Balance and Antibalance of the Tensor Product of Two Signed Graphs \square

Deepa Sinha ${ }^{\dagger, 2}$ and Pravin Garg ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Mathematics, South Asian University
Akbar Bhawan, Chanakyapuri, New Delhi-110021, India
e-mail : deepa_sinha2001@yahoo.com
${ }^{\ddagger}$ Centre for Mathematical Sciences, Banasthali University
Banasthali-304022, Rajasthan, India
e-mail : garg.pravin@gmail.com

Abstract

The tensor product $S_{1} \otimes S_{2}$ of two signed graphs S_{1} and S_{2} is a signed graph with vertex set $V\left(S_{1}\right) \times V\left(S_{2}\right)$ in which two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent if and only if u_{1} is adjacent to v_{1} in S_{1} and u_{2} is adjacent to v_{2} in S_{2}, and the sign of the edge $\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)$ is the product of the sign of the edges $u_{1} v_{1}$ in S_{1} and $u_{2} v_{2}$ in S_{2}. A signed graph S is said to be a tensor product signed graph if $S=S_{1} \otimes S_{2}$. In this paper, we establish a characterization of balanced tensor product signed graphs and antibalanced tensor product signed graphs.

Keywords : signed graph; tensor product of signed graphs; balanced signed graph; antibalanced signed graph.
2010 Mathematics Subject Classification : 05C22; 05C75.

1 Introduction

Germina et al. examined the adjacency and Laplacian matrices and their eigenvalues and energies for the general product (non-complete extended p-sum, or NEPS) of signed graphs in [1], where they expressed the adjacency matrix of the

[^0]product in terms of the Kronecker matrix product and the eigenvalues and energy of the product in terms of those of the factor graphs. For the cartesian product they characterized balance but for the tensor product they established only necessity. Independently, we developed a complete structural characterization of balanced and antibalanced tensor product signed graphs, which we present in this paper.

For standard terminology and notation in graph theory we refer Harary [2] and West [3] and for signed graphs we refer Zaslavsky [4, 5]. All graphs considered in this paper are assumed to be finite simple graphs.

A signed graph is an ordered pair $S=\left(S^{u}, \sigma\right)$, where S^{u} is a graph $G=(V, E)$, called the underlying graph of S and $\sigma: E \rightarrow\{+,-\}$ is a function from the edge set E of S^{u} into the set $\{+,-\}$, called the signature of S. Let $E^{+}(S)=\{e \in E(G)$: $\sigma(e)=+\}$ and $E^{-}(S)=\{e \in E(G): \sigma(e)=-\}$. The elements of $E^{+}(S)$ and $E^{-}(S)$ are called positive and negative edges of S, respectively. A signed graph is said to be homogeneous if all its edges have the same sign and heterogeneous otherwise.

A theta graph is the union of three internally disjoint simple paths that have the same two distinct end vertices.

The sign of a signed subgraph S_{1} in a signed graph S is the product of sign of all its edges and is denoted by $\theta\left(S_{1}\right)$. A cycle in a signed graph S is said to be positive (negative) if its sign is positive (negative). A given signed graph S is said be balanced if every cycle in S is positive [6]. A spectral characterization of balanced signed graphs was given by Acharya [7]. A chord of a cycle Z in S is an edge not in Z whose end vertices lie in Z. A chordless cycle in S is a cycle that has no chord. The following important lemma on balanced signed graph is given by Zaslavsky in 8 .

Lemma 1.1 ([8]). A signed graph in which every chordless cycle is positive, is balanced.

The tensor product $G_{1} \otimes G_{2}$ of two graphs G_{1} and G_{2} is a graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, in which two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent if and only if u_{1} is adjacent to v_{1} in G_{1} and u_{2} is adjacent to v_{2} in G_{2}. A graph G is said to be a tensor product graph if there exist two graphs G_{1} and G_{2} such that $G=G_{1} \otimes G_{2}$. The tensor product is variously known as Kronecker product [9], direct product [10], categorical product [11] and graph conjunction [12]. Capobianco 13] used the word tensor product for it.

The tensor product of two signed graphs was defined by Mishra in 14. Let $S=\left(S^{u}, \sigma\right)$ be a signed graph. S is called tensor product signed graph of two signed graphs $S_{1}=\left(S_{1}^{u}, \sigma_{1}\right)$ and $S_{2}=\left(S_{2}^{u}, \sigma_{2}\right)$, i.e. $S=S_{1} \otimes S_{2}$ if $S^{u}=S_{1}^{u} \otimes S_{2}^{u}$ and for an edge $\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)$ of S^{u},

$$
\sigma\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right)=\sigma_{1}\left(u_{1} v_{1}\right) \sigma_{2}\left(u_{2} v_{2}\right)
$$

The tensor product of two signed graphs S_{1} and S_{2} is shown in Figure 1 .

Figure 1: Showing $S=S_{1} \otimes S_{2}$.

2 Balanced Tensor Product Signed Graphs

The following characterization of balanced signed graphs is given by Sampathkumar in (15.

Theorem 2.1 (15]). A signed graph $S=\left(S^{u}, \sigma\right)$ is balanced if and only if there exists a marking μ of its vertices such that each edge uv in S satisfies $\sigma(u v)=$ $\mu(u) \mu(v)$.

The negation $\eta(S)$ of a signed graph S is a signed graph obtained from S by negating the sign of every edge of S. A signed graph S is said to be antibalanced if $\eta(S)$ is balanced. $\sigma_{\eta}(u v)$ gives the sign of an edge $u v \in E(\eta(S))$. We have following lemma:

Lemma 2.2. A signed graph $S=\left(S^{u}, \sigma\right)$ is antibalanced if and only if there exists a marking μ of its vertices such that each edge uv in S satisfies $\sigma(u v)=-\mu(u) \mu(v)$.

Proof. Suppose in a signed graph S, there exists a marking μ of its vertices such
that

$$
\begin{aligned}
& \sigma(u v)=-\mu(u) \mu(v) \forall u v \in E(S) \\
& \Leftrightarrow \mu(u) \mu(v)=-\sigma(u v) \forall u v \in E(S) \\
& \Leftrightarrow \mu(u) \mu(v)=\sigma_{\eta}(u v) \forall u v \in E(\eta(S)) \\
& \Leftrightarrow \eta(S) \text { is balanced } \Leftrightarrow S \text { is antibalanced. }
\end{aligned}
$$

Lemma 2.3. The tensor product signed graph $S=C_{2 m} \otimes K_{2}$ of an even signed cycle $C_{2 m}$ and K_{2} is the disjoint union of two even signed cycles $C_{2 m}^{\prime}$ and $C_{2 m}^{\prime \prime}$, and $\theta\left(C_{2 m}\right)=\theta\left(C_{2 m}^{\prime}\right)=\theta\left(C_{2 m}^{\prime \prime}\right)$.

Proof. Let $C_{2 m}=u_{1} u_{2} \cdots u_{2 m} u_{1}$ and $K_{2}=\left(\{x, y\}, \sigma_{2}\right)$. Then, $S=C_{2 m} \otimes K_{2}$ is the disjoint union of two even cycles,

$$
C_{2 m}^{\prime}=\left(u_{1}, x\right)\left(u_{2}, y\right)\left(u_{3}, x\right)\left(u_{4}, y\right) \ldots\left(u_{2 m}, y\right)\left(u_{1}, x\right)
$$

and

$$
C_{2 m}^{\prime \prime}=\left(u_{1}, y\right)\left(u_{2}, x\right)\left(u_{3}, y\right)\left(u_{4}, x\right) \cdots\left(u_{2 m}, x\right)\left(u_{1}, y\right) .
$$

Now,

$$
\begin{equation*}
\theta\left(C_{2 m}^{\prime}\right)=\theta\left(C_{2 m}\right)\left(\sigma_{2}(x y)\right)^{2 m}=\theta\left(C_{2 m}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta\left(C_{2 m}^{\prime \prime}\right)=\theta\left(C_{2 m}\right)\left(\sigma_{2}(x y)\right)^{2 m}=\theta\left(C_{2 m}\right) . \tag{2.2}
\end{equation*}
$$

Thus, using equations (2.1) and (2.2), $\theta\left(C_{2 m}\right)=\theta\left(C_{2 m}^{\prime}\right)=\theta\left(C_{2 m}^{\prime \prime}\right)$.
Lemma 2.4. The tensor product signed graph $S=C_{2 m+1} \otimes C_{2 n+1}$ of two odd signed cycles $C_{2 m+1}$ and $C_{2 n+1}$ contains an odd signed cycle C of length $p=$ $l c m(2 m+1,2 n+1)$ such that $\theta(C)=\theta\left(C_{2 m+1}\right) \theta\left(C_{2 n+1}\right)$.

Proof. Let $C_{2 m+1}=u_{1} u_{2} \cdots u_{2 m+1} u_{1}$ and $C_{2 n+1}=v_{1} v_{2} \cdots v_{2 n+1} v_{1}$. Without loss of generality, suppose $m \leq n$. Then, $S=C_{2 m+1} \otimes C_{2 n+1}$ contains an odd cycle,

$$
C=\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \cdots\left(u_{2 m+1}, v_{2 m+1}\right)\left(u_{1}, v_{2 m+2}\right) \cdots\left(u_{2 m+1}, v_{2 n+1}\right)\left(u_{1}, v_{1}\right)
$$

of length $p=\operatorname{lcm}(2 m+1,2 n+1)$. Now,

$$
\theta(C)=\left(\theta\left(C_{2 m+1}\right)\right)^{p /(2 m+1)}\left(\theta\left(C_{2 n+1}\right)\right)^{p /(2 n+1)} .
$$

Since $p /(2 m+1)$ and $p /(2 n+1)$ are odd numbers, $\theta(C)=\theta\left(C_{2 m+1}\right) \theta\left(C_{2 n+1}\right)$.
Lemma 2.5. If the tensor product signed graph $S=S_{1} \otimes K_{2}$ of two connected signed graphs $S_{1}=\left(S_{1}^{u}, \sigma_{1}\right)$ and $K_{2}=\left(\{x, y\}, \sigma_{2}\right)$ is balanced or antibalanced, then all the odd cycles in S_{1} have the same sign.

Proof. Let $C_{1}=u_{1} u_{2} \cdots u_{2 m+1} u_{1}$ and $C_{2}=v_{1} v_{2} \cdots v_{2 n+1} v_{1}$ are two arbitrary odd cycles in S_{1}. First, we prove that certain pairs have the same sign.

Case (i). Suppose C_{1} and C_{2} are disjoint cycles. Since S_{1} is connected, there is a minimum connecting path $P=u_{1} w_{1} w_{2} \cdots w_{k} v_{1}$ between C_{1} and $C_{2} . S=S_{1} \otimes K_{2}$ contains a cycle,

$$
\begin{aligned}
C= & \left(u_{1}, x\right)\left(u_{2}, y\right) \cdots\left(u_{2 m+1}, x\right)\left(u_{1}, y\right)\left(w_{1}, x\right)\left(w_{2}, y\right) \cdots\left(w_{k}, x^{\prime}\right)\left(v_{1}, y^{\prime}\right) \\
& \left(v_{2}, x^{\prime}\right) \cdots\left(v_{2 n+1}, y^{\prime}\right)\left(v_{1}, x^{\prime}\right)\left(w_{k}, y^{\prime}\right) \cdots\left(w_{2}, x\right)\left(w_{1}, y\right)\left(u_{1}, x\right),
\end{aligned}
$$

where $\left(x^{\prime}, y^{\prime}\right)=(x, y)$ if k is odd and $\left(x^{\prime}, y^{\prime}\right)=(y, x)$ if k is even. Now,

$$
\begin{aligned}
\theta(C) & =\theta\left(C_{1}\right)\left(\sigma_{2}(x y)\right)^{2 m+1} \theta(P)\left(\sigma_{2}(x y)\right)^{k+1} \theta\left(C_{2}\right)\left(\sigma_{2}(x y)\right)^{2 n+1} \theta(P)\left(\sigma_{2}(x y)\right)^{k+1} \\
& =\theta\left(C_{1}\right) \theta\left(C_{2}\right) .
\end{aligned}
$$

The length of the cycle C is even because C_{1} and C_{2} are odd. Since S is balanced or antibalanced, $\theta(C)=+$. Thus, $\theta\left(C_{1}\right)=\theta\left(C_{2}\right)$.

Case (ii). Suppose C_{1} and C_{2} are disjoint cycles except for a single common vertex. This is similar to Case (i) except that P is reduced to a single vertex $u_{1}=v_{1}$ and $\left(x^{\prime}, y^{\prime}\right)=(x, y)$.

Case (iii). Suppose the intersection of C_{1} and C_{2} is a path P^{\prime}. Then $C_{1} \cup C_{2}$ is a theta graph, consisting of three internally disjoint paths, $P^{\prime}=a w_{1} w_{2} \cdots w_{k} b$, $P_{1}=a u_{1} u_{2} \cdots u_{m} b$ and $P_{2}=a v_{1} v_{2} \cdots v_{n} b$, between two vertices a, b and we have $C_{1}=P_{1} \cup P^{\prime}$ and $C_{2}=P_{2} \cup P^{\prime}$. Clearly, m and n have the same parity but different parity from k. Also, $\theta\left(C_{i}\right)=\theta\left(P_{i}\right) \theta\left(P^{\prime}\right)$ for $i=1,2$. Clearly, $S=S_{1} \otimes K_{2}$ contains a cycle

$$
\begin{aligned}
C^{\prime}= & (a, x)\left(u_{1}, y\right) \cdots\left(u_{m}, y^{\prime}\right)\left(b, x^{\prime}\right)\left(w_{k}, y^{\prime}\right) \cdots\left(w_{1}, x\right)(a, y) \\
& \left(v_{1}, x\right) \cdots\left(v_{n}, x^{\prime}\right)\left(b, y^{\prime}\right)\left(w_{k}, x^{\prime}\right) \cdots\left(w_{1}, y\right)(a, x),
\end{aligned}
$$

where $\left(x^{\prime}, y^{\prime}\right)=(x, y)$ if m, n are odd and $\left(x^{\prime}, y^{\prime}\right)=(y, x)$ if m, n are even. Now,

$$
\begin{aligned}
\theta\left(C^{\prime}\right) & =\theta\left(P_{1}\right)\left(\sigma_{2}(x y)\right)^{m+1} \theta\left(P^{\prime}\right)\left(\sigma_{2}(x y)\right)^{k+1} \theta\left(P_{2}\right)\left(\sigma_{2}(x y)\right)^{n+1} \theta\left(P^{\prime}\right)\left(\sigma_{2}(x y)\right)^{k+1} \\
& =\theta\left(P_{1}\right) \theta\left(P_{2}\right)\left(\sigma_{2}(x y)\right)^{m+n+2 k+4} \\
& =\theta\left(C_{1}\right) \theta\left(C_{2}\right)
\end{aligned}
$$

because m and n have the same parity. For the same reason the length of the cycle C^{\prime} is even. Since S is balanced or antibalanced, $\theta\left(C^{\prime}\right)=+$. Thus, $\theta\left(C_{1}\right)=\theta\left(C_{2}\right)$.

Now, we prove that all pairs have the same sign. Cases (i) and (ii) imply that any two odd cycles in different blocks have the same sign. It follows that, if S_{1} has two or more non-bipartite blocks, then every odd cycle corresponding to different blocks in S_{1} has the same sign.

Assume that only one block of S_{1} has an odd cycle. Let $C^{\prime \prime}$ and $C^{\prime \prime \prime}$ be odd cycles in one block of S_{1}. By Tutte's Path Theorem [16], there is a chain of cycles,
$C^{\prime \prime}=C_{1}, C_{2}, C_{3}, \ldots, C_{n}=C^{\prime \prime \prime}$, such that $C_{i} \cap C_{i+1}$ is a path of length at least one for all $i=1,2, \ldots, n-1$. By Case (iii),

$$
\theta\left(C^{\prime \prime}\right)=\theta\left(C_{1}\right)=\theta\left(C_{2}\right)=\cdots=\theta\left(C_{n}\right)=\theta\left(C^{\prime \prime \prime}\right) .
$$

Thus, every odd cycle in S_{1} has the same sign. That concludes the proof of the lemma.

Theorem 2.6. Let $S_{1}=\left(S_{1}^{u}, \sigma_{1}\right)$ and $S_{2}=\left(S_{2}^{u}, \sigma_{2}\right)$ be two connected signed graphs of order at least 2. The tensor product signed graph $S=S_{1} \otimes S_{2}=\left(S_{1}^{u} \otimes\right.$ $\left.S_{2}^{u}, \sigma\right)$ is balanced if and only if S_{1} and S_{2} are both balanced or both antibalanced.

Proof. Necessity: Suppose $S=S_{1} \otimes S_{2}$ is balanced. We shall show that S_{1} and S_{2} are both balanced or both antibalanced. If S_{1} and S_{2} have no cycle, then trivially they are both balanced or both antibalanced. Again, if S_{1} or S_{2} has at least a cycle, then we consider the following three cases:

Case (i). Let S_{1}^{u} and S_{2}^{u} be both bipartite. That means, there does not exist odd cycle in S_{1} and S_{2}. If S_{1} or S_{2} contains a negative even cycle, then due to Lemma [2.3, S also contains a negative even cycle. It implies that S is not balanced, a contradiction to the assumption. Thus, all the even cycles in S_{1} and S_{2} are positive. Hence S_{1} and S_{2} are both balanced or both antibalanced.

Case (ii). Suppose S_{1}^{u} and S_{2}^{u} are both non-bipartite. That means, S_{1} and S_{2} both contain odd cycles. Due to Lemma [2.4, balance of S implies that every odd cycle in S_{1} and S_{2} has the same sign. That means, all the odd cycles in S_{1} and S_{2} are positive or negative and by Case (i), all the even cycles in S_{1} and S_{2} are positive. Thus, S_{1} and S_{2} are both balanced or both antibalanced.

Case (iii). Without loss of generality, suppose S_{1}^{u} is non-bipartite and S_{2}^{u} is bipartite. That means, S_{1} contains odd cycles and all the cycles in S_{2} are of even length. We solve this case by using $S_{1} \otimes K_{2}$, where $K_{2} \subseteq S_{2}$. Since $S=S_{1} \otimes S_{2}$ is balanced, $S_{1} \otimes K_{2}$ is also balanced. So solving $S_{2}=K_{2}$ suffices. Due to Lemma [2.5] all the odd cycles in S_{1} have the same sign. That means, all the odd cycles in S_{1} are positive or negative and by Case (i), all the even cycles in S_{1} and S_{2} are positive. Thus, S_{1} and S_{2} are both balanced or both antibalanced. Hence, above three cases complete the proof of necessity.

Sufficiency: Suppose S_{1} and S_{2} are both balanced or both antibalanced. We shall show that $S=S_{1} \otimes S_{2}=\left(S_{1}^{u} \otimes S_{2}^{u}, \sigma\right)$ is balanced.

Case (i). Suppose S_{1} and S_{2} are both balanced. Then, all the cycles contained in S_{1} and S_{2} are positive. Therefore due to Theorem 2.1, there exists a marking μ_{1} in S_{1} such that for each edge $u_{i} u_{j}$ in S_{1},

$$
\sigma_{1}\left(u_{i} u_{j}\right)=s \mu_{1}\left(u_{i}\right) \mu_{1}\left(u_{j}\right)
$$

and there exists a marking μ_{2} in S_{2} such that for each edge $v_{k} v_{l}$ in S_{2},

$$
\sigma_{2}\left(v_{k} v_{l}\right)=s \mu_{2}\left(v_{k}\right) \mu_{2}\left(v_{l}\right),
$$

where $s=+1$. Now, we choose a marking μ in $S=S_{1} \otimes S_{2}$ such that,

$$
\mu\left(u_{i}, v_{k}\right)=\mu_{1}\left(u_{i}\right) \mu_{2}\left(v_{k}\right) .
$$

Suppose $\left(u_{i}, v_{k}\right)\left(u_{j}, v_{l}\right)$ is an arbitrary edge in S. Then,

$$
\begin{aligned}
\sigma\left(\left(u_{i}, v_{k}\right)\left(u_{j}, v_{l}\right)\right) & =\sigma_{1}\left(u_{i} u_{j}\right) \sigma_{2}\left(v_{k} v_{l}\right) \\
& =\left(s \mu_{1}\left(u_{i}\right) \mu_{1}\left(u_{j}\right)\right)\left(s \mu_{2}\left(v_{k}\right) \mu_{2}\left(v_{l}\right)\right) \\
& =s^{2}\left(\mu_{1}\left(u_{i}\right) \mu_{2}\left(v_{k}\right)\right)\left(\mu_{1}\left(u_{j}\right) \mu_{2}\left(v_{l}\right)\right) \\
& =\mu\left(u_{i}, v_{k}\right) \mu\left(u_{j}, v_{l}\right) .
\end{aligned}
$$

Thus, there exists a marking μ in S such that each edge $\left(u_{i}, v_{k}\right)\left(u_{j}, v_{l}\right)$ in S satisfies $\sigma\left(\left(u_{i}, v_{k}\right)\left(u_{j}, v_{l}\right)\right)=\mu\left(u_{i}, v_{k}\right) \mu\left(u_{j}, v_{l}\right)$. Hence due to Theorem 2.1, $S=S_{1} \otimes S_{2}$ is balanced.

Case (ii). Suppose S_{1} and S_{2} are both antibalanced. Then, using Lemma 2.2 and taking $s=-1$ in Case (i), we can prove this case in similar manner. Hence the theorem.

Using Lemma 1.1, above theorem can be expressed equivalently as:
Corollary 2.7. Let $S_{1}=\left(S_{1}^{u}, \sigma_{1}\right)$ and $S_{2}=\left(S_{2}^{u}, \sigma_{2}\right)$ be two connected signed graphs of order at least 2. The tensor product signed graph $S=S_{1} \otimes S_{2}=\left(S_{1}^{u} \otimes\right.$ $\left.S_{2}^{u}, \sigma\right)$ is balanced if and only if the following conditions hold:
(i) all the chordless even cycles contained in S_{1} and in S_{2} are positive and
(ii) all the chordless odd cycles contained in S_{1} and in S_{2} are of the same sign.

Corollary 2.8. The tensor product $S_{1} \otimes T$ of a connected signed graph S_{1} and a signed tree T is balanced if and only if S_{1} is balanced or antibalanced.

If $\psi(G)$ denotes the set of all signed graphs whose underlying graph is G, then we have the following corollaries:

Corollary 2.9. The tensor product $C_{2 m} \otimes C_{2 n}$ of two even cycles $C_{2 m} \in \psi\left(C_{2 m}\right)$ and $C_{2 n} \in \psi\left(C_{2 n}\right)$ is balanced if and only if $C_{2 m}$ and $C_{2 n}$ are both positive.

Corollary 2.10. The tensor product $C_{2 m+1} \otimes C_{2 n+1}$ of two odd cycles $C_{2 m+1} \in$ $\psi\left(C_{2 m+1}\right)$ and $C_{2 n+1} \in \psi\left(C_{2 n+1}\right)$ is balanced if and only if $C_{2 m+1}$ and $C_{2 n+1}$ are both of the same sign.

Corollary 2.11. The tensor product $C_{2 m} \otimes C_{2 n+1}$ of an even cycle $C_{2 m} \in \psi\left(C_{2 m}\right)$ and an odd cycle $C_{2 n+1} \in \psi\left(C_{2 n+1}\right)$ is balanced if and only if $C_{2 m}$ is positive.

3 Antibalanced Tensor Product Signed Graphs

Theorem 3.1. Let $S_{1}=\left(S_{1}^{u}, \sigma_{1}\right)$ and $S_{2}=\left(S_{2}^{u}, \sigma_{2}\right)$ be two connected signed graphs of order at least 2. The tensor product signed graph $S=S_{1} \otimes S_{2}=\left(S_{1}^{u} \otimes\right.$ $\left.S_{2}^{u}, \sigma\right)$ is antibalanced if and only if one of S_{1} and S_{2} is balanced and the other is antibalanced.

Proof. Necessity: Suppose $S=S_{1} \otimes S_{2}$ is antibalanced. That means, $\eta(S)$ is balanced. Clearly, $\eta(S)=\eta\left(S_{1}\right) \otimes S_{2}$. Now due to Theorem 2.6, $\eta\left(S_{1}\right)$ and S_{2} are both balanced or both antibalanced. If $\eta\left(S_{1}\right)$ and S_{2} are both balanced, then $\eta\left(\eta\left(S_{1}\right)\right)=S_{1}$ is antibalanced and S_{2} is balanced. Again, if $\eta\left(S_{1}\right)$ and S_{2} are both antibalanced, then $\eta\left(\eta\left(S_{1}\right)\right)=S_{1}$ is balanced and S_{2} is antibalanced.

Sufficiency: Suppose one of S_{1} and S_{2} is balanced and the other is antibalanced. We shall show that $S=S_{1} \otimes S_{2}$ is antibalanced. Without loss of generality, let S_{1} be balanced and S_{2} be antibalanced. That means, S_{1} and $\eta\left(S_{2}\right)$ are both balanced. Now due to Theorem [2.6, $S_{1} \otimes \eta\left(S_{2}\right)=\eta(S)$ is balanced. It follows that S is antibalanced. Hence the theorem.

4 Conclusion

In this paper, we have established a characterization of balanced and antibalanced tensor product signed graphs. In view of main result, it become interesting to investigate a characterization of balanced and antibalanced tensor product signed graph $S=S_{1} \otimes S_{2} \otimes \ldots \otimes S_{n}$. We strongly believe that our characterization of balanced and antibalanced tensor product signed graph for $n=2$ would work for general n, also. The problem will be taken elsewhere.

Acknowledgements : The authors express their gratitude to E. Sampathkumar and V. Mishra who in their early research have brought up the idea of tensor product of the particular graphs which on reading gave us an instant insight for further research in tensor product of two graphs and signed graphs. Also, we are deeply indebted to the referees who made extensive and constructively critical comments on the first version of the paper.

References

[1] K.A. Germina, S. Hameed, T. Zaslavsky, On products and line graphs of signed graphs, their eigenvalues and energy, Linear Algebra Appl. 435 (2011) 2432-2450.
[2] F. Harary, Graph Theory, Addison-Wesley Publ. Comp., Reading, Massachusetts, 1969.
[3] D.B. West, Introduction to Graph Theory, Prentice-Hall of India Pvt. Ltd., 1996.
[4] T. Zaslavsky, Bibliography of signed and gain graphs, VII Ed., Electron. J. Combin. \#DS8 (1999).
[5] T. Zaslavsky, Glossary of signed and gain graphs and allied areas, II Ed., Electron. J. Combin. \#DS9 (1998).
[6] F. Harary, On the notion of balance of a signed graph, Mich. Math. J. 2 (1953) 143-146.
[7] B.D. Acharya, A spectral criterion for cycle balance in networks, J. Graph Theory 4 (1) (1981) 1-11.
[8] T. Zaslavsky, Signed analogs of bipartite graphs, Discrete Math. 179 (1998) 205-216.
[9] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52.
[10] J. Bosak, Decompositions of Graphs, Kluwer Academic Publ., Dordrecht, Boston, London, 1991.
[11] D.J. Miller, The categorical product of graphs, Canad. J. Math. 20 (1968) 1511-1521.
[12] J.C. Bermond, Hamiltonian decompositions of graphs, digraphs, hypergraphs, Annals Discrete Math. 3 (1978) 21-28.
[13] M.F. Capobianco, On characterizing tensor-composite graphs, Annals N.Y. Acad. Sci. 175 (1970) 80-84.
[14] V. Mishra, Graphs associated with $(0,1)$ and $(0,1,-1)$ matrices, Ph.D. Thesis, IIT Bombay, 1974.
[15] E. Sampathkumar, Point signed and line signed graphs, Nat. Acad. Sci. Letters 7 (3) (1984) 91-93.
[16] W.T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965) 1-47.
(Received 26 June 2011)
(Accepted 22 March 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Research is supported by the Department of Science and Technology (Govt. of India), New Delhi, India under the Project SR/S4/MS: 409/06.
 ${ }^{2}$ Corresponding author.
 Copyright © 2014 by the Mathematical Association of Thailand. All rights reserved.

