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Abstract : In this paper we give a semi-global description of what is known
as the well known Uryshon’s Lemma in classical topology. Giving up the usual
notions of open and closeness in a topological space (X,TX) where TX is a topology,
we deal with a pair (X,SX) with an arbitrary subset SX of power set P (X) of
X. Thus we deal with a semi-global character where so-called open or closed
character in such spaces treated in reference to some specific pseudo continuous
types of maps. Keeping this in note, we explore some characteristics with so-called
topological flavour in such a space (X,SX), which may be considered as some sort
of analytical description of available classical topological notion.
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1 Introduction

Here we deal with a pseudo (ps)-continuous mapping of the space (X,SX) [1]
and obtain some results upto so-called Uryshon’s Lemma (in a classical topology)
which reveals what the theorem demands in contrast to global character of the
space to carry out analogous notion of the same that we would like to mention
here as a semi-global one. The results thus obtained may be regarded that some
sort of global character is revealed through continuous embedding of such a space.
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And possibly this is the real vigour what is examined in our so-called semi-global
Uryshon’s Lemma.

We here, as far as possible, try to give-up the well known rigorous global nature
of a classical topology and would like to stick to only some semi-global analytical
approach taking into consideration of a so-called ps-continuous mapping dealing
with inverse transformation of members of SX in order to make algebraic one.

For conformity with global and local character of a continuous map, it might
not be linked with characteristically the definition of a topological space so far the
belongingness of arbitrary union of open sets is concerned.

As we do not consider here the union and intersection biased tendency as in
a topology, only in this sense, here is a deficit of space biased (position based)
notion. And this loss in particular leads us to algebraic flavour of what we are
going to discuss here.We also would like to give light on some restricted cases of
such type of pseudo space or some may call it a less topological space.

Our study may be confined (whenever necessary) on the notion of a ps-closed
set in connection with a definite pseudo-continuous map f instead of studying
available notion of closeness in case of a classical topology.

Here also we note the interesting aspect of the non-equivalence of continuity
as co-ordinate wise and continuity as a whole as discussed, in Cox and Beidleman
[2] may lead us to another dimension in such a ps structure. For the sake of
completeness we would like to cite how the example of Klein’s 4 group appears
as an example justifying the condition imposed in such structures giving a broad
viewed algebraic aspect of spaces with topological vigour.

The continuity in a topological near-ring is carried out by internal and external
compositions of a group or a near-ring group respectively. It is observed that in
case of a topological group, the binary operation is continuous in the product
space; the corresponding co-ordinate wise continuity is an obvious character in the
so-called one-sheet space. But the converse needs a hard work in the real sense
if it happens in the so-called broken two-sheets space. Of course, Beidleman and
Cox in [2] are of view that co-ordinate-wise continuity is all that is necessary in
many cases. What is stated above may be verified (at least intuitively) with the
help of the following graphs with respect to the usual topologies on R2 (that seems
to be self explanatory).
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We recall that in the definition of a topological ring, Kaplansky [3] insisted
that addition and multiplication be continuous on the product space; however,
as defined by Beidleman [2], the authors found that so-called co-ordinate wise
continuity is all that is necessary in many cases.

Some careful observation have elegantly reveals what we have attempted and
carried out with some sort of rare and alarming beauty, hitherto the so-called
continuity of such pseudo structures are concerned.

Keeping aside the concrete so-called topological aspects of what has been ex-
plained above , we here dare to review this aspect of above type of algebraic
structure from more or less algebraic point of view in a broaden court-yard with
a view to play the same game in more sophisticated country of algebra.

For the moment we leave available topological nomenclature, however insisted,
embrace some abstract familiar algebraic ways of approach. Undoubtedly every-
thing would be justified with sufficient examples if and when necessary.

1.1 Definitions and Notations

A mapping f : (X,SX) −→ (Y, SY ) is ps-continuous if for every H ∈ SY , there
exists a collection {Gα|Gα ∈ SX} such that f−1(H) =

∪
Gα. f is ps-continuous

at p ∈ X if for every H ∈ SY with f(p) ∈ H, there exists a G ∈ SX such that
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p ∈ G ⊆ f−1(H). The definition of ps-continuity is in visible difference to that of
topological continuity as f−1(H) may not be a member of SX even thoughH ∈ SX .
A subset F ⊂ Y is closed under f (denoted fpsc − closed) where f : (X,SX) −→
(Y, SY ) is a ps-continuous map if there is a collection {Gα|Gα ∈ SX} such that
f−1(H) =

∩
Gc

α. If SX is such that for every sub collection {Gα|Gα ∈ SX}, there
is an H ∈ SX such that f−1(H) =

∪
Gα, then for an fpsc− closed set F of X,

there exists an H ∈ SX such that f−1(F ) = f−1(Hc). Moreover interestingly
for a fpsc-closed set H,-the collection {Gα|Gα ∈ SX} with f−1(H) =

∩
Gc

α, need
not be unique. A subset A of X is fpsc-open if its complement Ac is fpsc-closed
though it is not far from as in classical topology, i.e. if A is fpsc-open, then
f−1(Ac) =

∩
α Hc

α with {Hα|Hα ∈ GX} which gives f−1(A) =
∪

α Hα leading to
the fact that every member of SX is fpsc-open as well as every member of Sc

X(the
collection of complement of members of SX) is fpsc-closed. De-Morgan’s and
well-behaved character of f−1 gives what we have mentioned. The union of two
fpsc-closed sets may not be again fpsc-closed which is in contrast to that of a closed
set in a topology. For fpsc-closed set F and E, f−1(F ) =

∩
α Hc

α,Hα ∈ SX and
f−1(E) =

∩
β G

c
β , Gβ ∈ SX gives f−1(F ∩E) =

∩
α

∩
β(Hα∩Gβ)

c. Since Hα∩Gβ

may not be a member of SX ; this implies that E ∩ F need not be fpsc-closed.
However the arbitrary union of fpsc-open sets is fpsc-open. An element x ∈ X is
a fpsc-limit point of A if for any fpsc-open set G containing x, (G\{x}) ∩ A ̸= ϕ.

A subset A of X together with its fpsc-limit points A
′
is the fpsc- closure of A

denoted Ā.

1.2 Discussion

Here we note some examples and observations in support of the main results.

Example 1.1. Let X = {a, b, c} and Y = {1, 2, 3} be two sets where SX =
{{a, b}, {c}, {a}}(⊆ P (X)) and SY = {{1, 2}, {1}}(⊆ P (Y )). Consider a mapping
f : (X,SX) → (Y, SY ) defined by f(a) = 1 = f(b) = f(c). Here f is ps-continuous
and for F = {2} ⊂ Y , f−1{2} = Gc

1 ∩ Gc
2, where G1 = {a, b}, G2 = {c}. Again

f−1{2} = Gc
1∩Gc

2∩Gc
3 with G3 = {a}, Gc

3 = {b, c}.Thus F = {2} is an fpsc-closed
set.

Note: The identity mapping I : (X,SX) → (X,SX) is always a ps-continuous
one. Hence the closed set of X (in the general topological notion) is Ipsc-closed in
our context.

Example 1.2. For two sets X = {a, b, c} and Y = {α, β, γ, δ} where SX =
{{a, b}}, {c}} and SY = {{α}, {β, γ, δ}}, consider f : X → Y such that f(a) =
α = f(b), f(c) = β. Here f−1{α} = {a, b}, f−1{β, γ, δ} = {c}. It is easy to see
that f is ps-continuous and also ps-continuous at every point of X.

Example 1.3. Let X = {a, b, c} and SX = {{a}, {b}, {a, b}, {a, b, c}}. Consider
a mapping f : (X,SX) → (X,SX) by f(a) = a, f(b) = b = f(c). f is not ps-
continuous as f−1{b} = {b, c}. It is seen that f is not ps-continuous at every
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point of X. As for example, at c ∈ X, f(c) = b ∈ {b}, but there exists no G ∈ SX

such that c ∈ G ⊆ f−1{b}.

Example 1.4. Let X = {a, b, c} and Y = {α, β, δ} be two sets where SX =
{{a, b}, {c}} and SY = {{α}, {β, γ, δ}}. Consider a mapping f : X → Y by
f(a) = α = f(b), f(c) = β which is ps-continuous and here {α}, {β}, {γ}, {δ, }
{α, γ}, {α, δ}, {β, γ}, {β, δ},{β, γ, δ}, etc are the fpsc−closed sets. But f−1{{α} ∪
{β}} = f−1{α}∪f−1{β} = {a, b, c}, which shows that the union of two fpsc−closed
sets may not fpsc−closed in turn.

2 Preliminaries

In the following lemmas we establish the analogous results with semi-global
treatment which are very much fundamental in classical topology. Unless otherwise
specified throughout this paper, f will mean a ps-continuous map on (X,SX).It is
trivial to note the following lemma.

Lemma 2.1. A mapping f : (X,SX) → (Y, SY ) is ps-continuous if and only if it
is ps-continuous at each point p ∈ X.

Lemma 2.2. Let A be a subset of X and A
′ ⊆ A. Then A is fpsc− closed.

Proof. For a p ∈ f−1(Ac), we get f(p) ̸∈ A which gives f(p) ̸∈ A
′
. Then there

exists an fpsc-open set Gp containing f(p) such that (Gp\f(p)) ∩ A = ϕ which
gives f(p) ∈ Gp ⊂ Ac . Thus p ∈ f−1(Gp) ⊂ f−1(Ac) giving thereby f−1(Ac) =∪

f(p)∈Gp
f−1(Gp) =

∪
f(p)∈Gp

(∪Gpα)[Gpα ∈ SX ].

Lemma 2.3. Let f : (X,SX) → (X,SX), be a ps-continuous embedding. If ∨ ⊆ X
is fpsc- closed, then V contains all its fpsc− limit points.

Proof. Let f−1(V ) =
∩

Gα∈SX
Gα and let x ∈ V /. Suppose if possible let x ̸∈ V .

Now consider H = f(∪Gα) which gives f−1(Hc) = ∩Gc
α, i.e. Hc is fpsc− closed

gives that H is fpsc− open. And x ̸∈ V = f(∩Gc
α) gives x ̸∈ f(Gc

α),∀α giving
thereby x ∈ ∪f(Gα) = H. Now H ∩ V = f(∩Gc

α) ∩ f(∪Gα) = ϕ, which gives
(H\{x} ∩ V ) = ϕ, a contradiction.

Note: A is fpsc−closed implies A
′ ⊆ A, this is linked with the so called contin-

uously embedding character of the space (X,SX), however the converse does not
demand the same.

Lemma 2.4. For any subset A of X,A = A ∪A
′
is fpsc− closed.

Proof. Let p ∈ f−1(A∪A′
)c which gives f(p) ∈ (f◦f−1)(A∪A′

)c ⊂ (A∪A′
)c giving

thereby f(p) ̸∈ A, f(p) ̸∈ A
′
. Now f(p) ̸∈ A

′
gives that there exists an fpsc−open

set G such that f(p) ∈ G and G∩A = ϕ. Now if g ∈ G and G∩A = ϕ, then g ̸∈ A
′

gives G∩A
′
= ϕ giving thereby G∩ (A∪A

′
) = ϕ. Thus G ⊂ (A∪A

′
)c which gives
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p ∈ f−1(G) ⊂ f−1(A ∪ A
′
)c giving thereby f−1(A ∪ A

′
)c =

∪
f(p)∈G(f

−1(G)) =∪
f(p)∈G (

∪
Gα), where f−1(G) =

∪
α Gα, Gα ∈ SX , i.e. (A ∪ A

′
)c is fpsc− open.

Thus A ∪A
′
is fpsc− closed.

It is yet to be verified that A may tally with the usual notion of what is known
as the closure of a set in classical topology.

It is interesting to note that the notion of closeness and that of ps-continuity
elegantly justifies the well behaved closure property in case of a continuous map
in classical topology.

Lemma 2.5. If f : X → Y is ps-continuous then for any subset A of X, f(A) ⊂
f(A).

Proof. Let x ∈ A = A ∪ A
′
. If x ∈ A, then f(x) ∈ f(A) ⊂ f(A). For otherwise,

we claim f(x) ∈ (f(A))
′
. Let G be fpsc− open in Y containing f(x) such that

G ∩ f(A) = ϕ. Now f(∪Hα) ∩ f(A) ⊆ G ∪ f(A) = ϕ where f−1(G) = ∪Hα which
gives f(Hα)∩f(A) = ϕ, for each α giving thereby f(Hα∩A) ⊂ f(Hα)∩f(A) = ϕ.
Thus (f−1 ◦ f)(Hα ∩ A) = ϕ gives Hα ∩ A = ϕ is fpsc-open. Here Hα is fpsc−
open and x ∈ Hα, a contradiction as x ∈ A

′
which gives (G\f(x)) ∩ f(A) ̸= ϕ.

Thus f(x) ∈ (f(A))
′
giving thereby f(A) ⊂ f(A).

However the converse of the above theorem does not hold. The following
example justifies elegantly our claim.

Example 2.6. Let X = {a, b, c}, SX = {{a}, {b}, {a, b}, {a, b, c}}. Define f :
(X,SX) → (X,SX) by f(a) = a, f(b) = b = f(c). Here for every subset A of X
we get f(A) ⊂ (f(A)). But f is not ps-continuous as f−1b = {b, c}.

Note: If SX is the collection of all {x}, x ∈ X, then f : (X,SX) → (X,SX) is
ps-continuous map.

3 Main Results

We here present semi-global aspect of Uryshon’s Lemma in classical topol-
ogy together with the continuity problem in broken two sheets space with some
topological vigour.

3.1 Semi-global aspects of Uryshon’s Lemma

The results of this section are revealed through the notion of countably f-
ordered character of an fpsc− Normal space together with its fc−bounded (/max-
imal) character and an f -quasi continuous map from the same.

(X,SX) is fpsc− normal if for any two disjoint fpsc− closed sets A and B,
there exist fpsc−open sets U and V such that A ⊂ U and B ⊂ V with U ∩ V = ϕ.

The following result is a characterization of fpsc-normal space.
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Theorem 3.1. Let f : (X,SX) → (X,SX) be a ps-continuous embedding. Then
the following are equivalent

(i) (X,SX) is fpsc− normal;

(ii) for any fpsc−closed set F and fpsc− open set G containing F , there exists
an fpsc−open set V such that F ⊂ V and F ⊂ G.

Proof. Assume that (X,SX) is fpsc− normal. Let F be fpsc− closed and G be
fpsc− open such that F ⊂ G. Now there exists fpsc− open sets U and V such
that F ⊂ V and Gc ⊂ U with U ∩ V = ϕ which gives V ⊂ U c giving thereby
V ⊂ U c = U c. Again V ⊂ U c ⊂ G gives F ⊂ V ⊂ G. Conversely let L and M be
two fpsc− closed sets with M ∩L = ϕ which gives L ⊂ M c. Thus fpsc− closed set
L is contained in fpsc− open M c. By hypothesis there exists an fpsc− open set V
such that L ⊂ V and V ⊂ M c giving thereby M ⊂ V c. Thus V and V c are two
fpsc−open sets with V ∩ V c = ϕ such that L ⊂ V and M ⊂ (V )c.

Example 3.2. Let X = {a, b, c, d, e, f} where SX = {{a}, {b}, {c}, {d}, {e}, {f}}
and we consider a map f : (X,SX) → (X,SX) defined by f(x) = x. Here
f−1(G) = G, for any G ∈ SX . Let E = {d, e, f} and F = {a, b, c} be two subsets
of X. Now f−1(E) = {b, c, d, e, f} ∩ {a, c, d, e, f} ∩ {a, b, d, e, f} which gives E is
fpsc− closed. Again f−1(F ) = {a, b, c, e, f} ∩ {a, c, d, e, f} ∩ {a, b, d, e, f} gives F
is fpsc− closed and E ∩ F = ϕ. Now {d, e, f} and {a, b, c} are two fpsc− open as
f−1{d, e, f} = {d} ∪ {e} ∪ {f} and f−1{a, b, c} = {a} ∪ {b} ∪ {c}. Here {d, e, f}
and {a, b, c} are disjoint fpsc− open sets containing E and F . Similarly, it is easy
to show that for any two fpsc− closed sets E and F , E ∩ F = ϕ, there exists
fpsc− open sets G1 and G2 such that E ⊆ G1 and F ⊆ G2 with G1 ∩ G2 = ϕ.
Hence (X,SX) is fpsc− normal space. [It is easy to see that for any fpsc−closed
set F contained in any fpsc−open set G, there exists an fpsc− open set V such
that F ⊂ V ⊂ V ⊂ G].

Note: Consider the mappings f : (X,SX) → (Y, SY ), g : (Y, SY ) → (Z, SZ) and
g ◦ f : (X,SX) → (Z, SZ). If f and g are ps-continuous then so is g ◦ f . Since
for every G ∈ SZ , (g ◦ f)−1(G) = (f−1 ◦ g−1)(G) = f−1(

∪
i Hi)=

∪
i f

−1(Hi) =∪
i(
∪

j Mij),Mij ∈ SX ,where Hi ∈ SY .
Let f : (X,SX) → (X,SX) an g : (X,SX) → (Y, SY ) be two mappings.

Then the mapping g is f−quasi continuous if for G ∈ SX , (f−1 ◦ g−1)(G) ⊆
∪(

∩
finite Hi),Hi ∈ SY .[f

−1 ◦ g−1 : (Y, SY ) → (X,SX)].

For crafting some separation property in an fpsc−normal space the notion of
f-quasi continuity plays an important role which is interestingly enough behind
the important characteristic of Uryson’s Lemma.

Example 3.3. Let X = {a, b, c} and Y = {1, 2, 3}, where SX = {{a, b}, {b, c}, {a},
{b}, {c}} and SY = {{1, 2}, {2}}. Consider a mapping f : (X,SX) → (Y, SY )
defined by f(a) = 1 = f(b), f(c) = 2. Then f−1{1, 2} = {a, b}∪{c} and f−1{2} =
{a} ∪ {b}. Here f is I-quasi continuous.
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Note : If g : (X,SX) → (Y, SY ) is ps-continuous map then g is I-guasi-continuous
where I : (X,SX) → (X,SX) is the identity mapping . As for G ∈ SY , (I

−1 ◦
g−1)(G) = I−1(g−1(G)) = g−1(G) =

∪
i Hi(Hi ∈ SX).

Let f : (X,SX) → (Y, SY ) be ps-continuous. Then (X,SX) is fc− bounded
(/maximal) if there exists a sub collection C ⊆ SX such that

∪
Gα∈C

f(Gα) is

maximal as least upper bound (l.u.b).
(X,SX) is countably f−ordered if for all rational numbers p,q with p < q, we

get fpsc−open sets Up and Uq such that Up ⊂ Uq.

Note: The trivial l.u.b. character of topological space (X,T ) appears as an
interesting character as what we are discussing here.

Theorem 3.4. A fpsc−normal space with f -one-one which is fc−bounded (/max-
imal) is countably f -ordered.

Proof. Let P be the set of all rational numbers in the interval [0, 1]. We define for
each p ∈ P ,an fpsc−open set Up such that for any p, q with Up ⊂ Uq. Let A,B
be two disjoint fpsc− closed sets. Now by fpsc− normality of (X,SX), we get an
fpsc− open set U0 such that A ⊂ U0 ⊂ U0 ⊂ V1(V1 = Bc). Let Pn denote the set
consists of the first n rational numbers in the sequence of all rational numbers of
[0, 1]. Suppose that Up is defined for all rational numbers p ∈ Pn satisfying the
condition Up ⊂ Uq whenever p < q.

Let r denote the next rational number in the sequence other than that in Pn.
Consider the set Pn+1 = Pn ∪ {r}. It is a finite subset of the interval [0, 1]and as
such it has a simple ordering from the usual ordering relation ‘ <′ on the real line.
Here 0 is the smallest and 1 is the largest element and r is neither 0 nor 1.

So r has an immediate predecessor P in Pn+1 an immediate successor of q in
Pn+1. The set Up and Uq are already defined and Up ⊂ Uq. Using fpsc− normality
of the space (X,SX), we can find an fpsc−open set Ur of X such that Up ⊂ Ur

and Ur ⊂ Uq. Now we extend this definition to all rational p in R defining Up with
f−1(Up) =

∪
Gα∈C

Gα, Gα ∈ SX if p > 1, f−1(Up) =
∪

α∈∧ Gα, Gα ∈ SX ,∧ = ϕ if

p < 0. Now, if p > 1, f−1(Up) =
∪

Gα∈C
Gα gives (f ◦ f−1)(Up) =

∪
Gα∈C

f(Gα)

giving thereby Up ⊃ (f ◦ f−1)(Up) = f(
∪

Gα∈C
Gα). Thus Up =

∪
Gα∈C

f(Gα).

Now for q > p > 1 we get q > 1, and so Uq =
∪

Gα∈C f(Gα). If p < 0, f−1(Up) =∪
α∈∧ Gα,∧ = ϕ. Here also Up ⊂ Uq.
Thus in a fc− bounded (/maximal) fpsc−normal space (X,SX) with an injec-

tive f , for any two rationals p, q we get Up, Uq−fpsc−open sets such that Up ⊂ Uq

whenever p < q. If we consider the collections C of all fpsc− open sets Up, define
a relation R as UpRUq if an only if Up ⊂ Uq. Then R is a partial order in C.

(1) UpRUp since Up is fpsc-closed, which gives Up = Up.

(2) UpRUq, UqRUl, gives Up ⊂ Uq, Uq ⊂ Ul giving there by Up ⊂ Uq,⊂ Uq ⊂ Ul.
Thus Up ⊂ U1.

(3) UpRUq,UqRUq, gives Up ⊂ Uq, Uq ⊂ Up and hence Up ⊂ Uq,⊂ Uq ⊂ Up

giving thereby Up = Uq = Uq = Up and so Up = Uq.
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Which is explained above is sufficient for motivation towards the countably
ordered character of the pseudo structure.

Theorem 3.5. Let (X,SX) be a countably f-ordered space. Then for any two
rationales p, q ∈ [a, b] with p < q, we get fpsc− open sets Up and Uq with Up ⊂ Uq.
Moreover there exists an f-quasi continuous map g : (X,SX) → ([a, b], S[a,b]),

S[a,b] = {(p, q)}|p, q ∈ rationals of [a, b]} such that g−1(p, q) ⊆ Uq\Up.

Proof. Since (X,SX) is a countably f -ordered space, then for each p, q; p < q we
get fpsc− open sets Up and Uq with Up ⊂ Uq. Now for each x ∈ X,we define Q(x)
to be the set of those rational numbers P such that each of the corresponding
fpsc−open sets contains x, i.e. Q(x) = {p|x ∈ Up}.Define g as g(x) = inf Q(x).
Now we show that

i) x ∈ Ur gives g(x) ≤ r.
ii) x ̸∈ Ur gives g(x) ≥ r.
i) If x ∈ Ur, then x ∈ Us for every s > r. Therefore Q(x) contains all rational

greater than r which gives g(x) = inf Q(x) ≥ r.
ii)If x ̸∈ Ur, then x is not in Us for any s < r. Therefore Q(x) contains all

rational less than r, so that g(x) = infQ(x) ≤ r.
Now g(x0) ∈ (p, q) gives g(x0) < q which gives x0 ∈ Uq and g(x0) > q gives

x0 ̸∈ Ur giving thereby x0 ∈ Uq − Up. Thus g−1(p) < x0 < g−1(q) gives x0 ∈
Uq−Up. Thus g

−1(p, q) ⊆ Uq−Up which gives (f−1 ◦g−1)(p, q) ⊆ f−1(Uq ∩U c
p) =

∪(Gα ∩Hβ), where f−1(Uq) = (∪Gα), Gα ∈ SX and f−1(U c
p) = (∩Hc

β),Hβ ∈ SX .
Hence g is f -quasi continuous function.

Now we are in a position to represent what we are intending for.

Theorem 3.6. Let (X,SX) be a fpsc− normal space which is fc-bounded (maximal
) and A and B be two disjoint fpsc−closed subsets of X with f one-one. Let [a, b]
be a closed interval in the real line. Then there exists a f -quasi continuous map
G : X → [a, b] with g(A) = a and g(B) = b.

Proof. Let A,B be two disjoint fpsc−closed sets. Therefore by fpsc−normality of
(X,SX), we have an fpsc−open set Ua such that A ⊂ Ua ⊂ Ua ⊂ Ub(Ub = Bc).
Now for any two rationals p, q ∈ [a, b], we get Up,Uq − fpsc-Open sets such that

(Up) ⊂ Uq whenever p < q [Theorem 3.4] . Then there exists an f -quasi continuous
map g : (X,SX) → ([a, b], S[a,b]), S[a,b] = {(p, q)}|p, q ∈ rationals of [a, b]} with
g(x) = inf.Q(x), Q(x) = {p|x ∈ Up} [Theorem 3.5]. If x ∈ A, then x ∈ Up for
all p ≥ a which gives g(x) = inf Q(x) = a giving thereby g(A) = a. If x ∈ B,
then x ∈ Up for no p ≤ b. Thus Q(x) consists of all rationals > b which gives
g(x) = inf Q(x) = b giving thereby g(B) = b.

Here the beauty of our result lies in the sense that the existence of such f-quasi
continuous map may happen in so many ways and thus reveals the existensive
dimension of the classical Uryson’s Lemma.
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3.2 Broken two sheets-space

In this section we deal with the case of two sided continuity and co-ordinate
wise continuity separately in terms of so-called ps-continuous map in a ps-space in
contrast to what has been dealt in Chowdhury et al. [1]. A mapping f : X×X →
X is ps-continuous if for W ∈ SX , there exists collections {Uα|Uα ∈ SX} and
{Vβ |Vβ ∈ SX} such that ∪Uα × ∪Vβ = f−1(W ). Let W ∈ SX be such that
f(a, b) ∈ W . Then f is ps- continuous at (a, b) ∈ X ×X if there exists Uα ∈ SX

and Vβ ∈ SX with a ∈ Uα and b ∈ Vβ such that (a, b) ∈ Uα × Vβ ⊂ f−1(W ).
Now we claim what we intend to get regarding two sided and asymmetric

continuity, in terms of so-called ps-continuous maps fromX×X → X andX → X.
If (G,+) is a topological group, A is a binary operation and T is a topology

such that A : G×G → G is continuous at (a, b),then the maps aA : G → G where

aA(x) = a + x and Ab : G → G where Ab(x) = x + b for all x ∈ G are both
topologically continuous at b and a respectively. But the converse may not true.
In other words if aA and Ab are both T-continuous then A : G×G → G need not
be continuous as it follows from what have been explained below.

It is obvious that if f is a ps-continuous map from X × X → X at a point
say (a, b) ∈ X ×X, then the mappings af : X → X and fb : X → X defined by

af(x) = f(a, x) and fb(x) = f(x, b) are ps-continuous from X → X at b and a
respectively.

At first, it is noticed that the converse of the above appears as false at least
when SX is a topology.

In each of the following examples we observe some characteristics of the binary
operation of a group with respect to the respective subclasses of the power set of
the group.

Example 3.7. In the symmetric group (SS3 ,+) [4, p. 339], let SS3 = {{a, c}, {b, c},
{x, y}}. Here for {x, y}(∈ SS3) containing y(= a + b) we have {b, c}(∈ SS3)
containing b and {a, c}(∈ SS3) containing a such that a + {b, c} = {x, y} and
{a, c}+ b ⊂ {x, y}, but {a, c}+ {b, c}(= {0, x, y} ̸⊂ {x, y}.

Example 3.8. In the group (Z8,+) [4, p. 342] consider SZ8 = {{2, 3}, {2, 4},
{, 6, 7}}. Now for {5, 6, 7}(∈ SZ8) containing 7(= 3+4), there exists {2, 4}(∈ SZ8)
containing 4 such that 3+{2, 4}(= {5, 7}) ⊂ {5, 6, 7}, and also there exist {2, 3}(∈
SZ8) containing 3 such that {2, 3}+{2, 4}(= {6, 7}) ⊂ {5, 6, 7} but {2, 3}+{2, 4}(=
{4, 5, 6, 7}) ̸⊂ {5, 6, 7}.

Theorem 3.9. If a mapping f : X ×X → X satisfies the conditions

a) For some e(∈ X), f(e, x) = x = f(x, e).

b) f(x, f(y, z)) = f(f(x, y), z), for all x, y, z,∈ X along with the following
conditions at (a, b) ∈ X ×X.

i) For any V (∈ SX) containing e, we have af(V ), fb(V ) ∈ SX .

ii) f is ps-continuous at (e, e).
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iii) fb is ps-continuous at e.

iv) af is ps-continuous at b then f is ps-continuous at (a, b).

Proof. For any W ∈ SX containing f(a, b) =a f(b), we get by (iv) a member
V ∈ SX with b ∈ V such that b ∈ V ⊂a f−1(W ). Then there exists an U ∈ SX

containing e such that e ∈ U ⊂ f−1
b (V ) [by (a) and (iii)]. Now we get an A×B ∈

SX × SX containing (e, e) such that (e, e) ∈ A × B ⊂ f−1(U) [by (a) and (ii)]
which gives that f(e, e) ∈ f(A × B) ⊂ f ◦ f−1(U). Finally (i) and (b) gives that
f(a, b) ∈ f(af(A)× fb(B)) = f(f({a}×A)× f(B×{b})) = f({a}× f(A× f(B×
{b}))) = f({a} × f(f(A×B)× {b})) ⊆ f({a} × f(U × {b})) = f({a} × fb(U)) ⊂
f({a} × V )) =a f(V ) ⊆ W . Therefore for f(a, b) ∈ W,a f(A)× fb(B) ∈ SX × SX

such that (a, b) ∈a f(A)×fb(B) ⊆ f−1(W ). Hence f is ps-continuous at (a, b).

Theorem 3.10. If the two mapping f : X × X → X and g : X × Y → Y
where X is equipped with a binary operation having an identity e (which is also a
scalar multiplicative identity with respect to Y ) and g(f(m,n), y) = g(n, g(m, y))
for all m,n ∈ X and y ∈ Y satisfying the following conditions (called a two sided
S-system) at (x, y) ∈ X × Y .

(i) for any V (∈ SX) containing e we have xf(V ) ∈ SX , gy(V )(∈ SY ).

(ii) f is ps-continuous at (e, e).

(iii) gy is ps-continuous at e.

(iv) xg is ps-continuous at y then g is ps-continuous at (x, y).

Proof. For any W ∈ Sy containing g(x, y) =x g(y), we get by (iv) a V ∈ SY

with y ∈ V such that y ∈ V ⊂x g−1(W ). Again for e being a scalar multi-
plicative identity with respect to y, we get an U with e ∈ U ⊂ g−1

y (V ). Thus
we get A × B ∈ SX × SX containing (e, e) such that (e, e) ∈ A × B ⊂ f−1(U)
[by (i) and (b)]. Finally (a) and (ii) gives that g(x, y) ∈ g(xf(A) × gy(B)) =
g(f({x}×A)× g(B×{y})) = g({x}× g(A× g(B×{y}))) = g({x}× g(f(A×B)×
{y})) ⊆ g({x} × g(U × {y})) = g({x} × gy(U)) ⊂ g({x} × V ) =x g(V ) ⊆ W .
Therefore for g(x, y) ∈ W there exists xg(A) × gy(B) ∈ SX × SX such that
(x, y) ∈x g(A) × gy(B) ⊆ g−1(W ). Hence g is ps-continuous at (x, y). We
here present some examples in support of what has been stated above. Let
E = {0, a, b, c} be the Klein’s 4- group [4, p. 339] and consider the mappings
on E defined by the following table:

f0 0 0 0 0
f1 0 a b c
f2 0 a b 0
f3 0 0 b 0
f4 0 a 0 0
f5 0 0 b c
f6 0 0 0 c
f7 0 a 0 c
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f8 0 b 0 0
f9 0 c 0 0
f10 0 c b 0
f11 0 b b 0
f12 0 c b c
f13 0 b b c
f14 0 b 0 c
f15 0 c 0 c

It follows that N = {f0, f1, . . . , f15} is right near-ring with unity f1 with respect
to the following operations: (f + g)(x) = f(x) + g(x) and (f · g)(x) = f(g(x)) for
all f, g ∈ N, x ∈ E. Here we observe the near-ring group structure of E over N
with respect to the operation N × E → E, (fp, e) → fp(e).

Example 3.11. Consider SN = {{f9}, {f10}, {f9, f10}} and SE = {{a}, {b}, {c},
{a, b}, {b, c}}. Here for {b, c}(∈ SE) containing c(= f10(a)), we have {a, b}(∈ SE)
containing a(∈ E) and {f9, f10}(∈ SN ) containing f10 such that f10({a, b}) =
{b, c} and {f9, f10}{a}(= {c}) ⊂ {b, c} but {f9, f10}{a, b}(= {0, b, c}) ̸⊂ {b, c}.

Example 3.12. Consider SN = {{f8}, {f12}, {f8, f12}} and SE = {{a, b}{b, c}}.
Here for {b, c}(∈ SE) containing c(= f12(a)) we have {a, b}(∈ SE) containing
a(∈ E) and {f8, f12}(∈ SN ) containing f12(∈ N) such that {f12({a, b}) = {b, c}
and {f8, f12}{a} = {b, c} but {f8, f12}{a, b}(= {0, b, c}) ̸⊂ {b, c}.

Example 3.13. Consider SN = {{f9}, {f10}, {f10, f1}, {f9, f10}, {f1, f4}} and
SE = {{a, b}, {b, c}}. Here we note that f10{f1, f4}(= {f9, f10})(∈ SN ) but
{f1f4}{a}(= {a}) ̸∈ SE ; {f1, f4}{f1, f4} = {f1, f4}; for {a, b}(∈ SE) containing
a(= f1(a)) there exists {f1, f4}(∈ SN ) containing f1 such that {f1, f4}{a}(= {a} ⊂
{a, b}), also for (b, c)(∈ SE) containing c(= f10(a)), we get f10, ({a, b})(= {b, c}
but {f9f10}{a, b}(= {0, b, c}) ̸⊂ {b, c}.

Example 3.14. Consider SN = {{f1, f8}, {f8, f12}} and SE = {{a, b}, {b, c}.
Here we note that f12{f1, f8}(= {f8, f12})(∈ SN ) but {f1, f8}{a}(= {a, b}) ∈ SE.
Now for any W (∈ SN ) containing f1(= f1, f1), we get no U, V (∈ SN ) containing
f1 such that UV ⊆ W . Again for {a, b}(∈ SE) containing a(= f1(a)), there exist
{f1, f8}(∈ SN ) containing f1 such that {f1, f8}{a}(= {a, b}. And we have for
{b, c}(∈ SE) containing c(= f12(a)), there exists {a, b}(∈ SE) containing a such
that f12({a, b}) = {b, c} but {f8, f12}{a, b}(= {0, b, c}) ̸⊂ {b, c}.

Example 3.15. SN = {{f1, f12}, {f7, f15}} and SE = {{a, c}, {0, a, b}}, it is seen
here that f7{f1, f12}(= {f7, f15}) ∈ SN , {f1, f12}{a}(= {a, c}) ∈ SE;
{f1, f12}{1, f12} = {f4, f12}; for {0, a, b}(∈ SE) containing a(= f1(a)), there exists
no V (∈ (SN ) containing f1 such that V a ⊂ {0, a, b}. Again for {a, c}, {0, a, b}(∈
SE) containing a(= f7(a)), we get f7({a, c}))(= {a, c}) and f7({0, a, b})(= {0, a}) ⊂
{0, a, b} but {f7, f15}{a, c} = {a, c}, {f7, f15}{0, a, b}(= {0, a, c}) ̸⊂ {0, a, b}.
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It can be seen in the above examples that if f is the binary operation (multi-
plication) on the near-ring N and g is the scalar multiplication on the N -group E
defined as in Theorems 3.9 and 3.10 above, the condition (i), (iii) does not hold
good in some of the examples. Thus all these justify that we have evaluated.
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