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The k-star Property for Permutation Groups
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Abstract : For an integer k at least 2, a permutation group G has the k-star
property if, for every k-subset of points, G contains an element that fixes it setwise
but not pointwise. This property holds for all k-transitive, generously k-transitive,
and almost generously k-transitive permutation groups. Study of the k-star prop-
erty was motivated by recent work on the case k = 3 by P. M. Neumann and the
second author. The paper focuses on intransitive groups with the k-star property,
studying properties of their transitive constituents, and relationships between the
k-star and m-star properies for k 6= m. Several open problems are posed.
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1 Introduction

For an integer k at least 2, a permutation group G acting on a set Ω will be
said to be a k-star group if it has the following property, called the k-star property :

for every k-subset Θ of Ω the permutation group GΘ induced
on Θ by its setwise stabiliser GΘ in G is non-trivial.

This condition may be regarded as a measure of the transitivity of the group G
although, as we will see, when k ≥ 3 some k-star groups are intransitive. Since
a k-transitive group G on Ω is, by definition, transitive on ordered k-tuples of
distinct points, for such groups we have GΘ = Sym(Θ) for each k-subset Θ of Ω,
and hence every k-transitive group is a k-star group. The k-star property is also a
generalisation of the notions of generous and almost generous transitivity studied
by Peter Neumann in [2], and the 3-star property was studied by Neumann and
the second author in [3]. In contrast with [3], we will allow Ω to contain less than
k points. All such groups vacuously satisfy the condition and hence are k-star
groups. We will say that a k-star group G on Ω is trivial if either G is k-transitive
or |Ω| < k.

Let G ≤ Sym(Ω) with |Ω| > k ≥ 1. Then, as defined in [2], G is generously
k-transitive if GΘ = Sym(Θ) for all (k + 1)-subsets Θ of Ω and almost generously
k-transitive if GΘ ≥ Alt(Θ) for all (k + 1)-subsets Θ of Ω. Thus the generously
1-transitive groups (usually called simply generously transitive) are precisely the
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2-star groups. They are those transitive groups in which all suborbits are self-
paired (see, for example [1, Section 3.2]). Also each almost generously 2-transitive
group is a 3-star group. It was shown in [2] that an almost generously 2-transitive
group is in fact 2-transitive, while in [3] it was proved that finite primitive 3-star
groups have rank at most 3, and that there are infinite primitive 3-star groups of
arbitrary rank. (The rank of a transitive permutation group is the number of its
orbits on ordered pairs of not necessarily distinct points.)

In this paper we will focus on intransitive k-star groups, and possible relation-
ships between the k-star and m-star properties for k 6= m. We begin with a few
observations.

Remark 1.1

1. For any positive integers k, `, n such that ` < k ≤ n, there exists a k-star
permutation group on a set of n points having ` orbits. See Example 2.1.

2. Moreover, for an arbitrary k-star group G, if Ω′ is any non-empty union of
G-orbits, then the permutation group induced by G on Ω′ is also a k-star
group. This follows immediately from the definition of a k-star group.

Intuitively the property of being a k-star group may seem to be stronger than
that for a (k − 1)-star group. Indeed, trivial k-star groups are also (k − 1)-star
groups, and this is true also for some other families of k-star groups as shown in
Theorem 1.3 below. However this is not always true for non-trivial k-star groups.
We make several observations about the possible relationships between the k-star
and m-star properties for unequal k, m in the next proposition.

Proposition 1.2 Let k, m be integers such that 2 ≤ m < k.

(a) There exists a non-trivial k-star group that is not an m-star group.

(b) If m ≤ 5 < k, then there exists a non-trivial m-star group that is not a
k-star group.

(c) If either m ≥ 3 or k ≤ 5, then there exists a non-trivial k-star group that is
also a non-trivial m-star group.

In [3] it was observed that a 3-star group can have at most two orbits, and a
similar restriction holds for k-star groups in general.

Theorem 1.3 Let k, ` be positive integers with k ≥ 2. Suppose that G ≤ Sym(Ω)
and that G is a k-star group with orbits Ω1, . . . , Ω`. Then

(a) ` ≤ k − 1, and there are examples for each k, `;

(b) for each i ≤ ` and each integer m ∈ [k+1−`, k], the group GΩi is an m-star
group;

(c) the number of integers i ≤ ` such that GΩi is not a 2-star group is at most
min{bk−1

2 c, k − `− 1}, and this bound can be attained for each k ≥ 2.
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Examples demonstrating existence in Theorem 1.3 (a), and attainment of the
bound in part (c), are given in Examples 2.1 and 2.2 respectively. The proof of
the theorem is in Section 3. Part (c) suggests the following problem.

Problem 1.4 Given `, m ≥ 2 and `,m < k, find a function f(k, `, m) such that,
for each k-star group G with orbits Ω1, . . . , Ω`, all but at most f(k, `,m) of the
induced groups GΩi are m-star groups, and there exists such a group for which
the bound f(k, `,m) is attained.

By Theorem 1.3, f(k, `, 2) = min{bk−1
2 c, k − ` − 1}. The proof of Proposi-

tion 1.2 is given in Section 3. The examples given to prove Proposition 1.2 (a),
and to prove part (c) for m ≥ 3, are all intransitive. Also those given to prove part
(c) with m = 2 are transitive, but are not 6-star groups. We ask the following.

Question 1.5

(a) For which k ≥ 6, does there exist a non-trivial k-star group that is also a
2-star group?

(b) For which integers m, k with 2 ≤ m < k, does there exist a transitive k-star
group that is also a non-trivial m-star group?

Finally, although we have not studied the primitive case in this paper, it is of
special interest, given the main result of [3] that a finite primitive 3-star group has
rank at most 3. In [3, Final Note], it was observed that all the infinite permutation
groups in the family constructed in the proof of [3, Observation 3.8] were k-star
groups for each finite k, and the family contained groups of all ranks. Thus we
ask the following:

Question 1.6 Is there an upper bound, depending on k, on the rank of a finite
primitive k-star group?

2 Examples

In this section we give several families of examples that will be used in the proofs
of Proposition 1.2 and Theorem 1.3.

Example 2.1 Let k, `, n be positive integers such that ` < k ≤ n, let Ω be a
set of n points, and let {Ω1 | Ω2 | · · · | Ω`} be a partition of Ω with ` non-
empty parts. Let G denote the stabiliser in Sym(Ω) of this partition, that is,
G = Sym(Ω1)×· · ·×Sym(Ω`). Since ` < k, each k-subset ∆ of Ω contains at least
two points, say α and β, in the same part Ωi, for some i, and the 2-cycle (α, β)
lies in G and fixes ∆ setwise. Thus G is a k-star permutation group on Ω, and is
non-trivial if ` ≥ 2.
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Example 2.2 Let k ≥ 2, and set m := bk
2 c − 1. For i = 1, . . . , m, let Ωi :=

{3i− 2, 3i− 1, 3i}, let Ωm+1 := {3m + 1, 3m + 2} and Ωm+2 := {3m + 3}. Let

` :=
{

m + 1 if k is even
m + 2 if k is odd and note that k =

{
2m + 2 if k is even
2m + 3 if k is odd.

Let Ω :=
⋃`

i=1 Ωi and G := (
∏m

i=1 Alt(Ωi)) × (
∏`

i=m+1 Sym(Ωi)). For each k-
subset ∆ ⊂ Ω, either ∆ contains Ωi for some i ≤ m, or ∆ contains Ωm+1. In
either case, G∆ 6= 1, and hence G is a k-star group.

Moreover, GΩi is a 2-star group if and only if m < i ≤ `, so that GΩi fails to
be a 2-star group for exactly m of the G-orbits Ωi. Note that m = min{bk−1

2 c, k−
`− 1}, the upper bound of Theorem 1.3 (c).

Example 2.3 Let k ≥ 2 and consider the symmetric group G = Sym(Ω0) acting
on the set Ω = Ω{2}0 of unordered pairs from Ω0. For simplicity take |Ω0| ≥ k.
Each k-subset Θ of Ω can be thought of as the edge set of a graph with vertex set
Ω0, and a non-trivial element of GΘ as an automorphism of the graph permuting
the edges non-trivially.

Moreover, it is straightforward to check that every graph with at most 5 edges
possesses an automorphism that moves some edge, so that G is a non-trivial k-star
group if k ≤ 5. This was observed in [3, Example 3.4 and Final Note]. However if
k ≥ 6, then there is a graph with n vertices and k edges for which no automorphism
permutes the edges non-trivially, so G is not a k-star group if k ≥ 6.

To complete the argument, we give a simple example, suggested to us by
Gábor Ivanyos, of a graph Γ(n, k) that has exactly n vertices and k edges, where
6 ≤ k < n, and no automorphism permutes the edges non-trivially. Take the
vertex set of Γ(n, k) as the set V := {1, 2, . . . , n}, and define the k edges to be
the pairs {i, i + 1}, for 1 ≤ i ≤ k − 1, and {3, k + 1}. Let g be an automorphism
of Γ(n, k), that is, g ∈ Sym(V ) and maps edges to edges. Since the only vertex
lying on three edges is 3, g fixes the vertex 3, and since the three paths in Γ(n, k)
starting at 3 have different lengths 1, 2, k − 3, it follows that g fixes each of the
vertices 1, 2, . . . , k + 1, and hence g fixes each of the edges.

3 Proofs

Proof of Proposition 1.2. (a) Consider a k-star group Ĝ on a set Ω̂, con-
structed as in Example 2.1, having k − 1 orbits Ω1, . . . , Ωk−1, and assume that
|Ω1| > k. Let Ω :=

⋃m
i=1 Ωi and let G be the permutation group induced by Ĝ

on Ω. By Remark 1.1.2, G on Ω is a k-star group, and since |Ω1| > k and G has
m ≥ 2 orbits, G is a non-trivial k-star group. Also, since G has m ≥ 2 orbits, it
follows from Theorem 1.3 (a) that G is not an m-star group.

(b) This part follows from Example 2.3.

(c) If m = 2 and k ≤ 5, then the groups given in Example 2.3 have the required
properties, and further examples with m = 2, k = 3 are given in [3, Examples 3.5
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and 3.6]. Thus we may assume that 3 ≤ m < k. Consider the group Ĝ defined in
the proof of part (a). This time let Ω :=

⋃m−1
i=1 Ωi and let G be the permutation

group induced by Ĝ on Ω. As in part (a), G is a non-trivial k-star group. Let
Θ be an m-subset of Ω. For m ≤ i ≤ k − 1 choose a point αi ∈ Ωi, and set
Θ̂ := Θ ∪ {αm, . . . , αk−1}. Then |Θ̂| = k, and as Ĝ is a k-star group, there
exists ĝ ∈ Ĝ such that ĝ fixes Θ̂ setwise and acts non-trivially on it. Now ĝ fixes
Ωi∩Θ̂ = {αi} for m ≤ i ≤ k−1, and hence ĝ fixes Θ setwise and acts non-trivially
on it. Thus GΘ 6= 1. It follows that G is a non-trivial m-star group. ¤

Proof of Theorem 1.3. (a) If ` ≥ k, then a k-subset ∆ ⊂ Ω consisting of one
point from each of Ω1, . . . , Ωk is such that G∆ = 1, contradicting the fact that G
is a k-star group. Thus ` ≤ k − 1.

(b) Choose i ≤ ` and m ∈ [k + 1 − `, k]. If |Ωi| < m then GΩi is a trivial m-
star group. So assume that |Ωi| ≥ m and consider an arbitrary m-subset ∆′ ⊆ Ωi.
Since k − m ≤ ` − 1, we may form a k-subset ∆ of Ω consisting of ∆′ together
with one point from each of k−m orbits Ωj different from Ωi. Since G is a k-star
group, we have G∆ 6= 1, and since the setwise stabiliser G∆ fixes each Ωj ∩ ∆
setwise, it follows that G∆ fixes ∆ \∆′ pointwise, and hence G∆ ≤ G∆′ and acts
non-trivially on ∆′. In particular G∆′ 6= 1, and so G is an m-star group.

(c) If k = 2 then by the second observation in the introduction each GΩi is a
2-star group. Thus we may assume that k ≥ 3. Let m be the number of G-orbits
Ωi such that GΩi is not a 2-star group. If m ≤ 1 then the bound of part (c) holds
since ` < k and k ≥ 3. So assume that m ≥ 2, and without loss of generality
assume that GΩi is not a 2-star group for 1 ≤ i ≤ m. Then, for each i ≤ m, there
exist two points αi, βi ∈ Ωi such that no element of G interchanges αi and βi. For
m < i ≤ ` choose a point αi ∈ Ωi. If m ≥ k

2 , set ∆′ := {αi, βi | 1 ≤ i ≤ bk
2 c}.

Consider the k-subset ∆ := ∆′ if k is even, or ∆′ ∪{α`} if k is odd. The stabiliser
G∆ fixes setwise Ωi ∩ ∆ for each i. If i ≤ m then Ωi ∩ ∆ = {αi, βi}, and as
no element of G interchanges αi and βi it follows that G∆ fixes αi and βi. Thus
G∆ = 1, which is a contradiction, so m < k/2 and hence m ≤ bk−1

2 c. Next suppose
that m ≥ k− `, and set ∆ := {αi, βi | 1 ≤ i ≤ m} ∪ {αm+1, . . . , αk−m}. Then ∆ is
a k-subset, and arguing as in the previous case, G∆ = 1, which is a contradiction.
So m ≤ k − ` − 1. Thus we have proved that m ≤ min{bk−1

2 c, k − ` − 1}, and
groups for which this upper bound is attained, for any given k ≥ 2, can be found
in Example 2.2. ¤
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