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1 Introduction and Preliminaries

Fixed point theory is one of the famous and traditional theory in mathematics
and has a lot of applications. In fixed point theory the importance of various
contractive inequalities cannot be over emphasized. Fixed point and common
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fixed point theorems for different types of mappings have been investigated exten-
sively by various researchers (see, e.g., [1–25] and references cited therein). In this
paper, we prove some fixed point and common fixed point results for nonexpan-
sive and generalized nonexpansive mappings. Invariant approximation results are
also obtained for these types of mappings as applications. Our results extend and
generalize some of the known results of Al-Thagafi [1], Al-Thagafi and Shahzad
[2, 3], Beg et al. [4], Chandok [11], Chandok and Narang [6, 8], Chen and Li [13],
Dotson [14, 15], Habiniak [17], Hicks and Humphires [18], Narang and Chandok
[19, 20], O’Regan and Shahzad [22], and of Shahzad [24].

First, we recall some basic definitions and notations.
For a metric space (X, d), a continuous mapping W : X ×X × [0, 1] → X is

said to be a convex structure on X if for all x, y ∈ X and λ ∈ [0, 1],

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

holds for all u ∈ X. The metric space (X, d) together with a convex structure is
called a convex metric space [25].

A nonempty subset K of a convex metric space (X, d) with a convex structure
W is said to be a convex set [25] if W (x, y, λ) ∈ K for all x, y ∈ K and λ ∈
[0, 1]. The set K is said to be p-starshaped [16] if there exists a p ∈ K such
that W (x, p, λ) ∈ K for all x ∈ K and λ ∈ [0, 1] that is the segment [p, x] =
{W (x, p, λ) : λ ∈ [0, 1]} joining p to x is contained in K for all x ∈ K.

Clearly, each convex set is a starshaped set but converse is not true.
A convex metric space (X, d) is said to satisfy Property (I) [16] if for all x, y, q ∈

X and λ ∈ [0, 1],
d(W (x, q, λ),W (y, q, λ)) ≤ λd(x, y).

A normed linear space and each of its convex subsets are simple examples of
convex metric spaces with a convex structureW given byW (x, y, λ) = λx+(1−λ)y
for x, y ∈ X and λ ∈ [0, 1]. There are many convex metric spaces which are not
normed linear spaces (see [16, 25]). Property (I) is always satisfied in a normed
linear space.

For a nonempty subset M of a metric space (X, d) and p ∈ X, an element
y ∈ M is said to be a best approximant to p or a best M -approximant to p if
d(p, y) = dist(p,M) ≡ inf{d(p, y) : y ∈ M}. The set of all best approximants to p
in M is denoted by PM (p). Also we define sets CI

M (p) = {x ∈ M : Ix ∈ PM (p)},
and DI

M (p) = PM (p) ∩ CI
M (p) = {x ∈ PM (p) : Ix ∈ PM (p)}, where I is a self

mapping of X.
For a convex subset M of a convex metric space (X, d), a mapping g : M → X

is said to be affine if for all x, y ∈ M , g(W (x, y, λ)) = W (gx, gy, λ) for all λ ∈
[0, 1]. A mapping g is said to be affine with respect to p ∈ M if g(W (x, p, λ)) =
W (gx, gp, λ) for all x ∈ M and λ ∈ [0, 1].

Suppose (X, d) is a metric space, M a nonempty subset of X, and S, T are self
mappings of M . A mapping T is said to be

(i) S-contraction if there exists k ∈ [0, 1) such that d(Tx, Ty) ≤ kd(Sx, Sy) for
all x, y ∈ M ;
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(ii) S-nonexpansive if d(Tx, Ty) ≤ d(Sx, Sy) for all x, y ∈ M .

A mapping S : M → M is called T -selector if Sx ∈ Tx for each x ∈ M . A point
x ∈ M is a common fixed (coincidence) point of S and T if x = Sx = Tx(Sx = Tx).
The set of all fixed points (respectively, coincidence points) of S and T is denoted
by F (S, T ) (respectively, C(S, T )). The pair (S, T ) is said to be commuting on M
if STx = TSx for all x ∈ M .

The ordered pair (T, I) of two self maps of a metric space (X, d) is called a
Banach operator pair [13] if F (I), the set of fixed points of I, is T -invariant, i.e.
T (F (I)) ⊆ F (I). Obviously, a commuting pair (T, I) is a Banach operator pair
but not conversely (see [13]). If (T, I) is a Banach operator pair then (I, T ) need
not be a Banach operator pair (see [13]). If the self maps T and I of X satisfy
d(ITx, Tx) ≤ kd(Ix, x), for all x ∈ X and for some k ≥ 0, ITx = TIx whenever
x ∈ F (I), that is Tx ∈ F (I), then (T, I) is a Banach operator pair. This class of
non-commuting mappings is different from the known classes of non-commuting
mappings viz. R-weakly commuting, R-subweakly commuting, compatible, weakly
compatible and Cq-commuting etc. existing in the literature.

Let C be a nonempty subset of a metric space (X, d) and F = {fα : α ∈ C}
a family of functions from [0, 1] into C, having the property fα(1) = α, for each
α ∈ C. Such a family F is said to be

i) contractive if there exists a function Φ : (0, 1) → (0, 1) such that for all
α, β ∈ C and for all t ∈ (0, 1), we have

d(fα(t), fβ(t)) ≤ Φ(t)d(α, β).

ii) jointly continuous if t → t◦ in [0, 1] and α → α◦ in C imply fα(t) → fα◦(t◦)
in C.

In normed linear spaces, these notions were discussed by Dotson [15].

Example 1.1. Any subspace, a convex set with 0 and a starshaped subset with
center 0 of a normed linear space have a contractive jointly continuous family of
functions.

If C is a starshaped subset (of a normed linear space) with star-center q then
the family F = {fα : α ∈ C} defined by fα(t) = (1 − t)q + tα is contractive if
we take Φ(t) = t for 0 < t < 1, and is jointly continuous. The same is true
for starshaped subsets of convex metric spaces with Property (I), if we define the
family F as fx(α) = W (x, q, α), then

d(fx(α), fy(α)) = d(W (x, q, α),W (y, q, α))

≤ α d(x, y),

so taking Φ(α) = α, 0 < α < 1, the family is a contractive jointly continuous
family and so the class of subsets of X with the property of contractiveness and
joint continuity contains the class of starshaped sets which in turn contains the
class of convex sets.
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2 Main Results

We begin the section with the following theorem which extends and generalizes
the corresponding results of Al-Thagafi and Shahzad [2, 3], Beg et al. [4], Dotson
[14, 15], Habiniak [17] and of Narang and Chandok [19].

Theorem 2.1. Let D be a nonempty closed subset of a metric space (X, d) and T
be a self mapping of D. Suppose that D has a contractive jointly continuous family
F = {fα : α ∈ D}, cl (T (D)) is compact and T is nonexpansive on D. Then F (T )
is nonempty.

Proof. Define Tn : D → D as Tnx = fTx(kn) where kn = n
n+1 , n = 1, 2, 3, . . .,

fTx ∈ F. Since T (D) ⊆ cl (T (D)) ⊆ D and 0 < kn < 1, each Tn is well defined
and maps D into D. Further, for all x, y ∈ D and for each n

d(Tnx, Tny) = d(fTx(kn), fTy(kn))

≤ Φ(kn)d(Tx, Ty)

≤ Φ(kn)d(x, y).

Therefore, each Tn is a contraction mapping onD. Now as T (D) ⊆ cl (T (D)) ⊆ D,
T is nonexpansive and cl (T (D)) is compact, cl (Tn(D)) is compact for each n and
hence is complete and so by Banach contraction principle, each Tn has a unique
fixed point xn ∈ D. Since cl (Tn(D)) is compact, there is a subsequence {xni} of
{xn} such that xni → x ∈ D. Since Tnixni = xni , we have Tnixni → x. Now T
being nonexpansive, is continuous and so Txni → Tx. Consider,

Tnixni = fTxni
(kni) → fTx(1),

that is, Tnixni → Tx. Therefore Tx = x that is x ∈ D is a fixed point of T .

Since starshaped subsets of convex metric spaces with Property (I) have con-
tractive jointly continuous family, we have the following results.

Corollary 2.2. Let D be a subset of a convex metric space (X, d) with Property
(I) and T a self mapping of D. Suppose that D is q-starshaped, cl (T (D)) is
a subset of D, cl (T (D)) is compact and T is nonexpansive on D then F (T ) is
nonempty.

Corollary 2.3 ([4, Theorem 3]). Let (X, d) be a convex metric space satisfying
property (I) and D a closed q-starshaped subset of X. If T is a nonexpansive self
mapping of D and cl (T (D)) is compact, then T has a fixed point.

Since cl (T (D)) is compact if T/D is compact, we have the following results.

Corollary 2.4. Let T be a mapping on a metric space (X, d), D a T -invariant
subset of X such that T/D is compact, x a T -invariant point and cl (T (D)) ⊆
D. If PD(x) is a nonempty closed set for which there exists a contractive jointly
continuous family F of functions and T is nonexpansive on PD(x)∪{x} then PD(x)
contains a T -invariant point.
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Corollary 2.5 ([19]). Let T be a mapping on a metric space (X, d), D a closed
T -invariant subset of X such that T/D is compact and x a T -invariant point. If
PD(x) is a nonempty set for which there exists a contractive jointly continuous
family F of functions and T is non-expansive on PD(x)∪{x} then PD(x) contains
a T -invariant point.

Corollary 2.6 ([4, Theorem 10]). Let (X, d) be a convex metric space satisfying
Property (I) and T a nonexpansive mapping on X. Let D be a T -invariant subset
of X, T/D compact and x a T -invariant point. If the set of best D-approximant
to x is a nonempty, convex or starshaped set then it contains a T -invariant point.

Remark 2.7.

a. By comparing Lemma 2.3 of Al-Thagafi and Shahzad [3] with Theorem 2.1,
starshapedness of D has been relaxed with contractive jointly continuous fam-
ily and the spaces undertaken are metric spaces.

b. Theorem 1 of Dotson [14] and [15] are special cases of Theorem 2.1.

c. Habiniak [17, Theorem 4] proved Corollary 2.3 in normed linear spaces.

d. Thoerem 8 of Habiniak [17] is a special case of Corollary 2.4.

The following theorem extends and generalizes corresponding results of
Al-Thagafi [1], Al-Thagafi and Shahzad [3], Chandok and Narang [6], Chen and
Li [13] and of Habiniak [17].

Theorem 2.8. Let D be a subset of a metric space (X, d) and T, I be self mappings
of D. Suppose that F (I) has a contractive jointly continuous family, cl (T (F (I)))
is a subset of F (I), cl (T (D)) is compact and T is I-nonexpansive on D, then
F (I, T ) is nonempty.

Proof. Since T is I-nonexpansive on D, T is nonexpansive on F (I). It follows
from Theorem 2.1 that F (I, T ) is nonempty.

Since starshaped subsets of convex metric spaces with Property (I) have con-
tractive jointly continuous family, we have the following results.

Corollary 2.9. Let D be a subset of a convex metric space (X, d) with Property (I)
and T, g be self mappings of D. Suppose that F (g) is q-starshaped, cl (T (F (g)))
is a subset of F (g), cl (T (D)) is compact and T is g-nonexpansive on D, then
F (g, T ) is nonempty.

Corollary 2.10. Let (X, d) be a metric space and T, I be self mappings of X. If
p ∈ X, D ⊆ PM (p), G = D ∩ F (I) has a contractive jointly continuous family,
cl (T (G)) ⊆ G, cl (T (D)) is compact and T is I-nonexpansive on D, then PM (p)∩
F (I, T ) is nonempty.
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Corollary 2.11. Let (X, d) be a convex metric space with Property (I) and T, I
be self mappings of X. If p ∈ X, D ⊆ PM (p), G = D ∩ F (I) is q-starshaped,
cl (T (G)) ⊆ G, cl (T (D)) is compact and T is I-nonexpansive on D, then PM (p)∩
F (I, T ) is nonempty.

Corollary 2.12 ([3, Corollary 2.5]). Let X be a normed linear space and T, I
be self mappings of X. If p ∈ X, D ⊆ PM (p), G = D ∩ F (I) is q-starshaped,
cl (T (G)) ⊆ G, cl (T (D)) is compact and T is I-nonexpansive on D, then PM (p)∩
F (I, T ) is nonempty.

Remark 2.13.

a. By comparing Theorem 2 of Chandok and Narang [6] with Theorem 2.8, their
assumptions D is closed, (T, I) is a Banach operator pair, I is continuous on
D and D has a contractive jointly continuous family with Ifx(k) = fIx(k)
are replaced with cl (T (F (I))) ⊆ F (I) and F (I) has a contractive jointly
continuous family and the spaces undertaken are metric spaces.

b. By comparing Theorem 3.3 of Chen and Li [13] with Theorem 2.8, their
assumptions q ∈ F (I), D is closed and q-starshaped, (T, I) is a Banach op-
erator pair, and I is continuous on D are replaced with cl (T (F (I))) ⊆ F (I)
and starshapedness of F (I) has been relaxed to contractive jointly continuous
family and the spaces undertaken are metric spaces.

c. By comparing Lemma 2.2 of Shahzad [24] with Theorem 2.8, his assump-
tions q ∈ F (I), D is closed and q-starshaped, T (D) ⊆ I(D), (I, T ) is R-
subweakly commuting, T is continuous on D and I is linear are replaced with
cl (T (F (I))) ⊆ F (I) and F (I) has a contractive jointly continuous family
and the spaces undertaken are metric spaces.

d. By comparing Theorem 2.4 of Al-Thagafi and Shahzad [3] with Theorem
2.8, starshapedness of F (I) has been replaced with contractive and jointly
continuous family and the spaces undertaken are metric spaces.

e. Theorem 4 of Habiniak [17] is a special case of Theorem 2.8, by taking I as
the identity mapping.

f. By comparing Theorem 4 of Chandok and Narang [6] with Corollary 2.10,
their assumption p ∈ F (I, T ), DI

M (p) ∩ F (I) has a contractive jointly con-
tinuous family with Ifx(k) = fIx(k), cl (T (DI

M (p))) is compact, (T, I) is
a Banach operator pair on DI

M (p), T is I-nonexpansive on DI
M (p) ∪ {p}

and I is continuous on cl T (DI
M (p)) are replaced with p ∈ X, D ⊆ PM (p),

G = D∩F (I) has a contractive jointly continuous family, cl (T (G)) ⊆ G, T
is I-nonexpansive on D and cl (T (D)) is compact and the spaces undertaken
are metric spaces.

g. By comparing Theorem 4.2 of Chen and Li [13] with Corollary 2.10, their
assumptions p ∈ F (I, T ), DI

M (p) ∩ F (I) is q-starshaped, cl (T (DI
M (p))) is

compact, (T, I) is a Banach operator pair on DI
M (p), T is I-nonexpansive
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on DI
M (p) ∪ {p} and I is continuous on cl (T (DI

M (p))) are replaced with
p ∈ X, D ⊆ PM (p), G = D ∩ F (I) has a contractive jointly continuous
family, cl (T (G)) ⊆ G, T is I-nonexpansive on D and cl (T (D)) is compact
and the spaces undertaken are metric spaces.

Let G◦ denotes the class of closed convex subsets containing a point x◦ of
a convex metric space (X, d) with Property (I). For M ∈ G◦ and p ∈ X, let
Mp = {x ∈ M : d(x, x◦) ≤ 2d(p, x◦)}. Then PM (p) ⊂ Mp ∈ G◦ as x ∈ PM (p) ⇒
d(p, x) = dist(p,M) ⇒ d(x, x◦) ≤ d(x, p) + d(p, x◦) ≤ 2d(p, x◦) ⇒ x ∈ Mp.

Theorem 2.14. Let (X, d) be a convex metric space with Property (I) and T, g be
self mappings of X. If p ∈ X and M ∈ G◦ such that T (Mp) ⊆ M , cl (T (Mp)) is
compact, and d(Tx, p) ≤ d(x, p) for all x ∈ Mp, then PM (p) is nonempty, closed
and convex with T (PM (p)) ⊆ PM (p). If, in addition, D is a subset of PM (p),
G = D ∩ F (g) is q-starshaped, cl (T (G)) ⊆ G, and T is g-nonexpansive on D,
then PM (p) ∩ F (g, T ) is nonempty.

Proof. If p ∈ M then the results are obvious. So assume that p /∈ M . If x ∈
M\Mp then d(x, x◦) > 2d(p, x◦) and so d(p, x) ≥ d(x, x◦) − d(p, x◦) > d(p, x◦) ≥
dist(p,M). Thus α = dist(p,M) ≤ d(p, x◦). Since cl (T (Mp)) is compact, and
the distance function is continuous, there exists z ∈ cl (T (Mp)) such that β =
dist(p, cl (T (Mp)) = d(p, z). Hence

α = dist(p,M) ≤ dist(p, cl (T (Mp)))

= β

= dist(p, T (Mp))

≤ d(p, Tx)

≤ d(p, x)

for all x ∈ Mp. Therefore, α = β = dist(p,M), i.e., dist(p,M) = dist(p, cl (T (Mp))
= d(p, z) that is z ∈ PM (p) and so PM (p) is nonempty. The closedness and
convexity of PM (p) follow from that of M . Now to prove T (PM (p)) ⊆ PM (p), let
y ∈ T (PM (p)). Then y = Tx for x ∈ PM (p). Consider

d(p, y) = d(p, Tx) ≤ d(p, x) = dist(p,M)

and so y ∈ PM (p) as PM (p) ⊂ Mp ⇒ T (PM (p)) ⊂ M that is y ∈ M .
Since cl (T (PM (p))) is compact, the result follows from Corollary 2.11.

Corollary 2.15 ([3, Theorem 2.6]). Let X be a normed linear space and T, g are
self mappings of X. If p ∈ X and M ∈ G◦ such that T (Mp) ⊆ M , cl (T (Mp)) is
compact, and ∥Tx− p∥ ≤ ∥x− p∥ for all x ∈ Mp, then PM (p) is nonempty, closed
and convex with T (PM (p)) ⊆ PM (p). If, in addition, D is a subset of PM (p),
G = D ∩ F (g) is q-starshaped, cl (T (G)) ⊆ G, and T is g-nonexpansive on D,
then PM (p) ∩ F (g, T ) is nonempty.
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Remark 2.16. Theorem 2.14 extends and generalizes corresponding results of
Al-Thagafi [1], Al-Thagafi and Shahzad [2], Habiniak [17], Hicks and Humphires
[18], Narang and Chandok [20], Shahzad [24].

We shall now use the following lemma of Al-Thagafi and Shahzad [3] for our
next theorem.

Lemma 2.17. Let C be a nonempty subset of a metric space (X, d), T, g : C → C
and cl (T (F (g))) ⊆ F (g). Suppose that cl (T (C)) is complete and T, g satisfy for
all x, y ∈ C and 0 ≤ h < 1

d(Tx, Ty) ≤ hmax{d(gx, gy), d(Tx, gx), d(Ty, gy), d(Tx, gy), d(Ty, gx)}.

If F (g) is nonempty, then there is a common fixed point of T and g.

Theorem 2.18. Let C be a nonempty subset of a convex metric space (X, d)
with Property (I), T, g : C → C. If F (g) is q-starshaped, cl (T (F (g))) ⊆ F (g),
cl (T (C)) is compact, T is continuous on C and T, g satisfy for all x, y ∈ C

d(Tx, Ty) ≤ max{d(gx, gy), dist(gx,W (Tx, q, k)), dist(gy,W (Ty, q, k)),

dist(gx,W (Ty, q, k)), dist(gy,W (Tx, q, k))},

then there is a common fixed point of T and g.

Proof. For each n ∈ N, define Tn : C → C by Tn(x) = W (Tx, q, kn), for each
x ∈ C where {kn} is a sequence in (0, 1) such that kn → 1. Then each Tn is
a self mapping of C. Since cl (T (F (g))) ⊆ F (g) and F (g) is q-starshaped, so
cl (Tn(F (g))) ⊆ F (g) for each n. Consider

d(Tnx, Tny) = d(W (Tx, q, kn),W (Ty, q, kn))

≤ knd(Tx, Ty)

≤ kn max{d(gx, gy), dist(gx,W (Tx, q, k)), dist(gy,W (Ty, q, k)),

dist(gx,W (Ty, q, k)), dist(gy,W (Tx, q, k))}

which implies for each kn ∈ (0, 1), we have

d(Tnx, Tny) ≤ kn max{d(gx, gy), dist(gx,W (Tx, q, kn)), dist(gy,W (Ty, q, kn)),

dist(gx,W (Ty, q, kn)), dist(gy,W (Tx, q, kn))}
≤ kn max{d(gx, gy), d(gx, Tnx), d(gy, Tny), d(gx, Tny), d(gy, Tnx)}

for all x, y ∈ C. As cl (T (C)) is compact, cl (Tn(C)) is compact for each n and
hence complete. Now by Lemma 2.17, there exists xn ∈ C such that xn is common
fixed point of g and Tn for each n. The compactness of cl (T (C)) implies there
exists a subsequence {Txni} of {Txn} such that Txni → y ∈ cl (T (C)). Since
{Txn} is a sequence in T (F (g)), y ∈ cl (T (F (g))) ⊆ F (g). Now, as kni → 1, we
have

xni = Tnixni = W (Txni , q, kni) → y.

By the continuity of T , we have Ty = y and hence F (T ) ∩ F (g) ̸= ∅.
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If F (g) is closed and (T, g) is a Banach operator pair, we have cl (T (F (g))) ⊆
F (g) and so above theorem gives the following results.

Corollary 2.19. Let C be a nonempty subset of a convex metric space (X, d) with
Property (I), T, g : C → C. If F (g) is q-starshaped and closed, (T, g) is Banach
operator pair, cl (T (C)) is compact, T is continuous on C and T, g satisfy for all
x, y ∈ C

d(Tx, Ty) ≤ max{d(gx, gy), dist(gx,W (Tx, q, k)), dist(gy,W (Ty, q, k)),

dist(gx,W (Ty, q, k)), dist(gy,W (Tx, q, k))},

then there is a common fixed point of T and g.

Corollary 2.20. Let (X, d) be a convex metric space with Property (I), T, g :
X → X. If p ∈ X, D ⊆ PM (p), G = D∩F (g) is q-starshaped, cl (T (G)) is subset
of G, cl (T (D)) is compact, T is continuous on D and T, g satisfy for all x, y ∈ D

d(Tx, Ty) ≤ max{d(gx, gy), dist(gx,W (Tx, q, k)), dist(gy,W (Ty, q, k)),

dist(gx,W (Ty, q, k)), dist(gy,W (Tx, q, k))},

then there is a common fixed point of PM (p), T and g.

Remark 2.21.

a. By comparing Theorem 2.2 of O’Regan and Shahzad [22] with Theorem 2.18,
their assumptions q ∈ F (g), C is closed and q-starshaped, g and T are
continuous on C, T (C) ⊆ g(C), (g, T ) is an R-subweakly commuting on C
and g is affine are replaced with F (g) is q-starshaped, cl (T (F (g))) ⊆ F (g)
and T is continuous and the spaces undertaken are convex metric spaces.

b. Theorem 2.18 and Corollaries 2.19 and 2.20 are proved in normed linear
spaces by Al-Thagafi and Shahzad [3].

Theorem 2.22. Let (X, d) be a convex metric space with Property (I) and T, g be
self mappings of X. If p ∈ X and M ∈ G◦ such that T (Mp) ⊆ M , cl (T (Mp)) is
compact, and d(Tx, p) ≤ d(x, p) for all x ∈ Mp, then PM (p) is nonempty, closed
and convex with T (PM (p)) ⊆ PM (p). If, in addition, D is a subset of PM (p),
G = D∩F (g) is q-starshaped, cl (T (G)) ⊆ G, and T is continuous on D, and T, g
satisfy for all x, y ∈ D

d(Tx, Ty) ≤ max{d(gx, gy), dist(gx,W (Tx, q, k)), dist(gy,W (Ty, q, k)),

dist(gx,W (Ty, q, k)), dist(gy,W (Tx, q, k))},

then there is a common fixed point of PM (p), T and g.

Proof. Proceeding as in Theorem 2.14 and using Corollary 2.20, we get the result.
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Remark 2.23. Theorem 2.22 extends and generalizes corresponding results of
Al-Thagafi [1], Al-Thagafi and Shahzad [2], Chandok [11], Chandok and Narang
[8], Hicks and Humphires [18], Narang and Chandok [20], O’Regan and Shahzad
[22].

Theorem 2.24. Let D be a subset of a convex metric space (X, d), I : D → D
and T : D → 2D. If F (I) is q-starshaped, cl (T (F (I))) ⊆ F (I), cl (T (D)) is
compact, and S : D → D is nonexpansive T -selector, then F (I, T ) is nonempty.

Proof. Since S is T -selector on D, cl (S(F (I))) ⊆ cl (T (F (I))) ⊆ F (I) and
cl (S(F (I))) is compact. As S is nonexpansive on D, it is nonexpansive on F (I).
It follows from Theorem 2.1 that F (I, S) is nonempty, so there exists z ∈ F (I)
such that z = Iz = Sz ∈ Tz. Therefore, F (I, T ) is nonempty.

If F (I) is closed and (T, I) is a Banach operator pair, we have cl(T (F (I))) ⊆
F (I) and so above theorem gives the following result.

Corollary 2.25. Let D be a subset of a convex metric space (X, d), I : D → D
and T : D → 2D. If F (I) is q-starshaped, closed, (T, I) is a Banach operator pair,
cl (T (D)) is compact, and S : D → D is nonexpansive T -selector, then F (I, T ) is
nonempty.

Remark 2.26.

a. Theorem 2.24 and Corollary 2.25 are proved in normed linear spaces by
Al-Thagafi and Shahzad [3].

b. It may be noted that the assumption of linearity or affinity for I is necessary
in almost all known results about common fixed points of maps T , I such that
T is I-nonexpansive under the conditions of commuting, weakly commuting,
R-subweakly commuting or compatibility (see [1, 6, 13, 20, 22, 24] and the
literature cited therein), but our results in this paper are independent of the
linearity or affinity.

Acknowledgement : The authors are thankful to the learned referee for valuable
suggestions leading to an improvement of the paper.
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