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Abstract : This paper concerns the numerical solution of one variable nonlinear
equations. Some four-point four-step iterative schemes are given. The new meth-
ods are attained by a simple but powerful approximation of the first derivative of
the function in the fourth step of our cycle, where the first three steps are any
of the optimal derivative-involved eighth-order methods. Analytical proof of the
main theorem is given to clarify the fourteenth-order convergence. The extension
of one high-order method for multiple zeros will be given as well. A hybrid algo-
rithm has also been proposed to extract all the real zeros of nonlinear functions in a
given interval. Finally, we furnish numerical comparisons to attest the theoretical
results and the fast rate of convergence.
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1 Introduction

Assume that f : I ⊆ R → R is sufficiently smooth and α ∈ I is its simple
zero. There are many high order iterative solvers in the literature. Almost all of
them have some drawbacks and strong points. Some include derivative to proceed
which called derivative-involved schemes [1] and some not; namely derivative-free
methods [2]. In this situation, the measure of efficiency index in comparison of
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different multi-point schemes have totally been using in the literature. A multi-
point scheme without memory [3] for solving nonlinear scalar equations possesses
the efficiency index n

√
p, where p is the convergence rate and n is the number of

(functional) evaluations per full iteration.

This paper studies a new class of four-step four-point methods for solving
nonlinear equations. The class is derived from a well-done approximation of the
first derivative of the function in the fourth step of a four-step cycle, at which the
first three steps are any of the optimal derivative-involved eighth-order iterative
methods. Per full cycle, the class adds only one more evaluation of the function to
increase the order of convergence from eight to fourteen in contrast to the optimal
eighth-order methods. As a result, the efficiency index of the class comes up from
1.68 to 1.69, to also ensure the users for its implementation.

In what follows, first in Section 2 a brief review on some of the common high-
order methods in the literature is given. This section is followed by Section 3,
whereas the main contribution is provided to boost up the convergence rate and
the efficiency index of the existing eighth-order methods. Section 4 illustrates the
accuracy of the new obtained four-point fourteenth-order methods by solving and
comparing some nonlinear test functions. Section 5 will remind the well-known
interval Newton’s method as a tool for extracting initial approximations for the
real zeros. Finally in Section 6, the conclusions will be drawn.

2 Pointers to the literature

Khattri and Abbasbandy in [4] presented a fourth-order scheme including two
derivative- and one function-evaluation per cycle with one free parameter (a ∈ R)
as comes next:

yn = xn − 2
3

f(xn)
f ′(xn)

,

xn+1 = xn −
[
1 +

(
21
8 − a

) ( f ′(yn)
f ′(xn)

)1

+
(
−9

2 − 3a
) ( f ′(yn)

f ′(xn)

)2

+
(
15
8 − 3a

) ( f ′(yn)
f ′(xn)

)3

+ a
(

f ′(yn)
f ′(xn)

)4
]

f(xn)
f ′(xn)

.

(2.1)

This technique has 1.58 as its efficiency index. Soleymani in [5] proposed a
sixth-order variant of Jarratt method using four evaluations per iteration to reach
the efficiency index 1.56, which is useful when the initial guesses are in the vicinity
of the zeros but not so close

yn = xn − 2
3

f(xn)
f ′(xn)

,

zn = xn − 3f ′(yn)+f ′(xn)
6f ′(yn)−2f ′(xn)

f(xn)
f ′(xn)

,

xn+1 = zn − f(zn)
f ′(yn)+2f [zn,xn,xn](zn−yn)

.

(2.2)

Cordero et al. [6] investigated a seventh-order technique consisting of four-
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evaluation per iteration to reach the index of efficiency 1.62 as follows
yn = xn − f(xn)

f ′(xn)
,

zn = xn + f(xn)+f(yn)
f ′(xn)

− 2 f(xn)
f ′(xn)

f(xn)
f(xn)−f(yn)

,

xn+1 = zn − f(zn)
f [zn,yn]+f [zn,xn,xn](zn−yn)

.

(2.3)

Liu and Wang [7] suggested some optimal eighth-order methods using four
evaluations per full cycle (β1, β2 ∈ R) in what follows

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(yn)
f ′(xn)

4f(xn)−f(yn)
4f(xn)−9f(yn)

,

xn+1 = zn − f(zn)
f ′(xn)

[
8f(yn)

4f(xn)−11f(yn)
+
(
1 + f(zn)

3f(yn)−β1f(zn)

)3

+ 4f(zn)
f(xn)+β2f(zn)

]
,

(2.4)
where the efficiency index is 1.68. [7] also suggested the following three-step
approach (α1, α2 ∈ R) with the same number of evaluations and efficiency index

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(yn)
f ′(xn)

f(xn)
f(xn)−2f(yn)

,

xn+1 = zn − f(zn)
f ′(xn)

[(
f(xn)−f(yn)
f(xn)−2f(yn)

)2

+ f(zn)
f(yn)−α1f(zn)

+ 4f(zn)
f(xn)+α2f(zn)

]
.

(2.5)
Wang and Liu in [8] applied the method of weight functions to produce other

eighth-order schemes (α ∈ R) as follows
yn = xn − f(xn)

f ′(xn)
,

zn = xn − f(xn)
f ′(xn)

f(xn)−f(yn)
f(xn)−2f(yn)

,

xn+1 = zn − f(zn)
f ′(xn)

[
1 + 4f(zn)

f(xn)−αf(zn)

] [
f(xn)

2

f(xn)2−2f(xn)f(yn)−f(yn)2
+ f(zn)

f(yn)

]
,

(2.6)
and 

yn = xn − f(xn)
f ′(xn)

,

zn = xn − f(xn)
f ′(xn)

4f(xn)
2−5f(xn)f(yn)−f(yn)

2

4f(xn)2−9f(xn)f(yn)
,

xn+1 = zn − f(zn)
f ′(xn)

[
1 + 4 f(zn)

f(xn)

] [
8f(yn)

4f(xn)−11f(yn)
+ 1 + f(zn)

f(yn)

]
,

(2.7)

where the efficiency index is 1.68.
In such a situation, the concept of optimality, which was given by Kung-Traub

in [9] for without memory methods is taken into account. To obtain a better
background on iterative methods in zero-finding, we refer the readers to the works
[10–13].
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3 A new class of fourteenth-order methods

In this section, we give our main contribution by providing a novel class of
iterative methods, which possesses the fourteenth-order convergence and 1.69 as
the efficiency index. We fulfill our aim by taking an especial look at the computa-
tional complexity as well. The existing eighth-order methods have high complexity
themselves, therefore for obtaining new schemes with better efficiency index and
convergence rate, we should avoid providing more complexity to the techniques.
This also ensures the users to apply such obtained techniques from the class as
easier as possible. To achieve such a goal, we assume the following structure

any optimal 8th-order method=

 f(xn) and f ′(xn) are available,
f(yn) is available,
f(zn) is available,

xn+1 = wn − f(wn)
f ′(wn)

.

(3.1)

Note that we consider, yn, zn and, wn as the outlets of the first, second and
third sub-steps, respectively. It is clear that (3.1) is a sixteenth-order method with
six evaluations per full iteration and reach the 1.58 as its efficiency index. Now the
main challenge is to approximate f ′(wn) as effectively as possible to achieve our
goal, i.e. first the order goes up, second the efficiency index increases in contrast to
the optimal eighth-order methods, and third no more computational burden has
been applied to the attained techniques. Toward this aim, although we have five
known data, namely f(xn), f

′(xn), f(yn), f(zn) and f(wn), we only use the last
three values of the function in the second, third and fourth steps of our cycle. We
do this intentionally to reduce the computational load of the attained class only.
Thus, for estimating f ′(wn), we consider the following rational linear function

p(t) = f(y) +
a+ (t− y)

b(t− y) + c
, (3.2)

whence its derivative is in the following form p′(t) = (c− ab)/(b(t− y)+ c)2. (3.2)
is inspired by Pade approximant. The Pade approximant is a rational function
that can be viewed of as a generalization of the Taylor expansion. A rational func-
tion is the ratio of polynomials. Because these functions only use the elementary
arithmetic operations, they are so easy to evaluate numerically. At this moment,
the three unknown coefficients could be attained by substituting the known values
in (3.2). That is, by satisfying p(t)|yn = f(yn), p(t)|zn = f(zn), p(t)|wn = f(wn),
first we obtain that a = 0 and subsequently, we have{

b(wn − yn) + c = 1
f [yn,wn]

,

b(zn − yn) + c = 1
f [yn,zn]

,
(3.3)

where f [yn, wn] and f [yn, zn] are divided differences. Solving this easy problem
gives us  b = 1

wn−zn

(
1

f [yn,wn]
− 1

f [yn,zn]

)
,

c = 1
wn−zn

(
yn−zn

f [yn,wn]
− yn−wn

f [yn,zn]

)
.

(3.4)
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Now by substituting the known relations for the unknown parameters in the

derivative form of (3.2), we obtain by simplifying f ′(wn) ≈ f [yn,wn]f [zn,wn]
f [yn,zn]

. Using

this approximation and (3.1), we obtain the following four-step class
any optimal 8th-order method=

 f(xn) and f ′(xn) are available,
f(yn) is available,
f(zn) is available,

xn+1 = wn − f [yn,zn]f(wn)
f [yn,wn]f [zn,wn]

.

(3.5)

Applying (2.6) in the first three steps of (3.5) leads to the following four-
step technique, which possesses the fourteenth-order convergence and 1.69 as the
efficiency index

yn = xn − f(xn)
f ′(xn)

,

zn = xn − f(xn)
f ′(xn)

f(xn)−f(yn)
f(xn)−2f(yn)

,

wn = zn − f(zn)
f ′(xn)

[
1 + 4f(zn)

f(xn)

] [
f(xn)

2

f(xn)2−2f(xn)f(yn)−f(yn)2
+ f(zn)

f(yn)

]
,

xn+1 = wn − f [yn,zn]f(wn)
f [yn,wn]f [zn,wn]

.

(3.6)

Theorem 3.1. Let α be a simple root of the sufficiently differentiable function f in
an open interval I. If x0 is sufficiently close to α, then (3.6) is of fourteenth-order
and satisfies the error equation

en+1 = (c32 − c2c3)
3(4c42 − 7c22c3 + c23 + c2c4)e

14
n +O(e15n ), (3.7)

where en = xn − α, and cj =
1
j!

f(j)(α)
f ′(α) , j ≥ 2.

Proof. We provide the Taylor expansion of any terms involved in (3.6). By Taylor
expanding around the simple root in the nth iterate, we have f(xn) = f ′(α)[en +
c2e

2
n+c3e

3
n+c4e

4
n+c5e

5
n+ · · ·+O(e15n )] and also f ′(xn) = f ′(α)[1+2c2en+3c3e

2
n+

4c4e
3
n + 5c5e

4
n + · · · + O(e14n )]. Using these expansions and the first step of (3.6),

we have

yn − α = c2e
2
n + (−2c22 + 2c3)e

3
n + · · ·+O(e15n ). (3.8)

We know that the first three steps are of optimal eighth-order. Taylor expansion
in the second step of (3.6) by applying (3.8) yields in

zn − α = (c32 − c2c3)e
4
n − 2(2c42 − 4c22c3 + c23 + c2c4)e

5
n + · · ·+O(e15n ). (3.9)

Note that to cut a long story short, for such a high order expansion, we here only
write the 1st or 2nd terms of the error equations and the other terms are denoted
by three dots. (3.9) shows that the order is 4 up to the second step. By taking
into consideration (3.9) and the third step of (3.6), we attain

wn − α = c2(c
2
2 − c3)(4c

4
2 − 7c22c3 + c23 + c2c4)e

8
n + · · ·+O(e15n ). (3.10)



318 Thai J. Math. 12 (2014)/ F. Soleymani

At this time the Taylor expansion of f(wn) around the simple root in the n-th
iterate of (3.6) is required. Therefore, we write

f(wn) = c2(c
2
2 − c3)(4c

4
2 − 7c22c3 + c23 + c2c4)f

′(α)e8n + · · ·+O(e15n ). (3.11)

Subsequently, by applying (3.11) in the last step of (3.6), we have

f [yn, zn]f(wn)

f [yn, wn]f [zn, wn]
= c2(c

2
2 − c3)(4c

4
2 − 7c22c3 + c23 + c2c4)e

8
n + · · ·+O(e15n ). (3.12)

Now by considering (3.12) in the last step of (3.6), we get that the error equation
(3.7), which manifests that (3.6) reaches the fourteenth-order convergence using
five evaluations per full cycle. This completes the proof.

Remark 3.2. Each method of the class reaches the efficiency index 5
√
14 ≈ 1.69,

which is greater than 3
√
4 ≈ 1.58 of optimal fourth-order techniques’, 4

√
6 ≈ 1.56 of

(2.2)’, 4
√
7 ≈ 1.62 (2.3)’ and 4

√
8 ≈ 1.68 of optimal eighth-order techniques’.

Remark 3.3. The introduced approximation of the function in the fourth-step of
our cycle can be applied on any optimal eighth-order derivative-involved technique
to increase the convergence rate from eight to fourteen and also the efficiency index
from 1.68 to 1.69. Hence, the class of methods is efficient, though the optimality
conjecture of Kung-Traub is lost. For example, applying (2.5) in (3.5) leads us to

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(yn)
f ′(xn)

f(xn)
f(xn)−2f(yn)

,

wn = zn − f(zn)
f ′(xn)

[(
f(xn)−f(yn)
f(xn)−2f(yn)

)2

+ f(zn)
f(yn)

+ 4f(zn)
f(xn)

]
,

xn+1 = wn − f [yn,zn]f(wn)
f [yn,wn]f [zn,wn]

,

(3.13)

where satisfies the following error equation

en+1 = (c32 − c2c3)
3(13c42 − 15c22c3 + c23 + c2c4)e

14
n +O(e15n ). (3.14)

Remark 3.4. The introduced estimation, i.e. f ′(wn) ≈ (f [yn, wn]f [zn, wn])
/f [yn, zn], is simple to implement and does not add much computational burden to
the class. To discuss more, from the very beginning we wished to construct a class
of higher order methods with better efficiency index than the optimal three-point
eighth-order methods, which also does not contain high computational amount. The
new iterations carry out less computational complexity than the optimal sixteenth-
order methods’ in [14] and [15].

Note that in general and by using a similar Taylor expansion, it would be easy
to deduce the following theorem regarding the fourteenth order of convergence for
the general class (3.5).
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Theorem 3.5. With the same assumptions as in Theorem 3.1 and if the asymp-
totic error constant of the optimal derivative-involved method (in the first three
sub-steps of (3.5)) is denoted by AEC(8), then any method from the new class
(3.5) satisfies the error equation

en+1 = (c32 − c2c3)
2AEC(8)e14n +O(e15n ). (3.15)

In case of having multiple zeros for nonlinear functions, the procedure is some-
how similar. By applying a transformation on the given function, one may first
transform the multiple zero into a simple one. This procedure would add one more
derivative evaluation at least automatically.

To illustrate further, we consider the transformation h(x) := f(x)/f ′(x), which
was attributed (somehow) to [3]. Now by implementing the fourteenth-order iter-
ative method (3.13) on the transformation h(x), we can easily extend it for dealing
with multiple roots, when high precision computing alongside high order is needed.

By considering ϑn = (f(yn)f
′(xn)−f(xn)f

′(yn))
2

(−2f(yn)f ′(xn)+f(xn)f ′(yn))2
+ f(zn)(4f(yn)f

′(xn)+f(xn)f
′(yn))

f(xn)f(yn)f ′(zn)
, we

obtain 

yn = xn + f(xn)f
′(xn)

−f ′(xn)2+f(xn)f ′′(xn)
,

zn = yn + f(xn)f(yn)f
′(xn)

2

(2f(yn)f ′(xn)−f(xn)f ′(yn))(f ′(xn)2−f(xn)f ′′(xn))
,

wn = zn − f(zn)ϑn

f ′(zn)
(
1− f(xn)f′′(xn)

f′(xn)2

) ,
xn+1 = wn − h[yn,zn]f(wn)

h[yn,wn]h[zn,wn]f ′(wn)
,

(3.16)

wherein 
h[yn, zn] =

f(yn)

f′(yn)
− f(zn)

f′(zn)

yn−zn
,

h[yn, wn] =
− f(wn)

f′(wn)
+

f(yn)

f′(yn)

−wn+yn
,

h[zn, wn] =
− f(wn)

f′(wn)
+

f(zn)

f′(zn)

−wn+zn
.

(3.17)

Therefore, now we have an efficient method (3.16) of order fourteen for finding

the multiple roots. The classical efficiency index of (3.16) is 14
1
9 ≈ 1.340, which is

better than the multiple version of Newton’s scheme, i.e. 2
1
3 ≈ 1.259. For further

readings, we refer the readers to [16–18].

4 Numerical comparisons

The reliability of the proposed class is tested in this section by comparing with
an existing high order technique. We here remark that, Neta in [19] suggested a
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four-step method in the following form with fourteenth-order convergence rate

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(xn)+Af(yn)
f(xn)+(A−2)f(yn)

f(yn)
f ′(xn)

, A ∈ R

wn = zn − f(xn)−f(yn)
f(xn)−3f(yn)

f(zn)
f ′(xn)

,

xn+1 = xn − f(xn)
f ′(xn)

+ θ1f
2(xn) + θ2f

3(xn) + θ3f
4(xn),

(4.1)

wherein θ3 = ∆1−∆2

Fw−Fy
, θ2 = −∆1 + θ3(Fw + Fz), θ1 = φw + θ2Fw − θ3F

2
w with

∆1 = φw−φz

Fw−Fz
, ∆2 =

φy−φz

Fy−Fz
, and
φw = 1

Fw

(
wn−xn

Fw
− 1

f ′(xn)

)
,

φy = 1
Fy

(
yn−xn

Fy
− 1

f ′(xn)

)
,

φz = 1
Fz

(
zn−xn

Fz
− 1

f ′(xn)

)
,

(4.2)

with Fw = f(wn)− f(xn), Fy = f(yn)− f(xn), and Fz = f(zn)− f(xn).
The test nonlinear functions are displayed in Table 1. The results of com-

parisons are given in Table 2. We used 4000 digits floating point arithmetic in
the calculations. Notice that using high arithmetic that allows us to dynamically
define the number of necessary digits for the computations, is relevant. Each test
function is computed for two initial guesses. As Table 2 manifests, our methods
of the class are efficient and accurate. In order to investigate the behavior of the
new proposed methods, we present a comparison with fourteenth-order method of
Neta (4.1) with A = 0. (3.6) is almost the best scheme in the numerical reports.

Table 1. Test Functions and their zeros.
Test Functions Zeros

f1 = ex
2+7x−30 − 1 3

f2 = xex
2 − (sinx)2 + 3 cosx+ 5 −1.207647827130918927 . . .

f3 = x3 − 10 2.1544346900318837218 . . .
f4 = (sinx)2 − x2 + 1 1.404491648215341226 . . .

f5 = 10xe−x2 − 1 1.679630610428449940 . . .
f6 = (x− 1)3 − 2 2.2599210498948731648 . . .

5 Interval Newton method in Mathematica

Let f ′(x) be an inclusion monotonic interval extension of f ′(x) and consider
the algorithm

x(k+1) = x(k) ∩N(x(k)), (k = 0,1,2, . . .), (5.1)

where

N(x) = mid(x)− f(mid(x))

f ′(x)
. (5.2)
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This is well-known as interval Newton method [20].

Theorem 5.1 (See [20]). If an interval x(0) contains a zero x∗ of f(x), then so
does x(k) for all k = 0, 1, 2, . . ., defined by (5.1). Furthermore, the intervals x(k)

form a nested sequence converging to x∗ if 0 ̸∈ f ′(x(0)).

The interval Newton method is asymptotically error squaring. Although there
are only some countable works in the literature for finding all the zeros of nonlinear
functions in an interval, see e.g. [21–23], the interval schemes along with the use
of the programming package Mathematica [24], provide a framework for such a
purpose.

Keiper in [25] successfully coded the interval Newton method (5.2) in Math-
ematica. In what follows, we present that code with some changes in order to
provide enough accurate initial guesses for all the real zeros in an interval and
then use the new 14th-order scheme for increasing their accuracies up, when high
precision computing is required.

The first piece of the code could be written as follows:

Table 2. Results of comparisons for different 14th-order methods.
Iterative methods (4.1) (3.6) (3.13)
f1, x0 = 0.5
|f1(x2)| 0.4 0.1e-1 0.1
|f1(x3)| 0.1e-10 0.2e-30 0.3e-18
f1, x0 = 2.95
|f1(x2)| 0.3e-97 0.1e-118 0.3e-92
|f1(x3)| 0.4e-1368 0.3e-1669 0.7e-1299
f2, x0 = −2
|f2(x2)| 0.4e-14 0.8e-28 0.2e-19
|f2(x3)| 0.8e-218 0.4e-410 0.1e-290
f2, x0 = −1
|f2(x2)| 0.1e-132 0.1e-160 0.4e-141
|f2(x3)| 0.8e-1876 0.7e-2270 0.8e-1997
f3, x0 = 4.5
|f3(x2)| 0.5e-50 0.5e-42 0.1e-37
|f3(x3)| 0.2e-722 0.3e-611 0.5e-550
f3, x0 = 1.5
|f3(x2)| 0.2e-75 0.4e-82 0.5e-65
|f3(x3)| 0.5e-1078 0.3e-1172 0.1e-732
f4, x0 = 2.8
|f4(x2)| 0.3e-47 0.2e-49 0.1e-46
|f4(x3)| 0.3e-671 0.8e-700 0.8e-661
f4, x0 = 1.1
|f4(x2)| 0.1e-94 0.5e-99 0.1e-84
|f4(x3)| 0.8e-1335 0.1e-1395 0.9e-1195
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Iterative methods (4.1) (3.6) (3.13)
f5, x0 = 2
|f5(x2)| 0.6e-71 0.7e-74 0.2e-58
|f5(x3)| 0.1e-1002 0.2e-1043 0.4e-895
f5, x0 = 1.1
|f5(x2)| 0.4e-86 0.1e-86 0.3e-84
|f5(x3)| 0.8e-1215 0.7e-1220 0.1e-1187
f6, x0 = 3.4
|f6(x2)| 0.2e-61 0.2e-51 0.2e-46
|f6(x3)| 0.6e-872 0.6e-732 0.1e-661
f6, x0 = 2.2
|f6(x2)| 0.5e-254 0.8e-260 0.2e-249
|f6(x3)| 0 0 0

intervalnewton::rec = "MaxRecursion exceeded."; intnewt[f_, df_, x_,

{a_, b_}, eps_, n_] :=

Block[{xmid, int = Interval[{a, b}]},

If[b - a < eps, Return[int]];

If[n == 0, Message[intervalnewton::rec];

Return[int]];

xmid = Interval[SetAccuracy[(a + b)/2, 16]];

int = IntervalIntersection[int,

SetAccuracy[xmid - N[f /. x -> xmid]/N[df /. x -> int], 16]];

(intnewt[f, df, x, #, eps, n - 1]) & /@ (List @@ int)];

Options[intervalnewton] = {MaxRecursion -> 2000};

In the above piece of code, the interval [a, b] includes the real zeros, and is
refined until all zeros are detected (up to the machine precision). We are now
able to apply the interval Newton’s method to capture all the intervals having one
unique solution in themselves. In these lines eps is the tolerance.

We also may note that we are working with double precision in the first step
of the hybrid algorithm to rapidly obtain a list of robust initial intervals. In most
practical problem eps = 10−4 is enough, but in some cases it would be necessary
to increase this tolerance to capture all the solutions in a root cluster. Thus, the
code would be

intervalnewton[f_, x_, int_Interval, eps_, opts___] :=

Block[{df, n}, n = MaxRecursion /. {opts}

/. Options[intervalnewton];

df = D[f, x];

IntervalUnion @@ Select[Flatten[(intnewt[f, df, x, #, eps, n])

& /@ (List @@ int)], IntervalMemberQ[f /. x -> #, 0] &]];

Now by choosing the tolerance, the lower and upper bounds and the nonlinear
function, one may easily attain robust initial approximations in a form of list of
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numbers each having the accuracy up to at least eps decimal places. Let us apply
this procedure on the following two very oscillatory nonlinear functions:

f(x) = sin
(
10x2

)
cosh(x), D = [0.2, 3.], (5.3)

and also

g(x) = sin(30 sin(x)) +
1

2
, D = [0., 10.]. (5.4)

0.5 1.0 1.5 2.0 2.5 3.0

-5

0

5

10

Figure 1: The plot of the function f(x) with finitely many zeros.

Applying the interval Newton scheme, e.g. as follows:

IntervalSol = intervalnewton[g[x], x,

Interval[{0., 10.}], .0001];

setInitial = N[Mean /@ List @@ IntervalSol]

NumberOfGuesses = Length[setInitial]

on the above test g(x) could simply and in a short piece of time provide robust
list of initial approximations for the zeros of the test nonlinear functions.

For f , we obtain 0.560499, 0.792666, 0.970816, 1.121, 1.25331, 1.37294, 1.48294,
1.58533, 1.6815, 1.77245, 1.85897, 1.94162, 2.02091, 2.0972, 2.1708, 2.242, 2.311,
2.378, 2.44316, 2.50663, 2.56851, 2.62897, 2.68806, 2.74587, 2.80249, 2.858, 2.91243,
2.96588.

For g, we attain: 0.122479, 0.193186, 0.338012, 0.413079, 0.571688, 0.657153,
0.848806, 0.961944, 1.28675, 1.85484, 2.17965, 2.29279, 2.48444, 2.56992, 2.72852,
2.80358, 2.9484, 3.01911, 3.15904, 3.22897, 3.37048, 3.44283, 3.59311, 3.6723,
3.84362, 3.93905, 4.16755, 4.32269, 5.10209, 5.25723, 5.48572, 5.58115, 5.75247,
5.83167, 5.98194, 6.0543, 6.1958, 6.26574, 6.40566, 6.47638, 6.62119, 6.69626,
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Figure 2: The plot of the function g(x) with finitely many zeros.

6.85487, 6.94034, 7.13199, 7.24513, 7.56994, 8.13802, 8.46283, 8.57597, 8.76762,
8.8531, 9.0117, 9.08677, 9.23159, 9.30232, 9.44223, 9.51216, 9.65366, 9.72602,
9.8763, 9.95549. Note that the zeros have been clarified along the functions on the
Figures 1-2.

The attained lists could easily be updated and their accuracies could come
up to any desired tolerance using the new efficient high-order methods of this
paper, when high precision computing is on the focus. For instance, the follow-
ing correction part due to (3.6) by using 1500 digits and the stopping criterion
|f(xn)| < 10−500 could be written:

digits = 1500; For[i = 1, i <= NumberOfGuesses, i++,

{k = 0; X = SetAccuracy[setInitial[[i]], digits];

While[Abs[f[X]] > 10^-500 && k <= 10,

{k = k + 1; fX = SetAccuracy[f[X], digits];

f1X = SetAccuracy[f’[X], digits];

di = SetAccuracy[fX/f1X, digits];

Y = SetAccuracy[X - di, digits];

fY = SetAccuracy[f[Y], digits];

Z = SetAccuracy[X - di ((fX - fY)/(fX - 2 fY)), digits];

fZ = SetAccuracy[f[Z], digits];

t = SetAccuracy[(fX^2)/(fX^2 - 2 fX*fY - fY^2), digits];

s = SetAccuracy[fZ/fX, digits];

u = SetAccuracy[fZ/fY, digits];

W = SetAccuracy[Z - (fZ/f1X) (1 + 4 s) (t + u), digits];

fW = SetAccuracy[f[W], digits];

We2 = SetAccuracy[(((fY - fW)/(Y - W))*((fZ
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- fW)/(Z - W)))/((fY - fZ)/(Y - Z)), digits];

X = SetAccuracy[W - fW/We2, digits];};];

Print[Column[{

"The number of full iterations is:" k,

"The zero is:" N[X, 64],

"The residual norm of the approximate zero is:"

N[Abs[f[X]], 5]},

Frame -> All]];

}]; // AbsoluteTiming

Table 3. Comparison of different methods for finding all the simple zeros of f and g

Iterative methods Newton (2.6) (3.6)
Computational time for f (in seconds) 3.45 2.37 2.06
Computational time for g (in seconds) 7.76 5.15 4.43

The results of comparison for some different methods based on the compu-
tational time to achieve the desired tolerance have been reported in Table 3.
The results support the new scheme (3.6) from the class (3.5). Note that, the
computer specifications in this paper are Intel(R) Core(TM) 2 Quad CPU, Q9550
@ 2.83GHz with 2.00GB of RAM.

6 Concluding remarks

In this paper, we have derived a novel class of four-point four-step methods for
solving one variable nonlinear equations. The class was attained by approximating
the first derivative of the function in the fourth step using quasi-Pade approximant.
Each method of the class consists of four evaluations of the function and one
evaluation of the first derivative per full cycle to reach the convergence rate 14 and
the index of efficiency 1.69. We have applied only three known data in estimating
f ′(wn) intentionally to obtain a class, which in addition to have more convergence
rate and efficiency index in contrast to the optimal eighth-order techniques, have
an acceptable computational load in comparison to the optimal sixteenth-order
methods.

The analytical proof for one method of the class was given. The Mathematica
8 program of a hybrid algorithm has been given to illustrate on how to capture all
the real zeros of nonlinear functions in an interval, when high precision computing
is needed. Finally, we should infer that the new iterative formulas can be used as
an alternative to the existing methods or in some cases, where existing methods
are not successful.
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