On a Quarter-Symmetric Metric Connection in an LP-Sasakian Manifold

R.N. Singh and Shravan K. Pandey ${ }^{1}$
Department of Mathematical Sciences
A.P.S. University, Rewa (M.P.) 486003, India
e-mail : rnsinghmp@rediffmail.com (R.N. Singh)
shravan.math@gmail.com (S.K. Pandey)

Abstract

The object of the present paper is to study a quarter-symmetric metric connection in an LP-Sasakian manifold. We study some curvature properties of an LP-Sasakian manifold with respect to the quarter-symmetric metric connection.

Keywords : quarter-symmetric metric connection; LP-Sasakain manifold; locally ϕ-symmetric; ϕ-recurrent; locally projective ϕ-symmetric; ϕ-projectively flat; η-Einstein manifold.
2010 Mathematics Subject Classification : 53C15; 53C25.

1 Introduction

The quarter-symmetric connection generalizes the semi-symmetric connection. The semi-symmetric metric connection is important in the geometry of Riemannian manifolds having also physical application; for instance, the displacement on the earth surface following a fixed point is metric and semi-symmetric (1).

In 1975, Golab (2]) defined and studied quarter-symmetric connection in a differentiable manifold.

A linear connection $\tilde{\nabla}$ on an n-dimensional Riemannian manifold $\left(M^{n}, g\right)$ is said to be a quarter-symmetric connection ([2]) if its torsion tensor \tilde{T} defined by

$$
\tilde{T}(X, Y)=\tilde{\nabla}_{X} Y-\tilde{\nabla}_{Y} X-[X, Y],
$$

[^0]is of the form
\[

$$
\begin{equation*}
\tilde{T}(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y \tag{1.1}
\end{equation*}
$$

\]

where η is 1 -form and ϕ is a tensor of type (1, 1). In addition, a quarter-symmetric linear connection $\tilde{\nabla}$ satisfies the condition

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} g\right)(Y, Z)=0 \tag{1.2}
\end{equation*}
$$

for all $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \in \mathrm{TM}$, where TM is the Lie algebra of vector fields of the manifold M^{n}, then $\tilde{\nabla}$ is said to be quarter-symmetric metric connection. In particular, if $\phi X=X$ and $\phi Y=Y$, then the quarter-symmetric connection reduces to a semi-symmetric connection (3).

After Golab ([2]), Rastogi ([4, 5]) continued the systematic study of quartersymmetric metric connection. In 1980, Mishra and Pandey (6]) studied quartersymmetric metric connection in a Riemannian, Kaehlerian and Sasakian manifold. In 1982, Yano and Imai ([7) studied quarter-symmetric metric connection in Hermition and Kaehlerian manifolds. In 1991, Mukhopadhyay et al. (8) studied quarter-symmetric metric connection on a Riemannian manifold with an almost complex structure ϕ. Quarter-symmetric metric connection are also studied by De and Biswas (9), Singh ([10), De and Mondal ([1]), De and De ([12]) and many others.

On the other hand, there is a class of almost paracontact metric manifolds, namely Lorentzian para-Sasakian manifolds. In 1989, Matsumoto (13) introduced the notion of LP-Sasakian manifolds. Then, Mihai and Rosca ([14) introduced the same notion independently and obtained many interesting results. LP-Sasakian manifolds are also studied by De et al. ([15]), Mihai et al. ([16]), Saikh and Baishya ([17]), Singh et al. ([18]) and others. The paper is organized as follows

In this paper, we study a quarter-symmetric metric connection in an Lorentzian para-Sasakian manifold. In Section 2, some preliminary results are recalled. In Section 3, we find the expression for curvature tensor (resp. Ricci tensor) with respect to quarter-symmetric metric connection and investigate relations between curvature tensor (resp. Ricci tensor) with respect to quarter-symmetric metric connection and curvature tensor (resp. Ricci tensor) with respect to Levi-Civita connection. Section 4 deals with locally ϕ-symmetric LP-Sasakian manifold with respect to quarter-symmetric metric connection. ϕ-recurrent LP-Sasakian manifold admitting quarter-symmetric metric connection are studied in Section 5 and it is obtained that if an LP-Sasakian manifold is ϕ-recurrent with respect to quartersymmetric metric connection then $\left(M^{n}, g\right)$ is an η-Einstein manifold with respect to Levi-Civita connection. Section 6 contains locally projective ϕ-symmetric LPSasakian manifold with respect to quarter-symmetric metric connection. Section 7 is devoted to study of ϕ-projectively flat LP-Sasakian manifold with respect to quarter-symmetric metric connection. In the last section, we study $R . \tilde{R}=0$ and obtained $\left(M^{n}, g\right)$ is an η-Einstein manifold.

2 Preliminaries

An n-dimensional, $(n=2 m+1)$, differentiable manifold M^{n} is called Lorentzian para-Sasakian (briefly, LP-Sasakian) manifold (13, 19) , if it admits a (1, 1)-tensor field ϕ, a contravariant vector field ξ, a 1-form η and a Lorentzian metric g which satisfy

$$
\begin{gather*}
\eta(\xi)=-1 \tag{2.1}\\
\phi^{2} X=X+\eta(X) \xi \tag{2.2}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.3}\\
g(X, \xi)=\eta(X) \tag{2.4}\\
\nabla_{X} \xi=\phi X \tag{2.5}\\
\left(\nabla_{X} \phi\right)(Y)=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{2.6}
\end{gather*}
$$

where ∇ denotes the covariant differentiation with respect to Lorentzian metric g.
It can be easily seen that in an LP-Sasakian manifold the following relations hold:

$$
\begin{align*}
& \phi \xi=0, \eta(\phi)=0 \tag{2.7}\\
& \operatorname{rank}(\phi)=n-1 \tag{2.8}
\end{align*}
$$

If we put

$$
\begin{equation*}
\Phi(X, Y)=g(X, \phi Y) \tag{2.9}
\end{equation*}
$$

for any vector field X and Y , then the tensor field $\Phi(X, Y)$ is a symmetric $(0,2)$ tensor field (13). Also since the 1 -form η is closed in an LP-Sasakian manifold, we have (13,15$]$)

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\Phi(X, Y), \Phi(X, \xi)=0 \tag{2.10}
\end{equation*}
$$

for all $X, Y \in T M$.
Also in an LP-Sasakian manifold, the following relations hold ([15, 19])

$$
\begin{gather*}
g(R(X, Y) Z, \xi)=\eta(R(X, Y) Z)=g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \tag{2.11}\\
R(\xi, X) Y=g(X, Y) \xi-\eta(Y) X \tag{2.12}\\
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.13}\\
R(\xi, X) \xi=X+\eta(X) \xi \tag{2.14}\\
S(X, \xi)=(n-1) \eta(X) \tag{2.15}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{2.16}
\end{gather*}
$$

for any vector field X, Y and Z, where R and S are the Riemannian curvature tensor and Ricci tensor of the manifold respectively.

3 Curvature Tensor of an LP-Sasakian Manifold with respect to Quarter-Symmetric Metric Connection

Let $\tilde{\nabla}$ be the linear connection and ∇ be Riemannian connection of an almost contact metric manifold such that

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+H(X, Y), \tag{3.1}
\end{equation*}
$$

where H is the tensor field of type $(1,1)$. For $\tilde{\nabla}$ to be a quarter-symmetric metric connection in M^{n}, we have ([2])

$$
\begin{equation*}
H(X, Y)=\frac{1}{2}\left[\tilde{T}(X, Y)+\tilde{T}^{\prime}(X, Y)+\tilde{T}^{\prime}(Y, X)\right] \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\tilde{T}^{\prime}(X, Y), Z\right)=g(\tilde{T}(Z, X), Y) \tag{3.3}
\end{equation*}
$$

In view of equations (1.1) and (3.3), we have

$$
\begin{equation*}
\tilde{T}^{\prime}(X, Y)=\eta(X) \phi Y-g(\phi X, Y) \xi \tag{3.4}
\end{equation*}
$$

Now, using equations (1.1) and (3.4) in equation (3.2), we get

$$
\begin{equation*}
H(X, Y)=\eta(Y) \phi X-g(\phi X, Y) \xi . \tag{3.5}
\end{equation*}
$$

Hence a quarter-symmetric metric connection in an LP-Sasakian manifold is given by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) \phi X-g(\phi X, Y) \xi . \tag{3.6}
\end{equation*}
$$

Thus the above equation is the relation between quarter-symmetric metric connection and the Levi-Civita connection.

The curvature tensor \tilde{R} of M^{n} with respect to quarter-symmetric metric connection $\tilde{\nabla}$ is defined by

$$
\begin{equation*}
\tilde{R}(X, Y) Z=\tilde{\nabla}_{X} \tilde{\nabla}_{Y} Z-\tilde{\nabla}_{Y} \tilde{\nabla}_{X} Z-\tilde{\nabla}_{[X, Y]} Z . \tag{3.7}
\end{equation*}
$$

In view of equation (3.6), above equation takes the form

$$
\begin{align*}
\tilde{R}(X, Y) Z= & R(X, Y) Z+g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X \\
& +\eta(Z)\{\eta(Y) X-\eta(X) Y\}+\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \xi, \tag{3.8}
\end{align*}
$$

where \tilde{R} and R are the Riemannian curvature tensor with respect to $\tilde{\nabla}$ and ∇ respectively.
From equation (3.8) it follows that

$$
\begin{equation*}
\tilde{S}(Y, Z)=S(Y, Z)+(n-1) \eta(Y) \eta(Z), \tag{3.9}
\end{equation*}
$$

where \tilde{S} and S are the Ricci tensor of the connection $\tilde{\nabla}$ and ∇ respectively. Contracting above equation, we get

$$
\begin{equation*}
\tilde{r}=r-(n-1), \tag{3.10}
\end{equation*}
$$

where \tilde{r} and r are the scalar curvature tensor of the connection $\tilde{\nabla}$ and ∇ respectively.

4 Locally ϕ-Symmetric LP-Sasakian Manifold with respect to Quarter-Symmetric Metric Connection

Definition 4.1. An LP-Sasakian manifold M^{n} is said to be locally ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0 \tag{4.1}
\end{equation*}
$$

for all vector fields X, Y, Z, W orthogonal to ξ. This notion was introduced by Takahashi for Sasakian manifolds ([20).

Definition 4.2. An LP-Sasakian manifold M^{n} is said to be ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0 \tag{4.2}
\end{equation*}
$$

for arbitrary vector fields X, Y, Z, W.
Analogous to the definition of locally ϕ-symmetric LP-Sasakian manifolds with respect to Levi-Civita connection, we define a locally ϕ-symmetric LP-Sasakian manifolds with respect to the quarter-symmetric metric connection by

$$
\begin{equation*}
\phi^{2}\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z\right)=0 \tag{4.3}
\end{equation*}
$$

for all vector fields $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}$ orthogonal to ξ. In view of equations (3.6) and (3.8), we have

$$
\begin{align*}
\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z= & \left(\nabla_{W} \tilde{R}\right)(X, Y) Z+\eta(\tilde{R}(X, Y) Z) \phi W \tag{4.4}\\
& -g(\phi W, \tilde{R}(X, Y) Z) \xi
\end{align*}
$$

Now differentiating equation (3.8) covariantly with respect to W , we get

$$
\begin{align*}
\left(\nabla_{W}\right. & \tilde{R})(X, Y) Z \\
= & \left(\nabla_{W} R\right)(X, Y) Z+g\left(\left(\nabla_{W} \phi\right) X, Z\right) \phi Y+g(\phi X, Z)\left(\nabla_{W} \phi\right)(Y) \\
& -g\left(\left(\nabla_{W} \phi\right) Y, Z\right) \phi X-g(\phi Y, Z)\left(\nabla_{W} \phi\right)(X)+\left(\nabla_{W} \eta\right)(Z)\{\eta(Y) X \tag{4.5}\\
& -\eta(X) Y\}+\eta(Z)\left\{\left(\nabla_{W} \eta\right)(Y) X-\left(\nabla_{W} \eta\right)(X) Y\right\}+\{g(Y, Z) \eta(X) \\
& -g(X, Z) \eta(Y)\}\left(\nabla_{W} \xi\right)+\left\{g(Y, Z)\left(\nabla_{W} \eta\right)(X)-g(X, Z)\left(\nabla_{W} \eta\right)(Y)\right\} \xi
\end{align*}
$$

which on using equations $(2.6),\left(\begin{array}{|c}2.9)\end{array}\right)$ and (2.10) reduces to

$$
\begin{align*}
\left(\nabla_{W} \tilde{R}\right) & (X, Y) Z \\
= & \left(\nabla_{W} R\right)(X, Y) Z-\{g(Y, W) \eta(Z)+g(Z, W) \eta(Y) \\
& +2 \eta(Y) \eta(W) \eta(Z)\} \phi X+\{g(X, W) \eta(Z)+g(Z, W) \eta(X) \\
& +2 \eta(X) \eta(W) \eta(Z)\} \phi Y+\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \phi W \\
& +\{\eta(Y) g(\phi X, Z)-\eta(X) g(\phi Y, Z)\} W+\{g(W, \phi Z) \eta(Y) \tag{4.6}\\
& +g(W, \phi Y) \eta(Z)\} X-\{g(W, \phi Z) \eta(X)+g(W, \phi X) \eta(Z)\} Y \\
& +\{g(\phi X, Z) g(Y, W)-g(\phi Y, Z) g(X, W)+2 \eta(Y) \eta(W) g(\phi X, Z) \\
& -2 \eta(X) \eta(W) g(\phi Y, Z)+g(\phi X, W) g(Y, Z)-g(\phi Y, W) g(X, Z)\} \xi
\end{align*}
$$

Now taking the inner product of equation (3.8) with ξ and using equations (2.1), (2.7) and (2.11), we obtain

$$
\begin{equation*}
\eta(\tilde{R}(X, Y) Z)=0 \tag{4.7}
\end{equation*}
$$

By virtue of equations (4.6), (4.7) and (2.7), equation (4.4) takes the form

$$
\begin{align*}
& \phi^{2}\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z\right) \\
&= \phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)+\{g(W, \phi Z) \eta(Y)+g(W, \phi Y) \eta(Z)\} \phi^{2} X \\
&-\{g(W, \phi Z) \eta(X)+g(W, \phi X) \eta(Z)\} \phi^{2} Y+\{\eta(Y) g(\phi X, Z) \tag{4.8}\\
&-\eta(X) g(\phi Y, Z)\} \phi^{2} W-\{g(Y, W) \eta(Z)+g(Z, W) \eta(Y) \\
&+2 \eta(Y) \eta(W) \eta(Z)\} \phi^{2}(\phi X)+\{g(X, W) \eta(Z)+g(Z, W) \eta(X) \\
&+2 \eta(X) \eta(W) \eta(Z)\} \phi^{2}(\phi Y)+\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \phi^{2}(\phi W)
\end{align*}
$$

Consider X, Y, Z and W are orthogonal to ξ, then equation (4.8) yields

$$
\begin{equation*}
\phi^{2}\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z\right)=\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \tag{4.9}
\end{equation*}
$$

Hence we can state the following
Theorem 4.3. In an LP-Sasakian manifold the quarter-symmetric metric connection $\tilde{\nabla}$ is locally ϕ-symmetric iff the Levi-Civita connection is so.

$5 \quad \phi$-Recurrent LP-Sasakian Manifold with respect to Quarter-Symmetric Metric Connection

Definition 5.1. An n-dimensional LP-Sasakian manifold M^{n} is said to be ϕ recurrent if there exists a non-zero 1-form A such that

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=A(W) R(X, Y) Z \tag{5.1}
\end{equation*}
$$

for arbitrary vector fields X, Y, Z, W.
If X, Y, Z, W are orthogonal to ξ then the manifold is called locally ϕ-recurrent manifold.

If the 1 -form A vanishes, then the manifold is reduces to ϕ-symmetric manifold (20$]$).

Definition 5.2. An n-dimensional LP-Sasakian manifold M^{n} is said to be ϕ recurrent with respect to quarter-symmetric metric connection if there exists a non-zero 1-form A such that

$$
\begin{equation*}
\phi^{2}\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z\right)=A(W) \tilde{R}(X, Y) Z \tag{5.2}
\end{equation*}
$$

for arbitrary vector fields X, Y, Z, W.

Suppose M^{n} is ϕ-recurrent with respect to quarter-symmetric metric connection, then in view of equations (2.2) and (5.2), we can write

$$
\begin{equation*}
g\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z, U\right)+\eta\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z\right) \eta(U)=A(W) g(\tilde{R}(X, Y) Z, U) \tag{5.3}
\end{equation*}
$$

By virtue of equations (4.4) and (4.7) above equation reduces to

$$
\begin{equation*}
g\left(\left(\nabla_{W} \tilde{R}\right)(X, Y) Z, U\right)+\eta\left(\left(\nabla_{W} \tilde{R}\right)(X, Y) Z\right) \eta(U)=A(W) g(\tilde{R}(X, Y) Z, U) \tag{5.4}
\end{equation*}
$$

which on using equation (4.6) takes the form

$$
\begin{align*}
& g\left(\left(\nabla_{W} R\right)(X, Y) Z, U\right)+\{g(X, W) \eta(Z)+g(Z, W) \eta(X) \\
& +2 \eta(X) \eta(W) \eta(Z)\} g(\phi Y, U)-\{g(Y, W) \eta(Z)+g(Z, W) \eta(Y) \\
& +2 \eta(Y) \eta(W) \eta(Z)\} g(\phi X, U)+\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} g(\phi W, U) \\
& +\{\eta(Y) g(\phi X, Z)-\eta(X) g(\phi Y, Z)\} g(W, U)+\{g(W, \phi Z) \eta(Y) \\
& +g(W, \phi Y) \eta(Z)\} g(X, U)-\{g(W, \phi Z) \eta(X)+g(W, \phi X) \eta(Z)\} g(Y, U) \\
& +\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \eta(U)+\{\eta(Y) \eta(W) \eta(U) g(\phi X, Z) \tag{5.5}\\
& -\eta(X) \eta(W) \eta(U) g(\phi Y, Z)+\eta(X) \eta(Z) \eta(U) g(\phi Y, W) \\
& -\eta(Y) \eta(Z) \eta(U) g(\phi X, W)\} \\
& =A(W) g(R(X, Y) Z, U)+A(W)\{g(\phi X, Z) g(\phi Y, U)-g(\phi Y, Z) g(\phi X, U) \\
& \quad+\eta(Z)(\eta(Y) g(X, U)-\eta(X) g(Y, U))+\eta(U)(g(Y, Z) \eta(X) \\
& \quad-g(X, Z) \eta(Y))\}
\end{align*}
$$

Putting $Z=\xi$ in above equation and using equations (2.1) and (2.7), we get

$$
\begin{align*}
& g\left(\left(\nabla_{W} R\right)(X, Y) \xi, U\right)-\{g(X, W) g(\phi Y, U)+\eta(X) \eta(W) g(\phi Y, U)\} \\
& +\{g(Y, W) g(\phi X, U)+\eta(Y) \eta(W) g(\phi X, U)\}+\{g(Y, Z) \eta(X) \\
& -g(X, Z) \eta(Y)\} g(\phi W, U)+\{\eta(Y) g(\phi X, Z)-\eta(X) g(\phi Y, Z)\} g(W, U) \\
& +\{g(W, \phi X) g(Y, U)-g(W, \phi Y) g(X, U)\}+\eta\left(\left(\nabla_{W} R\right)(X, Y) \xi\right) \eta(U) \tag{5.6}\\
& +\{\eta(Y) \eta(U) g(\phi X, W)-\eta(X) \eta(U) g(\phi Y, W)\} \\
& =A(W) g(R(X, Y) \xi, U)-A(W)\{(\eta(Y) g(X, U)-\eta(X) g(Y, U))
\end{align*}
$$

Now, putting $X=U=e_{i}$ in above equation and taking summation over $i, 1 \leq$ $i \leq n$, we get

$$
\begin{align*}
\left(\nabla_{W} S\right)(Y, \xi) & +\sum_{i=1}^{n} g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right) g\left(e_{i}, \xi\right) \tag{5.7}\\
& =A(W) S(Y, \xi)+n g(\phi Y, W)-(n-1) A(W) \eta(Y)
\end{align*}
$$

Let us denote the second term of left hand side of equation (5.7) by E. In this case E vanishes. Namely, we have

$$
\begin{align*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)= & g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(\nabla_{W} e_{i}, Y\right) \xi, \xi\right) \\
& -g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right) \tag{5.8}
\end{align*}
$$

at $\mathrm{p} \in \mathrm{M}$. In local co-ordinates $\nabla_{W} e_{i}=W^{j} \Gamma_{j i}^{h} e_{h}$, where $\Gamma_{j i}^{h}$ are the Christoffel symbols. Since $\left\{e_{i}\right\}$ is an orthonormal basis, the metric tensor $g_{i j}=\delta_{i j}, \delta_{i j}$ is the Kronecker delta and hence the Christoffel symbols are zero. Therefore $\nabla_{W} e_{i}=0$. Since R is skew-symmetric, we have

$$
\begin{equation*}
g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right)=0 \tag{5.9}
\end{equation*}
$$

Using equation (5.9) and $\nabla_{W} e_{i}=0$ in equation (5.8), we get

$$
\begin{equation*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right) \tag{5.10}
\end{equation*}
$$

In view of $g\left(R\left(e_{i}, Y\right) \xi, \xi\right)=-g\left(R(\xi, \xi) e_{i}, Y\right)=0$ and $\left(\nabla_{W} g\right)=0$, we have

$$
\begin{equation*}
g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \xi, \nabla_{W} \xi\right)=0 \tag{5.11}
\end{equation*}
$$

which implies

$$
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=-g\left(R\left(e_{i}, Y\right) \xi, \nabla_{W} \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right)
$$

Since R is skew-symmetric, we have

$$
\begin{equation*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=0 \tag{5.12}
\end{equation*}
$$

Using equation (5.12) in equation (5.7), we get

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)=A(W) S(Y, \xi)+n g(\phi Y, W)-(n-1) \eta(Y) A(W) \tag{5.13}
\end{equation*}
$$

Now, we have

$$
\left(\nabla_{W} S\right)(Y, \xi)=\nabla_{W} S(Y, \xi)-S\left(\nabla_{W} Y, \xi\right)-S\left(Y, \nabla_{W} \xi\right.
$$

which on using equations (2.5), (2.9), (2.10) and (2.15) takes the form

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)=(n-1) g(W, \phi Y)-S(Y, \phi W) \tag{5.14}
\end{equation*}
$$

Form equations (5.13) and (5.14), we have

$$
\begin{equation*}
S(Y, \phi W)+g(Y, \phi W)=0 \tag{5.15}
\end{equation*}
$$

Replacing W by ϕW in above equation and using equation (2.2), we get

$$
\begin{equation*}
S(Y, W)=-[g(Y, W)+n \eta(Y) \eta(W)] \tag{5.16}
\end{equation*}
$$

which shows that M^{n} is an η-Einstein manifold. Thus we state as follows:
Theorem 5.3. If an LP-Sasakian manifold is ϕ-recurrent with respect to the quarter-symmetric metric connection then the manifold is an η-Einstein manifold with respect to the Levi-Civita connection.

6 Locally Projective ϕ-Symmetric LP-Sasakian Manifold with respect to Quarter-Symmetric Metric Connection

Definition 6.1. An n-dimensional LP-Sasakian manifold M^{n} is said to be locally projective ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} P\right)(X, Y) Z\right)=0 \tag{6.1}
\end{equation*}
$$

for all vector fields X, Y, Z, W orthogonal to ξ, where P is the projective curvature tensor defined as

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{(n-1)}[S(Y, Z) X-S(X, Z) Y] \tag{6.2}
\end{equation*}
$$

Equivalently

Definition 6.2. An n-dimensional LP-Sasakian manifold M^{n} is said to be locally projective ϕ-symmetric with respect to the quarter-symmetric metric connection if

$$
\begin{equation*}
\phi^{2}\left(\left(\tilde{\nabla}_{W} \tilde{P}\right)(X, Y) Z\right)=0 \tag{6.3}
\end{equation*}
$$

for all vector fields X, Y, Z, W orthogonal to ξ, where \tilde{P} is the projective curvature tensor with respect to the quarter-symmetric metric connection given by

$$
\begin{equation*}
\tilde{P}(X, Y) Z=\tilde{R}(X, Y) Z-\frac{1}{(n-1)}[\tilde{S}(Y, Z) X-\tilde{S}(X, Z) Y] \tag{6.4}
\end{equation*}
$$

where \tilde{R} and \tilde{S} are the Riemannian curvature tensor and Ricci tensor with respect to quarter-symmetric metric connection $\tilde{\nabla}$.

Using equation (3.6), we can write

$$
\begin{align*}
\left(\tilde{\nabla}_{W} \tilde{P}\right)(X, Y) Z= & \left(\nabla_{W} \tilde{P}\right)(X, Y) Z+\eta(\tilde{P}(X, Y) Z) \phi W \\
& -g(\phi W, \tilde{P}(X, Y) Z) \xi \tag{6.5}
\end{align*}
$$

Now differentiating equation (6.4) with respect to W, we get

$$
\begin{align*}
\left(\nabla_{W} \tilde{P}\right)(X, Y) Z= & \left(\nabla_{W} \tilde{R}\right)(X, Y) Z \\
& -\frac{1}{(n-1)}\left[\left(\nabla_{W} \tilde{S}\right)(Y, Z) X-\left(\nabla_{W} \tilde{S}\right)(X, Z) Y\right] \tag{6.6}
\end{align*}
$$

In view of equations (4.6) and (3.9) above equation reduces to

$$
\begin{align*}
\left(\nabla_{W} \tilde{P}\right) & (X, Y) Z \\
= & \left(\nabla_{W} R\right)(X, Y) Z-\{g(Y, W) \eta(Z)+g(Z, W) \eta(Y) \\
& +2 \eta(Y) \eta(W) \eta(Z)\} \phi X+\{g(X, W) \eta(Z)+g(Z, W) \eta(X) \\
& +2 \eta(X) \eta(W) \eta(Z)\} \phi Y+\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \phi W \\
& +\{\eta(Y) g(\phi X, Z)-\eta(X) g(\phi Y, Z)\} W+\{g(\phi X, Z) g(Y, W) \tag{6.7}\\
& -g(\phi Y, Z) g(X, W)+2 \eta(Y) \eta(W) g(\phi X, Z)-2 \eta(X) \eta(W) g(\phi Y, Z) \\
& +g(\phi X, W) g(Y, Z)-g(\phi Y, W) g(X, Z)\} \xi \\
& -\frac{1}{(n-1)}\left\{\left(\nabla_{W} S\right)(Y, Z) X-\left(\nabla_{W} S\right)(X, Z) Y\right\}
\end{align*}
$$

which on using equation (6.2) reduces to

$$
\begin{align*}
\left(\nabla_{W} \tilde{P}\right) & (X, Y) Z \\
= & \left(\nabla_{W} P\right)(X, Y) Z-\{g(Y, W) \eta(Z)+g(Z, W) \eta(Y) \\
& +2 \eta(Y) \eta(W) \eta(Z)\} \phi X+\{g(X, W) \eta(Z)+g(Z, W) \eta(X) \\
& +2 \eta(X) \eta(W) \eta(Z)\} \phi Y+\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \phi W \tag{6.8}\\
& +\{\eta(Y) g(\phi X, Z)-\eta(X) g(\phi Y, Z)\} W+\{g(\phi X, Z) g(Y, W) \\
& -g(\phi Y, Z) g(X, W)+2 \eta(Y) \eta(W) g(\phi X, Z)-2 \eta(X) \eta(W) g(\phi Y, Z) \\
& +g(\phi X, W) g(Y, Z)-g(\phi Y, W) g(X, Z)\} \xi
\end{align*}
$$

Now, using equations (3.8) and (3.9) in equation (6.4), we get

$$
\begin{align*}
\tilde{P}(X, Y) Z= & R(X, Y) Z+g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X+[g(Y, Z) \eta(X) \\
& -g(X, Z) \eta(Y)] \xi-\frac{1}{(n-1)}[S(Y, Z) X-S(X, Z) Y] \tag{6.9}
\end{align*}
$$

which gives

$$
\begin{align*}
\tilde{P}(X, Y) Z= & P(X, Y) Z+g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X \tag{6.10}\\
& +[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \xi
\end{align*}
$$

Taking the inner product of equation (6.9) with ξ and using equations (2.1), (2.7) and (2.11), we get

$$
\begin{equation*}
\eta(\tilde{P}(X, Y) Z)=-\frac{1}{(n-1)}[S(Y, Z) X-S(X, Z) Y] \tag{6.11}
\end{equation*}
$$

Now applying equations (2.2), (6.8) and (6.11) in equation (6.5), we get

$$
\begin{align*}
& \phi^{2}\left(\left(\tilde{\nabla}_{W} \tilde{P}\right)(X, Y) Z\right) \\
&= \phi^{2}\left(\left(\nabla_{W} P\right)(X, Y) Z\right)-\{g(Y, W) \eta(Z)+g(Z, W) \eta(Y) \\
&+2 \eta(Y) \eta(W) \eta(Z)\} \phi^{2}(\phi X)+\{g(X, W) \eta(Z)+g(Z, W) \eta(X) \\
&+2 \eta(X) \eta(W) \eta(Z)\} \phi^{2}(\phi Y)+\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \phi^{2}(\phi W) \tag{6.12}\\
&+\{\eta(Y) g(\phi X, Z)-\eta(X) g(\phi Y, Z)\} \phi^{2}(W) \\
&+\frac{1}{n-1}\{S(Y, Z) \eta(X)+S(X, Z) \eta(Y)\} \phi^{2}(\phi W)
\end{align*}
$$

By assuming X, Y, Z, W orthogonal to ξ, above equation reduces to

$$
\begin{equation*}
\phi^{2}\left(\left(\tilde{\nabla}_{W} \tilde{P}\right)(X, Y) Z\right)=\phi^{2}\left(\left(\nabla_{W} P\right)(X, Y) Z\right) \tag{6.13}
\end{equation*}
$$

Hence we can state as follows:
Theorem 6.3. An n-dimensional LP-Sasakian manifold is locally projective ϕ symmetric with respect to $\tilde{\nabla}$ if and only if it is locally projective ϕ-symmetric with respect to the Levi-Civita connection ∇.

Again from equations (2.2), (6.7) and (6.11), we have

$$
\begin{align*}
& \phi^{2}\left(\left(\tilde{\nabla}_{W} \tilde{P}\right)(X, Y) Z\right) \\
& \quad= \phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)-\{g(Y, W) \eta(Z)+g(Z, W) \eta(Y) \\
&+2 \eta(Y) \eta(W) \eta(Z)\} \phi^{2}(\phi X)+\{g(X, W) \eta(Z)+g(Z, W) \eta(X) \\
&+2 \eta(X) \eta(W) \eta(Z)\} \phi^{2}(\phi Y)+\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \phi^{2}(\phi W) \\
&+\{\eta(Y) g(\phi X, Z)-\eta(X) g(\phi Y, Z)\} \phi^{2}(W) \tag{6.14}\\
&-\frac{1}{(n-1)}\left\{\left(\nabla_{W} S\right)(Y, Z) \eta(X)-\left(\nabla_{W} S\right)(X, Z) \eta(Y)\right\} \\
& \quad-\frac{1}{(n-1)}\{S(Y, Z) \eta(X)-S(X, Z) \eta(Y)\} \phi^{2}(\phi W)
\end{align*}
$$

Taking X, Y, Z and W orthogonal to ξ in equation (6.14), we obtain by simple calculation

$$
\begin{equation*}
\phi^{2}\left(\left(\tilde{\nabla}_{W} \tilde{P}\right)(X, Y) Z\right)=\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \tag{6.15}
\end{equation*}
$$

Thus we can state as follows:
Theorem 6.4. A ϕ-symmetric LP-Sasakian manifold admitting the quarter-symmetric metric connection $\tilde{\nabla}$ is locally projective ϕ-symmetric with respect to the quartersymmetric metric connection $\tilde{\nabla}$ if and only if it is locally ϕ-symmetric with respect to the Levi-Civita connection ∇.

$7 \quad \phi$-Projectively Flat LP-Sasakian Manifold with respect to Quarter-Symmetric Metric Connection

Definition 7.1. An n-dimensional differentiable manifold (M^{n}, g) satisfying the equation

$$
\begin{equation*}
\phi^{2}(P(\phi X, \phi Y) \phi Z)=0 \tag{7.1}
\end{equation*}
$$

is called ϕ-projectively flat. Analogous to the equation (7.1) we define an n dimensional LP-Sasakian manifold is said to be ϕ-projectively flat with respect to quarter-symmetric metric connection if it satisfies

$$
\begin{equation*}
\phi^{2}(\tilde{P}(\phi X, \phi Y) \phi Z)=0 \tag{7.2}
\end{equation*}
$$

where \tilde{P} is the projective curvature tensor of the manifold with respect to quartersymmetric metric connection.

Suppose M^{n} is ϕ-projectively flat LP-Sasakian manifold with respect to quartersymmetric metric connection. It is easy to see that $\phi^{2}(\tilde{P}(\phi X, \phi Y) \phi Z)=0$ holds if and only if

$$
\begin{equation*}
g(\tilde{P}(\phi X, \phi Y) \phi Z, \phi W)=0 \tag{7.3}
\end{equation*}
$$

for any $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W} \in \mathrm{TM}$. So by the use of equation (6.4) ϕ-projectively flat means

$$
\begin{equation*}
g(\tilde{R}(\phi X, \phi Y) \phi Z, \phi W)=\frac{1}{(n-1)}[\tilde{S}(\phi Y, \phi Z) g(\phi X, \phi W)-\tilde{S}(\phi X, \phi Z) g(\phi Y, \phi W)] \tag{7.4}
\end{equation*}
$$

which on using equations (3.8) and (3.9) reduces to

$$
\begin{align*}
g(R(\phi X, \phi Y) & \phi Z, \phi W)+g(X, \phi Z) g(Y, \phi W)-g(Y, \phi Z) g(X, \phi W) \\
& =\frac{1}{(n-1)}[S(\phi Y, \phi Z) g(\phi X, \phi W)-S(\phi X, \phi Z) g(\phi Y, \phi W)] \tag{7.5}
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, \ldots, e_{n-1}, \xi\right\}$ be a local orthonormal basis of the vector fields in M^{n}. Using the fact that $\left\{\phi e_{1}, \phi e_{2}, \ldots, \phi e_{n-1}, \xi\right\}$ is also local orthonormal basis. Putting $X=W=e_{i}$ in equation (7.5) and summing over i, we get

$$
\begin{align*}
& \sum_{i=1}^{n-1}\left[g\left(R\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right)+g\left(e_{i}, \phi Z\right) g\left(Y, \phi e_{i}\right)-g(Y, \phi Z) g\left(e_{i}, \phi e_{i}\right)\right] \\
& =\frac{1}{(n-1)} \sum_{i=1}^{n-1}\left[S(\phi Y, \phi Z) g\left(\phi e_{i}, \phi e_{i}\right)-S\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)\right] \tag{7.6}
\end{align*}
$$

Also, it can be seen that ([21])

$$
\begin{equation*}
\sum_{i=1}^{n-1} g\left(R\left(\phi e_{i}, \phi Y\right) \phi Z, \phi e_{i}\right)=S(\phi Y, \phi Z)+g(\phi Y, \phi Z) \tag{7.7}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi Z\right) S\left(\phi Y, \phi e_{i}\right)=S(\phi Y, \phi Z) \tag{7.8}\\
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right)=n-1 \tag{7.9}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)=g(\phi Y, \phi Z) \tag{7.10}
\end{equation*}
$$

Hence by virtue of equations (7.7), (7.8), (7.9) and (7.10) equation (7.6) takes the form

$$
\begin{equation*}
S(\phi Y, \phi Z)=-2(n-1) g(\phi Y, \phi Z) \tag{7.11}
\end{equation*}
$$

Now, using equations (2.3) and (2.16) in above equation, we get

$$
S(Y, Z)=-(n-1)[g(Y, Z)+3 \eta(X) \eta(Y)]
$$

Thus we can state as follows:

Theorem 7.2. An n-dimensional ϕ-projectively flat LP-Sasakian manifold admitting the quarter-symmetric metric connection is an η-Einstein manifold with respect to the Levi-Civita connection.

8 An LP-Sasakian Manifold with Quarter-Symmetric Metric Connection satisfying $R . \tilde{R}=0$

Suppose $(R(\xi, X) \cdot \tilde{R})(Y, Z) U=0$ on M^{n}. Then it can be written as

$$
\begin{align*}
R(\xi, X) \cdot \tilde{R}(Y, Z) U-\tilde{R}(R(\xi, X) Y, Z) U & -\tilde{R}(Y, R(\xi, X) Z) U \\
& -\tilde{R}(Y, Z) R(\xi, X) U=0 \tag{8.1}
\end{align*}
$$

In view of equation (2.12) above equation reduces to

$$
\begin{align*}
& \quad \text { } \tilde{R}(Y, Z, U, X) \xi-\eta(\tilde{R}(Y, Z) U) X-g(X, Y) \tilde{R}(\xi, Z) U \\
& +\eta(Y) \tilde{R}(X, Z) U-g(X, Z) \tilde{R}(Y, \xi) U+\eta(Z) \tilde{R}(Y, X) U \tag{8.2}\\
& \quad-g(X, U) \tilde{R}(Y, Z) \xi+\eta(U) \tilde{R}(Y, Z) X=0
\end{align*}
$$

By virtue of equation (3.8) above equation takes the form

$$
\begin{align*}
& \prime R(Y, Z, U, X) \xi+\{g(\phi Y, U) g(\phi Z, X)-g(\phi Z, U) g(\phi Y, X)\} \xi \\
& +\eta(U)\{g(X, Y) \eta(Z)-g(X, Z) \eta(Y)\} \xi+\eta(X)\{g(Z, U) \eta(Y) \\
& -g(Y, U) \eta(Z)\} \xi+\eta(Y)[g(\phi X, U) \phi Z-g(\phi Z, U) \phi X \\
& +\eta(U) \eta(Z) X-\eta(U) \eta(X) Z+\{g(Z, U) \eta(X)-g(X, U) \eta(Z)\} \xi] \\
& +\eta(Z)[g(\phi Y, U) \phi X-g(\phi X, U) \phi Y+\eta(U) \eta(X) Y \tag{8.3}\\
& -\eta(U) \eta(Y) X+\{g(X, U) \eta(Y)-g(Y, U) \eta(X)\} \xi] \\
& +\eta(U)[g(\phi Y, X) \phi Z-g(\phi Z, X) \phi Y+\eta(Z) \eta(X) Y \\
& -\eta(X) \eta(Y) Z+\{g(Z, X) \eta(Y)-g(Y, X) \eta(Z)\} \xi] \\
& +\eta(Y) R(X, Z) U+\eta(Z) R(Y, X) U+\eta(U) R(Y, Z) X=0 .
\end{align*}
$$

Now, taking the inner product of above equation with ξ and using equations (2.1) and (2.4), we get

$$
\begin{align*}
{ }^{\prime} R(Y, Z, U, X)= & g(\phi Z, U) g(\phi Y, X)-g(\phi Y, U) g(\phi Z, X)-\eta(U)\{g(X, Y) \eta(Z) \\
& -g(X, Z) \eta(Y)\}-\eta(X)\{g(Z, U) \eta(Y)-g(Y, U) \eta(Z)\} \tag{8.4}
\end{align*}
$$

Putting $Y=X=e_{i}$ in above equation and taking summation over i, we get

$$
S(Z, U)=g(Z, U)+(-n) \eta(Z) \eta(U) .
$$

Thus we can state as follows:
Theorem 8.1. An n-dimensional LP-Sasakian manifold admitting quarter-symmetric metric connection satisfying $R(\xi, X) \cdot \tilde{R}=0$ is an η-Einstein manifold.

References

[1] S. Sular, C. Özgür, U.C. De, Quarter-symmetric metric connection in a Kenmotsu manifold, S.U.T. J. Math. 44 (2008) 297-308.
[2] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor, N.S. 29 (1975) 249-254.
[3] A. Friedmann, J.A. Schouten, Uber die geometrie der halbsymmetrischen ubertragun, Math. Zeitschr 21 (1924) 211-233.
[4] S.C. Rastogi, On quarter-symmetric connection, C.R. Acad. Sci. Bulgar 31 (1978) 811-814.
[5] S.C. Rastogi, On quarter-symmetric metric connection, Tensor 44 (1987) 133141.
[6] R.S. Mishra, S.N. Pandey, On quarter-symmetric metric F-connection, Tensor, N.S. 34 (1980) 1-7.
[7] K. Yano, T. Imai, Quarter-symmetric metric connections and their curvature tensors, Tensor, N.S. 38 (1982) 13-18.
[8] S. Mukhopadhyay, A.K. Roy, B. Barua, Some properties of a quartersymmetric metric connection on a Riemannian manifold, Soochow J. Math. 17 (1991) 205-211.
[9] S.C. Biswas, U.C. De, Quarter-symmetric metric connection in an SPSasakian manifold, Commun. Fac. Sci. Univ. Ank. Series 46 (1997) 49-56.
[10] R.N. Singh, On quarter-symmetric connections, Vikram Mathematical J. 17 (1997) 45-54.
[11] U.C. De, A.K. Mondal, Quarter-symmetric metric connection on a Sasakian manifold, Bull. Math. Anal. Appl. 1 (2008) 99-108.
[12] U.C. De, K. De, On three dimensional Kenmotsu manifolds admitting a quarter-symmetric metric connection, Azerbaijan J. Math. 1 (2011) 132-142.
[13] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. Yamgata Univ. Nat. Sci. 12 (1989) 151-156.
[14] I. Mihai, R. Rosca, On Lorentzian P-Sasakian manifold, Classical Analysis, World Scientific Publi., Singapore, (1992) 155-169.
[15] U.C. De, K. Matsumoto, A.A. Saikh, On Lorentzian para-Sasakian manifolds, Rendiconti del seminario Mat. de Messina 3 (1999) 149-156.
[16] I. Mihai, U.C. De, A.A. Saikh, On Lorentzian para-Sasakian manifolds, Korean J. Math. Sciences 6 (1999) 1-13.
[17] A.A. Saikh, K.K. Baishya, Some results on LP-Sasakian manifolds, Bull. Math. Soc. Sci. Math. Rommanie Tome 97 (2006) 197-205.
[18] R.N. Singh, S.K. Pandey, G. Pandey, Second order parallel tensors on LPSasakian manifold, J. Int. Acad. Phys. Sci. 13 (2009) 383-388.
[19] K. Matsumoto, I. Mihai, On certain transformations in a Lorentzian paraSasakian manifold, Tensor, N.S. 47 (1988) 189-197.
[20] T. Takahashi, Sasakian ϕ-symmetric spaces, Tohoku Math. J. 29 (1977) 91113.
[21] C. Özgür, ϕ-conformally flat Lorentzian para-Sasakian manifolds, Radovi Mathematicki 12 (2003) 1-8.
(Received 24 July 2012)
(Accepted 19 February 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2014 by the Mathematical Association of Thailand. All rights reserved.

