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The k-star Property for Permutation Groups
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Abstract : For an integer k at least 2, a permutation group G has the k-star
property if, for every k-subset of points, G contains an element that fixes it setwise
but not pointwise. This property holds for all k-transitive, generously k-transitive,
and almost generously k-transitive permutation groups. Study of the k-star prop-
erty was motivated by recent work on the case £k = 3 by P. M. Neumann and the
second author. The paper focuses on intransitive groups with the k-star property,
studying properties of their transitive constituents, and relationships between the
k-star and m-star properies for k # m. Several open problems are posed.

Keywords : Permutation group, generous transitivity, k-star property
2000 Mathematics Subject Classification : 20B05, 20B15.

1 Introduction

For an integer k at least 2, a permutation group G acting on a set 2 will be
said to be a k-star group if it has the following property, called the k-star property :

for every k-subset © of Q the permutation group G®© induced
on © by its setwise stabiliser Ggo in G is non-trivial.

This condition may be regarded as a measure of the transitivity of the group G
although, as we will see, when k > 3 some k-star groups are intransitive. Since
a k-transitive group G on 2 is, by definition, transitive on ordered k-tuples of
distinct points, for such groups we have G® = Sym(©) for each k-subset © of €,
and hence every k-transitive group is a k-star group. The k-star property is also a
generalisation of the notions of generous and almost generous transitivity studied
by Peter Neumann in [2], and the 3-star property was studied by Neumann and
the second author in [3]. In contrast with [3], we will allow  to contain less than
k points. All such groups vacuously satisfy the condition and hence are k-star
groups. We will say that a k-star group G on € is trivial if either G is k-transitive
or Q] < k.

Let G < Sym(Q) with |Q > k > 1. Then, as defined in [2], G is generously
k-transitive if G® = Sym(©) for all (k 4 1)-subsets © of Q and almost generously
k-transitive if G® > Alt(©) for all (k + 1)-subsets © of 2. Thus the generously
1-transitive groups (usually called simply generously transitive) are precisely the
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2-star groups. They are those transitive groups in which all suborbits are self-
paired (see, for example [1, Section 3.2]). Also each almost generously 2-transitive
group is a 3-star group. It was shown in [2] that an almost generously 2-transitive
group is in fact 2-transitive, while in [3] it was proved that finite primitive 3-star
groups have rank at most 3, and that there are infinite primitive 3-star groups of
arbitrary rank. (The rank of a transitive permutation group is the number of its
orbits on ordered pairs of not necessarily distinct points.)

In this paper we will focus on intransitive k-star groups, and possible relation-
ships between the k-star and m-star properties for k # m. We begin with a few
observations.

Remark 1.1

1. For any positive integers k, ¢, n such that { < k < n, there exists a k-star
permutation group on a set of n points having ¢ orbits. See Example 2.1.

2. Moreover, for an arbitrary k-star group G, if ' is any non-empty union of
G-orbits, then the permutation group induced by G on ' is also a k-star
group. This follows immediately from the definition of a k-star group.

Intuitively the property of being a k-star group may seem to be stronger than
that for a (k — 1)-star group. Indeed, trivial k-star groups are also (k — 1)-star
groups, and this is true also for some other families of k-star groups as shown in
Theorem 1.3 below. However this is not always true for non-trivial k-star groups.
We make several observations about the possible relationships between the k-star
and m-star properties for unequal k, m in the next proposition.

Proposition 1.2 Let k, m be integers such that 2 < m < k.

(a) There exists a non-trivial k-star group that is not an m-star group.

(b) If m <5 < k, then there exists a non-trivial m-star group that is not a
k-star group.
(c¢) If either m > 3 or k < 5, then there exists a non-trivial k-star group that is

also a non-trivial m-star group.

In [3] it was observed that a 3-star group can have at most two orbits, and a
similar restriction holds for k-star groups in general.

Theorem 1.3 Let k, ¢ be positive integers with k > 2. Suppose that G < Sym(Q)
and that G is a k-star group with orbits Q1,...,Qe. Then

(a) £ <k —1, and there are examples for each k,¢;

(b) for eachi < ¢ and each integer m € [k+1—0, k|, the group G*% is an m-star

groupy,

(c) the number of integers i < £ such that G is not a 2-star group is at most
min{|[ 252 |,k — € — 1}, and this bound can be attained for each k > 2.
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Examples demonstrating existence in Theorem 1.3 (a), and attainment of the
bound in part (c¢), are given in Examples 2.1 and 2.2 respectively. The proof of
the theorem is in Section 3. Part (c¢) suggests the following problem.

Problem 1.4 Given {,m > 2 and ¢, m < k, find a function f(k, ¢, m) such that,
for each k-star group G with orbits Qy,...,8y, all but at most f(k,£¢,m) of the
induced groups G** are m-star groups, and there exists such a group for which
the bound f(k, £, m) is attained.

By Theorem 1.3, f(k,¢,2) = min{ L%J,k — ¢ — 1}. The proof of Proposi-
tion 1.2 is given in Section 3. The examples given to prove Proposition 1.2 (a),
and to prove part (c¢) for m > 3, are all intransitive. Also those given to prove part
(¢) with m = 2 are transitive, but are not 6-star groups. We ask the following.

Question 1.5

(a) For which k > 6, does there exist a non-trivial k-star group that is also a
2-star group?

(b) For which integers m, k with 2 < m < k, does there exist a transitive k-star
group that is also a non-trivial m-star group?

Finally, although we have not studied the primitive case in this paper, it is of
special interest, given the main result of [3] that a finite primitive 3-star group has
rank at most 3. In [3, Final Note], it was observed that all the infinite permutation
groups in the family constructed in the proof of [3, Observation 3.8] were k-star
groups for each finite k, and the family contained groups of all ranks. Thus we
ask the following:

Question 1.6 Is there an upper bound, depending on k, on the rank of a finite
primitive k-star group?

2 Examples

In this section we give several families of examples that will be used in the proofs
of Proposition 1.2 and Theorem 1.3.

Example 2.1 Let k,¢,n be positive integers such that { < k < n, let 2 be a
set of n points, and let {Qq | Q2 | -+ | Q} be a partition of Q with ¢ non-
empty parts. Let G denote the stabiliser in Sym(€2) of this partition, that is,
G = Sym(Qq) x - - x Sym(£). Since ¢ < k, each k-subset A of  contains at least
two points, say a and [, in the same part €;, for some 4, and the 2-cycle («, 3)
lies in G and fixes A setwise. Thus G is a k-star permutation group on €2, and is
non-trivial if £ > 2.
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Example 2.2 Let k£ > 2, and set m := ng —1. Fori=1,...,m, let Q; :=
{3i — 2,3i — 1,3i}, let Qpy1 :={3m +1,3m + 2} and Q42 := {3m + 3}. Let

2m + 2 if k is even

0= m—+1 if kis even
o 2m + 3 if k is odd.

m4+2 it kis odd and note that kz{

Let Q := J;_, @ and G := [T/, Alt()) x (ITi_,q Sym(€)). For each k-
subset A C 2, either A contains ; for some i < m, or A contains ,,11. In
either case, G2 # 1, and hence G is a k-star group.

Moreover, G*% is a 2-star group if and only if m < i < £, so that G*% fails to
be a 2-star group for exactly m of the G-orbits €;. Note that m = min{[%5* |, k—

¢ — 1}, the upper bound of Theorem 1.3 (c).

Example 2.3 Let k£ > 2 and consider the symmetric group G = Sym(£2) acting
on the set Q = Qéz} of unordered pairs from €. For simplicity take |Qg| > k.
Each k-subset O of () can be thought of as the edge set of a graph with vertex set
o, and a non-trivial element of G© as an automorphism of the graph permuting
the edges non-trivially.

Moreover, it is straightforward to check that every graph with at most 5 edges
possesses an automorphism that moves some edge, so that G is a non-trivial k-star
group if k < 5. This was observed in [3, Example 3.4 and Final Note]. However if
k > 6, then there is a graph with n vertices and k edges for which no automorphism
permutes the edges non-trivially, so G is not a k-star group if k > 6.

To complete the argument, we give a simple example, suggested to us by
Gébor Ivanyos, of a graph I'(n, k) that has exactly n vertices and k edges, where
6 < k < n, and no automorphism permutes the edges non-trivially. Take the
vertex set of I'(n, k) as the set V := {1,2,...,n}, and define the k edges to be
the pairs {i,¢ + 1}, for 1 <i <k —1, and {3,k + 1}. Let g be an automorphism
of I'(n, k), that is, g € Sym(V') and maps edges to edges. Since the only vertex
lying on three edges is 3, g fixes the vertex 3, and since the three paths in I'(n, k)
starting at 3 have different lengths 1,2,k — 3, it follows that g fixes each of the
vertices 1,2,...,k + 1, and hence g fixes each of the edges.

3 Proofs

Proof of Proposition 1.2. (a) Consider a k-star group G on a set €, con-
structed as in Example 2.1, having k& — 1 orbits Q4,...,Qs_1, and assume that
|| > k. Let Q:= -, Q; and let G be the permutation group induced by G
on . By Remark 1.1.2, G on ) is a k-star group, and since |Q2;| > k and G has
m > 2 orbits, G is a non-trivial k-star group. Also, since G has m > 2 orbits, it
follows from Theorem 1.3 (a) that G is not an m-star group.

(b) This part follows from Example 2.3.

(¢) If m = 2 and k < 5, then the groups given in Example 2.3 have the required
properties, and further examples with m = 2,k = 3 are given in [3, Examples 3.5
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and 3.6]. Thus we may assume that 3 < m < k. Consider the group G defined in
the proof of part (a). This time let Q := U?lzl Q; and let G' be the permutation
group induced by G on Q. As in part (a), G is a non-trivial k-star group. Let
© be an m-subset of 2. For m < i < k — 1 choose a point «a; € €;, and set
6 :=0uU {am,...,ax—1}. Then |(:)\ = k, and as G is a k-star group, there
exists g € G such that g fixes O setwise and acts non-trivially on it. Now ¢ fixes
Q; ne = {a;} for m < i < k—1, and hence g fixes O setwise and acts non-trivially
on it. Thus G® # 1. Tt follows that G is a non-trivial m-star group. O

Proof of Theorem 1.3. (a) If £ > k, then a k-subset A C € consisting of one
point from each of Q,. ..,y is such that G® = 1, contradicting the fact that G
is a k-star group. Thus ¢ <k — 1.

(b) Choose i < £ and m € [k + 1 — £,k]. If |Q;] < m then G* is a trivial m-
star group. So assume that |Q;| > m and consider an arbitrary m-subset A’ C Q.
Since k — m < £ — 1, we may form a k-subset A of Q consisting of A’ together
with one point from each of k —m orbits €2; different from €2;. Since G is a k-star
group, we have G® # 1, and since the setwise stabiliser G fixes each Q;NA
setwise, it follows that Ga fixes A\ A’ pointwise, and hence Gao < Gas and acts
non-trivially on A’. In particular G2’ # 1, and so G is an m-star group.

(c) If k = 2 then by the second observation in the introduction each G*% is a
2-star group. Thus we may assume that k& > 3. Let m be the number of G-orbits
€; such that G*% is not a 2-star group. If m < 1 then the bound of part (c) holds
since { < k and k > 3. So assume that m > 2, and without loss of generality
assume that G is not a 2-star group for 1 < i < m. Then, for each i < m, there
exist two points «;, 5; € §2; such that no element of GG interchanges «,; and 3;. For
m < i < £ choose a point o € Q. If m > & set A := {a;, 8;|1 < i < [£]}.
Consider the k-subset A := A’ if k is even, or A’ U {a,} if k is odd. The stabiliser
Ga fixes setwise ; N A for each i. If i < m then ;, N A = {«;, 5}, and as
no element of G interchanges «; and f; it follows that G fixes «; and ;. Thus
G? = 1, which is a contradiction, so m < k/2 and hence m < L%J Next suppose
that m >k — ¢, and set A :={a;, 5; |1 <i <m}U{a@mt1,.--,0k—m}. Then A is
a k-subset, and arguing as in the previous case, G® = 1, which is a contradiction.
So m < k—{—1. Thus we have proved that m < min{|[*31],k — ¢ — 1}, and
groups for which this upper bound is attained, for any given k£ > 2, can be found
in Example 2.2. O
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