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1 Introduction

A classical question in the theory of functional equations is that “when is it
true that a mapping which approximately satisfies on a functional equation must
be somehow close to an its exact solution. Such a problem was formulated by
Ulam in [2] and solved for the Cauchy functional equation by Hyers [3].

In [4], Rassias provided a generalization of Hyers theorem which allows the
Cauchy difference to be unbounded. Găvruta [5] extended the Hyers-Ulam sta-
bility in the spirit of Rassias approach. It gave rise to the stability theory for
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functional equations. In the case that every approximately solution of a func-
tional equation is an exact solution of it, we say that is superstable. The stability
problems of several functional equations have been extensively investigated by a
number of authors and there are many interesting results concerning this problem
(see [6–8]).

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is called a quadratic functional equation and every solution of the quadratic func-
tional equation is said to be a quadratic function. A generalized Hyers-Ulam
stability problem for the quadratic functional equation was proved by Skof [9] for
mappings f : X −→ Y , where X is a normed space and Y is a Banach space.
Cholewa [10] noticed that the theorem of Skof is still true if the relevant domain
X is replaced by an Abelian group. In [11], Czerwik established the generalized
Hyers-Ulam stability of the quadratic functional equation.

The Hyers-Ulam stability of quadratic derivations on Banach algebras was
studied in [12] for the first time. After that this is generalized to the stability and
the superstability of quadratic ∗-derivations on Banach C∗-algebras in [1].

In [13], Bodaghi et al. proved the generalized Hyers-Ulam stability and the
superstability for quadratic double centralizers and quadratic multipliers by using
the alternative fixed point (Theorem 3.1) under certain conditions on Banach
algebras. This approach also is employed to establish of the stability of ternary
quadratic derivations on ternary Banach algebras and C∗-ternary rings in [14] (for
more see [15–18]).

In this paper, we bring an example of quadratic derivations on a Banach
algebra and then we investigate their stability with directed method. We also
prove the stability and the superstability of quadratic ∗-derivations on Banach
∗-algebras.

2 Stability of Quadratic Derivations

Let A be a Banach algebra. A Banach space B which is also a left A-module
is called a left Banach A-module if there is k > 0 such that

∥a · x∥ ≤ k∥a∥∥x∥.

Similarly, a right Banach A-module and a Banach A-bimodule are defined.
Let A be a Banach algebra and B be a Banach A-bimodule. A mapping

D : A → B is called a quadratic derivation if D is a quadratic homogeneous
mapping, that is D is quadratic and L(µa) = µ2D(a) for all a ∈ A and µ ∈ C,
and D(ab) = D(a) · b2 + a2 ·D(b) for all a, b ∈ A.

First, we indicate an example of quadratic derivations on a Banach algebra.
In fact, this example is taken from [19] with the non trivial module actions while
in [19] the left module action is trivial.
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Example 2.1. Let A be a Banach algebra. Set

T :=

 0 A A
0 0 A
0 0 0

 .

Then T is a Banach algebra with the usual sum and product matrix operations
and with the following norm:∥∥∥∥∥∥

 0 a b
0 0 c
0 0 0

∥∥∥∥∥∥ = ∥a∥+ ∥b∥+ ∥c∥ (a, b, c ∈ A).

So

T ∗ =

 0 A∗ A∗

0 0 A∗

0 0 0

 ,

is the dual of T with the following norm∥∥∥∥∥∥
 0 f g

0 0 h
0 0 0

∥∥∥∥∥∥ = Max{∥f∥, ∥g∥, ∥h∥} (f, g, h ∈ A∗).

Suppose that A =

 0 a b
0 0 c
0 0 0

 ,X =

 0 x y
0 0 z
0 0 0

 ∈ T and F =

 0 f g
0 0 h
0 0 0

 ∈

T ∗ in which f, g, h ∈ A∗, a, b, c, x, y, z ∈ A. Consider the module actions of T on
T ∗ as follows:

⟨F · A,X⟩ = f(ax) + g(by) + h(cz),

⟨A · F ,X⟩ = f(xa) + g(yb) + h(zc).

Obviously, T ∗ is a Banach T -module. Let F0 =

 0 f0 g0
0 0 h0

0 0 0

 ∈ T ∗ which is

fixed. We define D : T −→ T ∗ by

D(A) = F0 · A2 − A2 · F0 (A ∈ T ).

Given A =

 0 a1 b1
0 0 c1
0 0 0

 ,B =

 0 a2 b2
0 0 c2
0 0 0

 ∈ T , we have

⟨D(A+B),X⟩ = ⟨F0 · (A+B)2 − (A+B)2 · F0,X⟩
= g0((a1 + a2)(c1 + c2)y)− g0(y(a1 + a2)(c1 + c2)). (2.1)

Similarly,

⟨D(A−B),X⟩ = g0((a1 − a2)(c1 − c2)y)− g0(y(a1 − a2)(c1 − c2)). (2.2)
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On the other hand,

⟨2D(A),X⟩ = ⟨2F0 · A2 − 2A2 · F0,X⟩ = g0(2a1c1y)− g0(2ya1c1). (2.3)

Also,

⟨2D(B),X⟩ = 2g0(a2c2y) + 2g0(ya2c2). (2.4)

If follows from (2.1)-(2.4) that

D(A+B) +D(A−B) = 2D(A) + 2D(B)

for all A,B ∈ T . This shows that D is quadratic, and thus D is a quadratic
homogeneous mapping. It is easy to check that T 3 = {0}. Therefore D(AB) =
D(A) ·B2 + A2 ·D(B) = 0 for all A,B ∈ T . Hence, D is a quadratic derivation.

It is proved in [20] that for the vector spaces X and Y and the fixed positive
integer m, the map f : X −→ Y is quadratic if and only if the following equality
holds.

2f

(
mx+my

2

)
+ 2f

(
mx−my

2

)
= m2f(x) +m2f(y),

for all x, y ∈ X. Also, we can show that f is quadratic if and only if for a fixed
positive integer m, we have

f(mx+my) + f(mx−my) = 2m2f(x) + 2m2f(y).

for all x, y ∈ X.
Throughout this section, we assume that A is a Banach algebra and B is a

Banach A-bimodule and denote

n−times︷ ︸︸ ︷
A×A× · · · ×A by An.

Theorem 2.2. Suppose that f : A −→ B is a mapping with f(0) = 0. Assume
that there exists a functions ϕ : A×A −→ [0,∞) such that

ϕ̃(a, b) :=
∞∑

n=1

1

4n
ϕ(2na, 2nb) < ∞ (2.5)

and ∥∥∥∥2f (
µa+ µb

2

)
+ 2f

(
µa− µb

2

)
− µ2f(a)− µ2f(b)

∥∥∥∥ ≤ ϕ(a, b) (2.6)

∥f(ab)− f(a) · b2 − a2 · f(b)∥ ≤ ϕ(a, b) (2.7)

for all µ ∈ T 1
n0

= {eiθ ; 0 ≤ θ ≤ 2π
n0

} and all a, b ∈ A in which n0 is a natural

number. Also, if for each fixed a ∈ A the mappings t 7→ f(ta) from R to B is
continuous, then there exists a unique quadratic derivation D : A −→ B satisfying

∥f(a)−D(a)∥ ≤ ϕ̃(a, 0) (2.8)

for all a ∈ A.
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Proof. Setting b = 0, µ = 1 and replacine a by 2a in (2.6), we get

∥∥∥∥14f(2a)− f(a)

∥∥∥∥ ≤ 1

4
ϕ(2a, 0) (2.9)

for all a ∈ A. Now, we use the Rassias’ method on inequality (2.9) to show that∥∥∥∥f(2na)4n
− f(a)

∥∥∥∥ ≤
n∑

j=1

ϕ(2ja, 0)

4j
(2.10)

for all a ∈ A and all positive integers n. We can also show that∥∥∥∥f(2n+ma)

4n+m
− f(2ma)

4m

∥∥∥∥ ≤
n+m∑

j=m+1

ϕ(2ja, 0)

4j
(2.11)

for all a ∈ A and all non-negative integers n and m with n > m. It follows from

(2.5) and (2.11) that the sequence
{

f(2na)
4n

}
is Cauchy. Due to the completness of

B, this sequence is convergent. So one can define the mapping D : A −→ B by

D(a) := lim
n→∞

f(2na)

4n
. (2.12)

Replacing 2na, 2nb by a, b, respectively (2.6) and multiplying both sides by 1
4n , we

get∥∥∥∥2D(
µa+ µb

2

)
+ 2D

(
µa− µb

2

)
− µ2D(a)− µ2D(b)

∥∥∥∥
= lim

n−→∞

1

4n

∥∥∥∥2f (
µ2n(a+ b)

2

)
+ 2f

(
µ2n(a− b)

2

)
− µ2f(2na)− µ2f(2nb)

∥∥∥∥
≤ lim

n−→∞

ϕ(2na, 2nb)

4n
= 0

for all a, b ∈ A and µ ∈ T 1
n0

. So

2D

(
µa+ µb

2

)
+ 2D

(
µa− µb

2

)
= µ2D(a) + µ2D(b) (2.13)

for all a, b ∈ A and µ ∈ T 1
n0

. Putting µ = 1 in (2.13) we have

2D

(
a+ b

2

)
+ 2D

(
a− b

2

)
= D(a) +D(b) (2.14)

for all a, b ∈ A. By [20, Proposition 1], D is a quadratic mapping, and thus by
(2.13) we can get

D(µa+ µb) +D(µa− µb) = 2µ2D(a) + 2µ2D(b) (2.15)
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for all a, b ∈ A and µ ∈ T 1
n0

. Letting b = 0 in (2.15), we get D(µa) = µ2D(a)

for all a ∈ A and µ ∈ T 1
n0

. Now, let µ ∈ T = {λ ∈ C : |λ| = 1} such that

µ = eiθ in which 0 ≤ θ < 2π. Set µ1 = e
iθ
n0 , thus µ1 belongs to T 1

n0

and

D(µa) = D(µn0
1 a) = µ2n0

1 D(a) = µ2D(a) for all a ∈ A. Then under the hypothesis
that f(ta) is continuous in t ∈ R for each fixed a ∈ A, by the same reasoning as
in the proof of [11], D(µa) = µ2D(a) for all µ ∈ R and a ∈ A. So,

D(µa) = D

(
µ

|µ|
|µ|a

)
=

µ2

|µ|2
D(|µ|a) = µ2

|µ|2
|µ|2D(a) = µ2D(a),

for all a ∈ A and µ ∈ C (µ ̸= 0). Therefore, D is a quadratic homogeneous
mapping. If we substitute a, b by 2na, 2nb respectively in (2.7) and divide both
sides by 42n we have∥∥∥∥f(22nab)42n

− f(2na)

4n
· b2 − a2 · f(2

nb)

4n

∥∥∥∥ ≤ ϕ(2na, 2nb)

42n
≤ ϕ(2na, 2nb)

4n

for all a, b ∈ A. Taking the limit as n tend to infinity, we get D(ab) = D(a)·b2+a2 ·
D(b), for all a, b ∈ A. Moreover, (2.10) and (2.12) show that the inequality (2.8)

holds. For the uniqueness of D, let D̃ : A −→ B be another quadratic derivation
satisfying (2.8). Then we have

∥D(a)− D̃(a)∥ =
1

4n
∥D(2na)− D̃(2na)∥

≤ 1

4n
(∥D(2na)− f(2na)∥+ ∥f(2na)−D′(2na)∥)

≤ 2

∞∑
j=1

1

4n+j
ϕ(2n+ja, 0) = 2

∞∑
j=n

1

4j
ϕ(2ja, 0)

which ∥D(a)− D̃(a)∥ tends to zero as n → ∞ for all a ∈ A.

Theorem 2.3. Suppose that f : A −→ B is a mapping with f(0) = 0 for which
there exists a function ϕ : A×A → [0,∞) satisfying (2.6), (2.7) and

ϕ̃(a, b) :=
∞∑
k=0

4kϕ(2−ka, 2−kb) < ∞,

for all a, b ∈ A. Also, if for each fixed a ∈ A the mappings t 7→ f(ta) from R
to B is continuous, then there exists a unique quadratic derivation D : A −→ B
satisfying

∥f(a)−D(a)∥ ≤ ϕ̃(a, 0) (2.16)

for all a ∈ A.
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Proof. Substituting a by 2a and putting b = 0, µ = 1 in (2.6), we have

∥4f(a)− f(2a)∥ ≤ ϕ(2a, 0) (2.17)

for all a ∈ A. Replacing a by a
2 in (2.17) to obtain∥∥∥4f (a
2

)
− f(a)

∥∥∥ ≤ ϕ(a, 0) (2.18)

Now, we use the triangular inequality and continue this way to get

∥∥∥4nf ( a

2n

)
− f(a)

∥∥∥ ≤
n−1∑
j=0

4jϕ
( a

2j
, 0
)

(2.19)

for all a ∈ A and all positive integers n. So, we have∥∥∥4mf
( a

2m

)
− 4m+nf

( a

2m+n

)∥∥∥ ≤
n∑

j=1

4j+mϕ
( a

2j+m
, 0
)

=

m+n−1∑
j=m

4jφ
( a

2j
, 0
)

for all a ∈ A and all non-negative integers n and m with n > m. Thus the sequence{
4nf( a

2n )
}
is Cauchy. Since B is a Banach module, this sequence convergence to

the mapping D : A −→ B, that is

D(a) := lim
n→∞

f(2na)

4n
. (2.20)

Similar to the proof of Theorem 2.2, we can obtain the desired result.

Corollary 2.4. Let δ, r be positive real numbers with r ̸= 2, and let f : A −→ B
be a mapping such that∥∥∥∥2f (

µa+ µb

2

)
+ 2f

(
µa− µb

2

)
− µ2f(a)− µ2f(b)

∥∥∥∥ ≤ δ(∥a∥r + ∥b∥r)

∥f(ab)− f(a) · b2 − a2 · f(b)∥ ≤ δ(∥a∥r + ∥b∥r)

for all µ ∈ T 1
n0

and all a, b ∈ A. Then there exists a unique quadratic derivation

D : A −→ B satisfying

∥f(a)−D(a)∥ ≤ 2rδ

|4− 2r|
∥a∥r (2.21)

for all a ∈ A.
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Proof. By assumptions, we have f(0) = 0. Now, the result follows from Theorems
2.2 and 2.3 by taking ϕ(a, b) = δ(∥a∥r + ∥b∥r) for all a, b ∈ A.

In the next corollary, we show that a quadratic derivation under which condi-
tion can be superstable.

Corollary 2.5. Let r, s, δ be non-negative real numbers with 0 < r+ s ̸= 2 and let
f : A → B be a mapping such that∥∥∥∥2f (

µa+ µb

2

)
+ 2f

(
µa− µb

2

)
− µ2f(a)− µ2f(b)

∥∥∥∥ ≤ δ(∥a∥r∥b∥s) (2.22)

∥f(ab)− f(a) · b2 − a2 · f(b)∥ ≤ δ(∥a∥r∥b∥s)

for all µ ∈ T 1
n0

and all a, b ∈ A. Then f is a quadratic derivation on A.

Proof. Putting a = b = 0 in (2.22), we get f(0) = 0. Now, if we put b = 0, µ = 1
and replace a by 2a in (2.22), then we have

f(2a) = 4f(a) (2.23)

for all a ∈ A. It is easy to see by induction that f(2na) = 4nf(a), and so

f(a) = f(2na)
4n for all a ∈ A and n ∈ N. On the other hand, if we replace a by a

2 in
(2.23), then we have f(a) = 4f(a2 ). Again, by induction we get f(a) = 4nf( a

2n ). In
both cases, it follows from Theorems 2.2 and 2.3 that f is a quadratic homogeneous
mapping. Now, by putting ϕ(a, b) = δ(∥a∥r∥b∥s) in Theorems 2.2 and 2.3, we can
obtain the desired result.

3 Stability of Quadratic ∗-Derivations

To prove the main result in this section, we need the following theorem which
has been proved by Diaz and Margolis in [21] (later an extension of the result was
given in [22]).

Theorem 3.1 (The Fixed Point Alternative). Let (Ω, d) be a complete generalized
metric space and T : Ω → Ω be a mapping with Lipschitz constant L < 1. Then,
for each element α ∈ Ω, either d(T nα, T n+1α) = ∞ for all n ≥ 0, or there exists
a natural number n0 such that:

(i) d(T nα, T n+1α) < ∞ for all n ≥ n0;

(ii) the sequence {T nα} is convergent to a fixed point β∗ of T ;

(iii) β∗ is the unique fixed point of T in the set Λ = {β ∈ Ω : d(T n0α, β) < ∞};

(iv) d(β, β∗) ≤ 1
1−Ld(β, T β) for all β ∈ Λ.
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Let A,B be Banach ∗-algebras and B be also a Banach A-module. Then we
say B is a Banach ∗-module over A. Obviously, every Banach ∗-algebra is a Banach
∗-module over itself.

Throughout this section, we assume that A,B are Banach ∗-algebras and B is
also a Banach ∗-module over A.

A quadratic derivation D : A → B is is called a quadratic ∗-derivation if D
satisfies in condition D(a∗) = D(a)∗ for all a ∈ A. This definition was introduced
in [1]. The following theorem has been proved by Jang and Park in [1, Theorem
4.2].

Theorem 3.2. Suppose that f : A → A is a mapping with f(0) = 0 for which
there exists a function φ : A4 → [0,∞) such that

ϕ̃(a, b, c, d) :=

∞∑
n=1

1

4n
ϕ(2na, 2nb, 2nc, 2nd) < ∞,

∥f(µa+ µb+ cd) + f(µa− µb+ cd)− 2µ2f(a)− 2µ2f(b)− 2f(c)d2 − 2c2f(d)∥
≤ φ(a, b, c, d),

∥f(a∗)− f(a)∗∥ ≤ φ(a, a, a, a)

for all a, b, c, d ∈ A and µ ∈ T. Also, if for each fixed a ∈ A the mappings
t 7→ f(ta) from R to A is continuous, then there exists a unique quadratic ∗-
derivation D : A −→ B satisfying

∥f(a)−D(a)∥ ≤ 1

4
ϕ̃(a, 0, 0, 0)

for all a ∈ A.

For the case f(x) = x2, we have f(α+β)+f(γ+β) = α2+2β2+γ2+2αβ+2γβ.
In the above theorem, the authors did not consider 2αβ+2γβ. On the other hand,
one can show that the quadratic ∗-derivation D in the above theorem must be
zero, and thus the result is trivial. Therefore it could be true if we divide the main
inequality into two parts: quadratic part and derivation part. In the next theorem
we wish to modify Theorem 3.2 and deduce a similar result by using Theorem 3.1.

Theorem 3.3. Let f : A → B be a continuous mapping with f(0) = 0 and let
φ : A×A → [0,∞) be a continuous function such that∥∥∥∥2f (

µa+ µb

2

)
+ 2f

(
µa− µb

2

)
− µ2f(a)− µ2f(b)

∥∥∥∥ ≤ φ(a, b) (3.1)

∥f(ab)− f(a) · b2 − a2 · f(b)∥ ≤ φ(a, b) (3.2)
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∥f(a∗)− f(a)∗∥ ≤ φ(a, a) (3.3)

for all µ ∈ T 1
n0

and a, b ∈ A. If there exists a constant k ∈ (0, 1), such that

φ(2a, 2b) ≤ 4kφ(a, b) (3.4)

for all a, b ∈ A, then there exists a unique ∗-derivation D : A → B satisfying

∥f(a)−D(a)∥ ≤ k

1− k
φ̃(a) (a ∈ A) (3.5)

where φ̃(a) = φ(a, 0).

Proof. It follows from (3.4) that

lim
j

φ(2ja, 2jb)

4j
= 0 (3.6)

for all a, b ∈ A. Putting µ = 1, b = 0 and replacing a by 2a in (3.1), we have

∥4f(a)− f(2a)∥ ≤ φ̃(2a) ≤ 4kφ̃(a) (3.7)

for all a ∈ A, and so ∥∥∥∥f(a)− 1

4
f(2a)

∥∥∥∥ ≤ kφ̃(a) (3.8)

for all a ∈ A. We consider the set Ω := {h : A → A | h(0) = 0} and introduce the
generalized metric on Ω as follows:

d(h1, h2) := inf{C ∈ (0,∞) : ∥h1(a)− h2(a)∥ ≤ Cφ̃(a), ∀a ∈ A},

if there exist such constant C, and d(h1, h2) = ∞, otherwise. One can easily show
that (Ω, d) is complete. We now define the linear mapping T : Ω → Ω by

T (h)(a) =
1

4
h(2a) (3.9)

for all a ∈ A. Given h1, h2 ∈ Ω, let C ∈ R+ be an arbitrary constant with
d(h1, h2) ≤ C, that is

∥h1(a)− h2(a)∥ ≤ Cφ̃(a) (3.10)

for all a ∈ A. Substituting a by 2a in the inequality (3.10) and using the equalities
(3.4) and (3.9), we have

∥(T h1)(a)− (T h2)(a)∥ =
1

4
∥h1(2a)− h2(2a)∥ ≤ 1

4
Cφ̃(2a) ≤ Ckφ̃(a),
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for all a ∈ A, and thus d(T h1, T h2) ≤ Ck. Therefore, we conclude that d(T h1, T h2)
≤ kd(h1, h2) for all h1, h2 ∈ Ω. It follows from (3.8) that

d(T f, f) ≤ k. (3.11)

By the part (iv) of Theorem 3.1, the sequence {T nf} converges to a unique fixed
point D : A → B in the set Ω1 = {h ∈ Ω, d(f, h) < ∞}, that is

lim
n→∞

f(2na)

4n
= D(a) (3.12)

for all a ∈ A. By Theorem 3.1 and (3.11), we have

d(f,D) ≤ d(T f, f)

1− k
≤ k

1− k
.

The above inequality shows that (3.5) holds for all a ∈ A. Replace a, b by 2na, 2nb,
respectively in (3.1). Now, dividing both sides of the resulting inequality by 2n,
and letting n goes to infinity, we obtain

2D

(
µa+ µb

2

)
+ 2D

(
µa− µb

2

)
= µ2D(a) + µ2D(b) (3.13)

for all a, b ∈ A and µ ∈ T 1
n0

. Putting µ = 1 in (3.13) we have

2D

(
a+ b

2

)
+ 2D

(
a− b

2

)
= D(a) +D(b) (3.14)

for all a, b ∈ A. By [20, Proposition 1], D is a quadratic mapping, and thus by
(3.13) we can get

D(µa+ µb) +D(µa− µb) = 2µ2D(a) + 2µ2D(b) (3.15)

for all a, b ∈ A and µ ∈ T 1
n0

. Letting b = 0 in (3.15), we getD(µa) = µ2D(a) for all

a ∈ A and µ ∈ T 1
n0

. Similar to the proof of Theorem 2.2, we have D(µa) = µ2D(a)

for all a ∈ A and µ ∈ T, and thus D is quadratic homogeneous by [13, Theorem
2.2]. If we replace a, b by 2na, 2nb respectively, in (3.2), we have∥∥∥∥f(22nab)42n

− f(2na)

4n
· b2 − a2 · f(2

nb)

4n

∥∥∥∥ ≤ φ(2na, 2nb)

42n
≤ φ(2na, 2nb)

4n

for all a, b ∈ A. Taking the limit as n tend to infinity, we get D(ab) = D(a) · b2 +
c2 · D(b), for all a, b ∈ A. Substituting a by 2na in (3.3) and then dividing the
both sides of the obtained inequality by 4n, we get∥∥∥∥f(2na∗)4n

− f(2na)∗

4n

∥∥∥∥ ≤ φ(2na, 2na)

4n
(3.16)

for all a ∈ A. Passing to the limit as n → ∞ in (3.16) and applying (3.6), we
conclude that D(a∗) = D(a)∗ for all a ∈ A. This shows that D is a quadratic
∗-derivation.
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Corollary 3.4. Let r, δ be non-negative real numbers with r < 2 and let f : A → B
be a mapping such that∥∥∥∥2f (

µa+ µb

2

)
+ 2f

(
µa− µb

2

)
− µ2f(a)− µ2f(b)

∥∥∥∥ ≤ δ(∥a∥r + ∥b∥r)

∥f(ab)− f(a) · b2 − a2 · f(b)∥ ≤ δ(∥a∥r + ∥b∥r)

∥f(a∗)− f(a)∗∥ ≤ 2δ∥a∥r

for all µ ∈ T 1
n0

and all a, b ∈ A. Then there exists a unique quadratic ∗-derivation
D : A → B satisfying

∥f(a)−D(a)∥ ≤ 2rδ

4− 2r
∥a∥r

for all a ∈ A.

Proof. The hypotheses show that f(0) = 0. The result follows from Theorem 3.3
by taking φ(a, b) = δ(∥a∥r + ∥b∥r) for all a, b ∈ A.

In the following corollary, we show that under some conditions the supersta-
bility for quadratic ∗-derivations.

Corollary 3.5. Let r, δ be non-negative real numbers with r < 1 and let f : A → B
be a mapping such that∥∥∥∥2f (

µa+ µb

2

)
+ 2f

(
µa− µb

2

)
− µ2f(a)− µ2f(b)

∥∥∥∥ ≤ δ(∥a∥r∥b∥r∥) (3.17)

∥f(ab)− f(a) · b2 − a2 · f(b)∥ ≤ δ(∥a∥r∥b∥r)

∥f(a∗)− f(a)∗∥ ≤ δ∥a∥2r

for all µ ∈ T 1
n0

and all a, b ∈ A. Then f is a quadratic ∗-derivation on A.

Proof. Putting a = b = 0 in (3.17), we get f(0) = 0. Similar to the proof
of Corollary 2.5, we can obtain the desired result from Theorem 3.3 by putting
φ(a, b) = δ(∥a∥r∥b∥r).
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