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the operator ®*, where ®F is defined by

N p 2 3 p+q 82
o= <Zax2> | X o

i=1 j=p+1 ij
P p+q k
2 82
(a2 e
i=1 g j=p+1 J
o7k
p 2 2 P 2 pt+q 82 p+q 82
Nlam) o) | a2 e
=1 v i=1 4 j=p+1 J j=p+1 J
1 k
= (O)k (N Z(A +0)(A - D))
3 1 .\"
=(>0a+-0° 1.
(4<> +3 ) ; (1.9)

where A, O and ¢ are defined by (1.8), (1.4) and (1.6) with k& = 1 respectively.
Now, the purpose of this work is to study the equation

0
3 U t) = (=) u(z, t) = f(2,t,u(z,1)) (1.10)

for (z,t) € R™ x (0,00). We consider the equation (1.10) which is in the form of
nonlinear heat equation with the following conditions on u and f as follows

(1) u(z,t) € COR(R") for any t > 0 where C'6%*)(R™) is the space of continuous
function with 6k-derivatives.

(2) f satisfies the Lipchitz condition,
|f(z,t,u) — f(z,t,w)] < Alu — w|

where A is constant with 0 < A < 1.

o f L

0 <t < oo and u(z,t) is continuous function on R™ x (0, co).

t_"/6kf(x,t,u(x,t)) dxdt < oo for x = (x1,29,...,2,) € R",

Under such conditions of f and u and for the spectrum of E(z,t), we obtain the
convolution

u(z,t) = E(x,t) * f(x,t,u(z, t))

as a unique solution of (1.10) where E(x,t) is defined by (2.9).
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2 Preliminaries
Definition 2.1. Let f(z) € L;(R"™)-the space of integrable function in R™. The
Fourier transform of f(z) is defined by

~ 1 .

— —i(§,x)

Fi&) = Gy [ e @) da, (21)
where £ = (£1,&,...,&,) and © = (21, 22,...,2,) € R, (§,2) = & 21 + Eama +
s 4 &y and dr = dxy das .. dxy,.

Also, the inverse of Fourier transform is defined by

1 . ~
=—— U&2) f(¢) de. 2.2
@) = Gy [ T de (22
If f is a distribution with compact supports then Eq.(2.1) can be written as
~ 1 ,
_ —i€.x

[6, Theorem 7.4-3, p.187].

Lemma 2.2. Given the function

where

P 3 p+q
@029 52) CR™, pign, <Zw?> (5 =
J

and k is the positive odd number. Then

2 DI
Rn 9k*  T(5)I'(3)
where %ﬂ’ = 2 and T denoted the gamma function. That is fRn f(z)dz is bounded.

2
Proof.

f(z)dz| <

p 3 p+q
/ f(a?)dx:/ exp <me) - Z x? dx
" " i=1 j=p+1
k
p+aq ° P 3
:/ exp | — Z $§ — <sz) dx
" j=p+1 i=1




On the Otimes Operator Related to Nonlinear Heat Equation

for k is a positive odd number. By changing the coordinate, we put

T1 =1Y1, T2 =1Y2,..., Tp =1Yp
dry =idy, dxo =idys,..., dz, =1idy,
and
Tp+1 = Yp+1, Tp+2 = Yp+25--+5 Tpt+q = Yp+q
drpy1 = dypi1, dTpio = dypya, ..., diprq = dypyg,

where 7 = v/—1. Then we obtain

3 ) k
ptq P 3
(z)dx = ip/ exp | — E y]2- + <E yf) dy
R”L n j:p+1 i:l

Let us transform to bipolar coordinates defined by

Y1 = TWi, Y2 = TWa, ..., Yp = TW,
and Yp41 = SWpt1,Yp42 = SWpt2,- - Yptq = SWptq, PHG=T1
where w} + w} + -+ + w2 =1and w2, + w2, + - +w,, =1, Thus

flz)dx = ip/ exp (— (r®+ 86)k> rP~ s drdsdQ,dQ,
R™ n

where
dy = rP~ 19" drdsd,dQ,,

447

(2.5)

(2.6)

d), and df), are the elements of surface area on the unit sphere in R? and R?

respectively. By computing directly, we obtain

(o) o0
f(z)dx = inqu/ / exp (— (r®+ 86)k> rP~ s drds
R™ o Jo
where ,, = M and Q, = ﬂ Since (r% + s%)F > r6% + 5% we have
"T(p/2) T T(e/2) N ’

exp(—(r® +5°)%) < exp(—(r® + s°)

Thus

| flx)dx| < Qpﬂq/ / exp (—er — %) rP st ards
Rn o Jo

= Qqu/ exp (—r%) rp_ldr/ exp (—s%) 597 ds.
0 0

(2.7)
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1 . .
Put u = 7%, dr = Gkuek “ldu and v = s ds = 61kvﬁ*1dv in the above equation,

we obtain
Q,Q, [ L e L
f(x)dz| < £ q/ e_“uﬁ_ldu/ e Yver ldu
o 1) ol ;
_ 0 q
= et (60) T (50
B 277”/2271‘1/2 INC AN
(6k)*  T(5HI(3)
_ PTG
9k> T(5)T'()
where 224 = 2. That is Jgn f(z)dz is bounded. O

Lemma 2.3. (The Fourier transform of @%6)

(=1

k
Feto= (2m)n/2 [(51 +& 4 +6) — (Gt +§§+q)3} ’

where F is the Fourier tmnsform defined by (2.1) and if the norm of £ is given by
1/2
el = (€ + g+ +e2)"

M
Feks< ke 1€]/%%.

Since M is positive constant thus F ®F ¢ is bounded and continuous on the space
S’ of the tempered distribution. Moreover, by Fq.(2.9)

_ 3 31k
o= L @+ G ) — (G + Gt + )]
Proof. See [5]. O

Lemma 2.4. Given the operator
0
L=—= -¢ k 2.
5 ¢ (—®)", (2.8)
where (—®)* is the operator defined by (1.5), k is a positive odd integer, u(x,t)
is an unknown function for (xz,t) = (x1,22,...,Zn,t) € R™ x (0,00), and ¢ is a
positive constant. Then we obtain
k
1 p+a ° p 3
_ 2 2 2 .
E(l’,t) == (27‘(’)”/Rn exXp | —¢ ];151 - (;g’L) t+’l,(£,$) dé-v

(2.9)
Z}he(re %:HZH £ >0 &, as an elementary solution for the operator L defined
y (2.8
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Proof. We have to find function E(z,t) from the equation
L(E(x,t)) = (z,t),

where §(z,t) is dirac delta function for (x,t) € R™ x (0,00).We can write

gE(:c,t) — (=) E(x,t) = §(z) - 5(t).

o (2.10)

By taking the Fourier transform defined by (2.1) to both sides of (2.10), we obtain

9 ~ , v 8 p+a , ’ kA 1
aE(f,t)—c (;@) - j:zp;r1§j E(gat):W(S(t)v

which has solution

R H(t) P 3 p+aq
E(g,t):i(%)n/2 exp |t (Zg}) -1 > ¢ (2.11)
i=1 j=p+1

where H (t) is a heaviside function and H(t) = 1 for ¢ > 0. Since k is a positive odd

number and ?:ZH £ >0, &, thus E(&,1) is bounded and can be written by
R H(t) p+a 3 P 5\ "
B(&.t)= 75 exp —c*t g - (Z g?) (2.12)
(2m) Jj=p+1 i=1
Now, the inverse Fourier transform
1 i€ B
E(.’L’,t) = W i e’ E(g,t)dg
Thus
| p+q ’ 5\ "]
E(z,t) = H() &%) oxp | —c?t Z el - 252
(22 g P J ‘
j=p+1 i=1
3 3
_ # i(&,x) o Qt IiI 52 o ié—Z
=@z Ji e exp | —c¢ ; :
j=p+1 i=1
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or
k
1 pt+q ’ P 3
E(z,t) = ﬁ/ exp | —c*t Z &gl - Zﬁf +i(¢,z)| de.
(2m)"™ Jgen j=p=1 i=1

(2.13)
as an elementary solution of (2.10) and bounded if Z?ZgH §]2 > > &and k is
positive odd number. O

3 Main Results

Theorem 3.1. The kernel E(x,t) defined by (2.13) has the following properties:
(1) E(x,t) € C>™-the space of continuous function for x € R™, t > 0 with
infinitely differentiable.
(2) (8875 - 02(®)k> E(z,t) =0 fort > 0and k is positive odd number.

(8) E(z,t) >0 fort>0.

M(t) T(7)L(

E(z,t)| < )
() 1B 0| < g ® T (T
tive constant. Thus E(x,t) is bounded

(5) %1_1}(1) E(z,t) = 0.

, fort >0, where M(t) is a posi-

=

or any fized t > 0.

Proof. (1) From (2.13), since

" 1 " p+q P 3
R j=p+1 i=1

Thus E(x,t) € C* for z € R, t > 0.
(2) By computing directly, we obtain
(aat - 02(—®)k) E(x,t) =0.
for t > 0 where E(x,t) is defined by (2.13).
(3) E(z,t) > 0 for t > 0 is obvious by (2.13).
(4) We have
k

1 ptaq ’ P 3
E(z,t) = (277)"/n exp | —c?t (Z 5?) - (Zﬁf) +i(&, x)| dE.

j=p+1
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put
glziyh 52:iy27"'7 fp:iyp
d&§y =idyy, d§ =idys, ..., d§, =idy,
and
Ep+1 = Yp+1, Ept2 = Up+2:---5 Eptrq = Yptq
dépi1 = dypt1, dépr2 =dypi2,..., d&piq = dYpiq,
where ¢ = y/—1. Thus, we obtain
P , e 8 v, 1" ptaq
E(z,t) = (QW)H/HEXP —ct ( Z §j> - (Z&) *Z%yr+i Z 5| dy.
j=p+1 i=1 r=1 j=p+1
3 2\ 1F
M 2 = 2 . 2
|E(z,t)] < o /n exp | —c°t jzzp;rlyj + ;yr dy, (3.1)

where M is a positive constant. The same process as Lemma 2.1 then (3.1) becomes

(5%

ks
fo

M(t) I'(

|E(x,1)] < AT
9.2nan/2k2(c*t)sr T(5)T(2)
(5) We have
k
1 ptq ° P 3
_ 2 2 2 .
E(z,t) = (27T)"/Rn exp |—c°t Z &1 — <Z€Z> +i(&x)| dE.
Jj=p+1 =1
Since F(z,t) exists, we have
lim E(z,t) = ! '8 g¢
t—0 ’ (2m)™ Jgn
1 .
= i(§,x) d.
(2m)™ /Rn ‘ ¢
=d(x), forzeR" (3.2)
[7, p.396, Eq.(10.2.19b)]. O
Theorem 3.2. Given the nonlinear equation
9 2ok _
u(z,t) — (=) u(z,t) = f(z,t,u(z,t)) (3.3)

ot

for (z,t) € R™ x (0,00). We consider the equation (3.3) which is in the form of
nonlinear heat equation with the following conditions on u and f as follows
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(1) u(x,t) € COR(R™) for anyt > 0 where CF) (R™) is the space of continuous
function with 6k-derivatives.
(2) f satisfies the Lipchitz condition,
[f (@, t,u) — f(z, 8, w)] < Afu —wl
where A is constant with 0 < A < 1.
(3) /OO/ ’t*”/ka(:c,t,u(z,t)) dedt < oo for x = (x1,22,...,2,) € R",
OO< t 5"00 and u(x,t) is continuous function on R™ x (0,00).
Under such conditions of f and u, we obtain the convolution
u(z,t) = E(z,t) * f(x,t,u(x,t))

as a unique solution of (3.3) where E(x,t) is an elementary solution defined by
(2.9). In particular, if we put k =1 and p =0 in (3.3) then (8.8) reduces to the
equation

0
P u(z,t) — A N3u(x,t) = f(x,t,u(z,t)),
where is related to the nonlinear triharmonic heat equation.

Proof. Convolving both sides of (3.1) with E(z,t), that is

E(x,t) * {8u(x,t) - 02(—®)ku(x,t)} = E(x,t) x f(z,t,u(z,t))

ot
{aE(m t) — A (—)FE(x t)] xu(z,t) = E(z,t) * f(x,t,u(z,t))
8t ) ) Y ) e ) )
d(z,t) xu(x,t) = E(x,t) * f(z,t,u(z, t)).
Thus

u(z,t) = E(x,t) x f(z,t,u(z,1))

:/OO E(r,s)f(x —r,t —s,u(x —r,t — s))drds
_ R™

where E(r,s) is given by definition (2.4). We next show that u(z,t) is bounded
on R™ x (0,00). We have

zt|</ / (rys)] - flx —r;t — s,u(x —r,t — s))drds.

9 2nﬂ-n/2k2cn/3k / / s f(a su(z —r,t —s))|drds

< 9.2nﬂ-n/2k26n/3k (34)
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where N = [% [o. |f(x —r,t — s,u(x —r,t — s))|drds. Thus u(z,t) is bounded
on R™ x (0,00). To show that u(x,t) is unique. Now, we next to show that u(z,t)
is unique. Let w(z,t) be another solution of (3.1), then

w(z,t) = E(x,t) x f(z,t,w(z,t))

for (z,t) € Qo x (0,T] the compact subset of R x [0, 00) and E(x,t) is defined by
(2.6).
Now, define ||u(z,t)|| = sup zeq, |u(z,t).
0<t<T

Now,
(s £) — w(w, )] = | B, £) % £zt ula, 1) — B, t) « £, tw(z, )]
// (r )] - 1f(z = 1t — s, u(@ — 1t — 5))
—f@—rt— s w(z—rt — s))|drds
§A|E(r,s)|/_w/n (@ — 1t — 8) — w(w — 1.t — s)|drds

by (2.9) and the condition (2) of the theorem. Now, for (z,t) € Qg x (0,7] we
have

T
lu —w| < A|E(r, s)|||u—w||/ ds/ dr
0 Qo
= A|E(r, s)|TV (Qo)||u — w|| (3.5)

where V() is the volume of the surface on Q.

1
Choose A|E(r,s)|[TV(Q) <lor A< ———————.
[E(r )TV (k) [E(r, s)| TV (Q0)

lu — w|] < a|lu —w| where a= A|E(r,s)|TV(Q) < 1.

Thus from (3.5),

It follows that ||lu—w|| = 0, thus v = w. That is the solution w of (3.3) is unique. In
particular, if we put £k =1 and p = 0 in (3.3), then (3.3) reduces to the nonlinear
heat equation
0
au(m,t) — A N3u(x,t) = f(x,t,u(z,t))
which has solution
u(z,t) = E(x,t) « f(z,t, u(x, t))

where E(xz,t) is defined by (2.9) with ¥ = 1 and p = 0. That is complete of
proof. O
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