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Abstract : The tensor product S1⊗S2 of two signed graphs S1 and S2 is a signed
graph with vertex set V (S1) × V (S2) in which two vertices (u1, u2) and (v1, v2)
are adjacent if and only if u1 is adjacent to v1 in S1 and u2 is adjacent to v2 in
S2, and the sign of the edge (u1, u2)(v1, v2) is the product of the sign of the edges
u1v1 in S1 and u2v2 in S2. A signed graph S is said to be a tensor product signed

graph if S = S1 ⊗ S2. In this paper, we establish a characterization of balanced
tensor product signed graphs and antibalanced tensor product signed graphs.
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1 Introduction

Germina et al. examined the adjacency and Laplacian matrices and their
eigenvalues and energies for the general product (non-complete extended p-sum,
or NEPS) of signed graphs in [1], where they expressed the adjacency matrix of the
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product in terms of the Kronecker matrix product and the eigenvalues and energy
of the product in terms of those of the factor graphs. For the cartesian product they
characterized balance but for the tensor product they established only necessity.
Independently, we developed a complete structural characterization of balanced
and antibalanced tensor product signed graphs, which we present in this paper.

For standard terminology and notation in graph theory we refer Harary [2]
and West [3] and for signed graphs we refer Zaslavsky [4, 5]. All graphs considered
in this paper are assumed to be finite simple graphs.

A signed graph is an ordered pair S = (Su, σ), where Su is a graph G = (V,E),
called the underlying graph of S and σ : E → {+,−} is a function from the edge set
E of Su into the set {+,−}, called the signature of S. Let E+(S) = {e ∈ E(G) :
σ(e) = +} and E−(S) = {e ∈ E(G) : σ(e) = −}. The elements of E+(S) and
E−(S) are called positive and negative edges of S, respectively. A signed graph
is said to be homogeneous if all its edges have the same sign and heterogeneous

otherwise.

A theta graph is the union of three internally disjoint simple paths that have
the same two distinct end vertices.

The sign of a signed subgraph S1 in a signed graph S is the product of sign
of all its edges and is denoted by θ(S1). A cycle in a signed graph S is said to
be positive (negative) if its sign is positive (negative). A given signed graph S is
said be balanced if every cycle in S is positive [6]. A spectral characterization of
balanced signed graphs was given by Acharya [7]. A chord of a cycle Z in S is an
edge not in Z whose end vertices lie in Z. A chordless cycle in S is a cycle that
has no chord. The following important lemma on balanced signed graph is given
by Zaslavsky in [8].

Lemma 1.1 ([8]). A signed graph in which every chordless cycle is positive, is

balanced.

The tensor product G1⊗G2 of two graphs G1 and G2 is a graph with vertex set
V (G1)×V (G2), in which two vertices (u1, u2) and (v1, v2) are adjacent if and only
if u1 is adjacent to v1 in G1 and u2 is adjacent to v2 in G2. A graphG is said to be a
tensor product graph if there exist two graphs G1 and G2 such that G = G1 ⊗G2.
The tensor product is variously known as Kronecker product [9], direct product

[10], categorical product [11] and graph conjunction [12]. Capobianco [13] used the
word tensor product for it.

The tensor product of two signed graphs was defined by Mishra in [14]. Let
S = (Su, σ) be a signed graph. S is called tensor product signed graph of two
signed graphs S1 = (Su

1 , σ1) and S2 = (Su
2 , σ2), i.e. S = S1 ⊗ S2 if Su = Su

1 ⊗ Su
2

and for an edge (u1, u2)(v1, v2) of S
u,

σ((u1, u2)(v1, v2)) = σ1(u1v1)σ2(u2v2).

The tensor product of two signed graphs S1 and S2 is shown in Figure 1.
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Figure 1: Showing S = S1 ⊗ S2.

2 Balanced Tensor Product Signed Graphs

The following characterization of balanced signed graphs is given by Sam-
pathkumar in [15].

Theorem 2.1 ([15]). A signed graph S = (Su, σ) is balanced if and only if there

exists a marking µ of its vertices such that each edge uv in S satisfies σ(uv) =
µ(u)µ(v).

The negation η(S) of a signed graph S is a signed graph obtained from S by
negating the sign of every edge of S. A signed graph S is said to be antibalanced

if η(S) is balanced. ση(uv) gives the sign of an edge uv ∈ E(η(S)). We have
following lemma:

Lemma 2.2. A signed graph S = (Su, σ) is antibalanced if and only if there exists

a marking µ of its vertices such that each edge uv in S satisfies σ(uv) = −µ(u)µ(v).

Proof. Suppose in a signed graph S, there exists a marking µ of its vertices such
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that

σ(uv) = −µ(u)µ(v) ∀uv ∈ E(S)

⇔ µ(u)µ(v) = −σ(uv) ∀uv ∈ E(S)

⇔ µ(u)µ(v) = ση(uv) ∀uv ∈ E(η(S))

⇔ η(S) is balanced ⇔ S is antibalanced.

Lemma 2.3. The tensor product signed graph S = C2m ⊗K2 of an even signed

cycle C2m and K2 is the disjoint union of two even signed cycles C ′

2m and C′′

2m,

and θ(C2m) = θ(C′

2m) = θ(C′′

2m).

Proof. Let C2m = u1u2 · · ·u2mu1 and K2 = ({x, y}, σ2). Then, S = C2m ⊗K2 is
the disjoint union of two even cycles,

C′

2m = (u1, x)(u2, y)(u3, x)(u4, y) . . . (u2m, y)(u1, x)

and

C′′

2m = (u1, y)(u2, x)(u3, y)(u4, x) · · · (u2m, x)(u1, y).

Now,

θ(C′

2m) = θ(C2m)(σ2(xy))
2m = θ(C2m) (2.1)

and

θ(C′′

2m) = θ(C2m)(σ2(xy))
2m = θ(C2m). (2.2)

Thus, using equations (2.1) and (2.2), θ(C2m) = θ(C′

2m) = θ(C′′

2m).

Lemma 2.4. The tensor product signed graph S = C2m+1 ⊗ C2n+1 of two odd

signed cycles C2m+1 and C2n+1 contains an odd signed cycle C of length p =
lcm(2m+ 1, 2n+ 1) such that θ(C) = θ(C2m+1)θ(C2n+1).

Proof. Let C2m+1 = u1u2 · · ·u2m+1u1 and C2n+1 = v1v2 · · · v2n+1v1. Without loss
of generality, suppose m ≤ n. Then, S = C2m+1 ⊗ C2n+1 contains an odd cycle,

C = (u1, v1)(u2, v2) · · · (u2m+1, v2m+1)(u1, v2m+2) · · · (u2m+1, v2n+1)(u1, v1)

of length p = lcm(2m+ 1, 2n+ 1). Now,

θ(C) = (θ(C2m+1))
p/(2m+1)(θ(C2n+1))

p/(2n+1).

Since p/(2m+1) and p/(2n+1) are odd numbers, θ(C) = θ(C2m+1)θ(C2n+1).

Lemma 2.5. If the tensor product signed graph S = S1 ⊗ K2 of two connected

signed graphs S1 = (Su
1 , σ1) and K2 = ({x, y}, σ2) is balanced or antibalanced, then

all the odd cycles in S1 have the same sign.
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Proof. Let C1 = u1u2 · · ·u2m+1u1 and C2 = v1v2 · · · v2n+1v1 are two arbitrary odd
cycles in S1. First, we prove that certain pairs have the same sign.

Case (i). Suppose C1 and C2 are disjoint cycles. Since S1 is connected, there is
a minimum connecting path P = u1w1w2 · · ·wkv1 between C1 and C2. S = S1⊗K2

contains a cycle,

C = (u1, x)(u2, y) . . . (u2m+1, x)(u1, y)(w1, x)(w2, y) · · · (wk, x
′)(v1, y

′)

(v2, x
′) · · · (v2n+1, y

′)(v1, x
′)(wk, y

′) . . . (w2, x)(w1, y)(u1, x),

where (x′, y′) = (x, y) if k is odd and (x′, y′) = (y, x) if k is even. Now,

θ(C) = θ(C1)(σ2(xy))
2m+1θ(P )(σ2(xy))

k+1θ(C2)(σ2(xy))
2n+1θ(P )(σ2(xy))

k+1

= θ(C1)θ(C2).

The length of the cycle C is even because C1 and C2 are odd. Since S is balanced
or antibalanced, θ(C) = +. Thus, θ(C1) = θ(C2).

Case (ii). Suppose C1 and C2 are disjoint cycles except for a single common
vertex. This is similar to Case (i) except that P is reduced to a single vertex
u1 = v1 and (x′, y′) = (x, y).

Case (iii). Suppose the intersection of C1 and C2 is a path P ′. Then C1 ∪ C2

is a theta graph, consisting of three internally disjoint paths, P ′ = aw1w2 · · ·wkb,
P1 = au1u2 · · ·umb and P2 = av1v2 · · · vnb, between two vertices a, b and we have
C1 = P1∪P

′ and C2 = P2∪P
′. Clearly,m and n have the same parity but different

parity from k. Also, θ(Ci) = θ(Pi)θ(P
′) for i = 1, 2. Clearly, S = S1⊗K2 contains

a cycle
C′ = (a, x)(u1, y) · · · (um, y

′)(b, x′)(wk, y
′) · · · (w1, x)(a, y)

(v1, x) · · · (vn, x
′)(b, y′)(wk, x

′) · · · (w1, y)(a, x),

where (x′, y′) = (x, y) if m,n are odd and (x′, y′) = (y, x) if m,n are even. Now,

θ(C′) = θ(P1)(σ2(xy))
m+1θ(P ′)(σ2(xy))

k+1θ(P2)(σ2(xy))
n+1θ(P ′)(σ2(xy))

k+1

= θ(P1)θ(P2)(σ2(xy))
m+n+2k+4

= θ(C1)θ(C2)

because m and n have the same parity. For the same reason the length of the cycle
C′ is even. Since S is balanced or antibalanced, θ(C ′) = +. Thus, θ(C1) = θ(C2).

Now, we prove that all pairs have the same sign. Cases (i) and (ii) imply that
any two odd cycles in different blocks have the same sign. It follows that, if S1 has
two or more non-bipartite blocks, then every odd cycle corresponding to different
blocks in S1 has the same sign.

Assume that only one block of S1 has an odd cycle. Let C ′′ and C′′′ be odd
cycles in one block of S1. By Tutte’s Path Theorem [16], there is a chain of cycles,
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C′′ = C1, C2, C3, . . . , Cn = C′′′, such that Ci ∩ Ci+1 is a path of length at least
one for all i = 1, 2, . . . , n− 1. By Case (iii),

θ(C′′) = θ(C1) = θ(C2) = · · · = θ(Cn) = θ(C′′′).

Thus, every odd cycle in S1 has the same sign. That concludes the proof of the
lemma.

Theorem 2.6. Let S1 = (Su
1 , σ1) and S2 = (Su

2 , σ2) be two connected signed

graphs of order at least 2. The tensor product signed graph S = S1 ⊗ S2 = (Su
1 ⊗

Su
2 , σ) is balanced if and only if S1 and S2 are both balanced or both antibalanced.

Proof. Necessity: Suppose S = S1⊗S2 is balanced. We shall show that S1 and S2

are both balanced or both antibalanced. If S1 and S2 have no cycle, then trivially
they are both balanced or both antibalanced. Again, if S1 or S2 has at least a
cycle, then we consider the following three cases:

Case (i). Let Su
1 and Su

2 be both bipartite. That means, there does not exist
odd cycle in S1 and S2. If S1 or S2 contains a negative even cycle, then due
to Lemma 2.3, S also contains a negative even cycle. It implies that S is not
balanced, a contradiction to the assumption. Thus, all the even cycles in S1 and
S2 are positive. Hence S1 and S2 are both balanced or both antibalanced.

Case (ii). Suppose Su
1 and Su

2 are both non-bipartite. That means, S1 and S2

both contain odd cycles. Due to Lemma 2.4, balance of S implies that every odd
cycle in S1 and S2 has the same sign. That means, all the odd cycles in S1 and
S2 are positive or negative and by Case (i), all the even cycles in S1 and S2 are
positive. Thus, S1 and S2 are both balanced or both antibalanced.

Case (iii). Without loss of generality, suppose Su
1 is non-bipartite and Su

2 is
bipartite. That means, S1 contains odd cycles and all the cycles in S2 are of even
length. We solve this case by using S1⊗K2, where K2 ⊆ S2. Since S = S1⊗S2 is
balanced, S1 ⊗K2 is also balanced. So solving S2 = K2 suffices. Due to Lemma
2.5, all the odd cycles in S1 have the same sign. That means, all the odd cycles
in S1 are positive or negative and by Case (i), all the even cycles in S1 and S2 are
positive. Thus, S1 and S2 are both balanced or both antibalanced. Hence, above
three cases complete the proof of necessity.

Sufficiency: Suppose S1 and S2 are both balanced or both antibalanced. We
shall show that S = S1 ⊗ S2 = (Su

1 ⊗ Su
2 , σ) is balanced.

Case (i). Suppose S1 and S2 are both balanced. Then, all the cycles contained
in S1 and S2 are positive. Therefore due to Theorem 2.1, there exists a marking
µ1 in S1 such that for each edge uiuj in S1,

σ1(uiuj) = sµ1(ui)µ1(uj)

and there exists a marking µ2 in S2 such that for each edge vkvl in S2,

σ2(vkvl) = sµ2(vk)µ2(vl),
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where s = +1. Now, we choose a marking µ in S = S1 ⊗ S2 such that,

µ(ui, vk) = µ1(ui)µ2(vk).

Suppose (ui, vk)(uj , vl) is an arbitrary edge in S. Then,

σ((ui, vk)(uj , vl)) = σ1(uiuj)σ2(vkvl)

= (sµ1(ui)µ1(uj))(sµ2(vk)µ2(vl))

= s2(µ1(ui)µ2(vk))(µ1(uj)µ2(vl))

= µ(ui, vk)µ(uj , vl).

Thus, there exists a marking µ in S such that each edge (ui, vk)(uj , vl) in S satisfies
σ((ui, vk)(uj , vl)) = µ(ui, vk)µ(uj , vl). Hence due to Theorem 2.1, S = S1 ⊗ S2 is
balanced.

Case (ii). Suppose S1 and S2 are both antibalanced. Then, using Lemma 2.2
and taking s = −1 in Case (i), we can prove this case in similar manner. Hence
the theorem.

Using Lemma 1.1, above theorem can be expressed equivalently as:

Corollary 2.7. Let S1 = (Su
1 , σ1) and S2 = (Su

2 , σ2) be two connected signed

graphs of order at least 2. The tensor product signed graph S = S1 ⊗ S2 = (Su
1 ⊗

Su
2 , σ) is balanced if and only if the following conditions hold:

(i) all the chordless even cycles contained in S1 and in S2 are positive and

(ii) all the chordless odd cycles contained in S1 and in S2 are of the same sign.

Corollary 2.8. The tensor product S1 ⊗ T of a connected signed graph S1 and a

signed tree T is balanced if and only if S1 is balanced or antibalanced.

If ψ(G) denotes the set of all signed graphs whose underlying graph is G, then
we have the following corollaries:

Corollary 2.9. The tensor product C2m ⊗C2n of two even cycles C2m ∈ ψ(C2m)
and C2n ∈ ψ(C2n) is balanced if and only if C2m and C2n are both positive.

Corollary 2.10. The tensor product C2m+1 ⊗ C2n+1 of two odd cycles C2m+1 ∈
ψ(C2m+1) and C2n+1 ∈ ψ(C2n+1) is balanced if and only if C2m+1 and C2n+1 are

both of the same sign.

Corollary 2.11. The tensor product C2m⊗C2n+1 of an even cycle C2m ∈ ψ(C2m)
and an odd cycle C2n+1 ∈ ψ(C2n+1) is balanced if and only if C2m is positive.
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3 Antibalanced Tensor Product Signed Graphs

Theorem 3.1. Let S1 = (Su
1 , σ1) and S2 = (Su

2 , σ2) be two connected signed

graphs of order at least 2. The tensor product signed graph S = S1 ⊗ S2 = (Su
1 ⊗

Su
2 , σ) is antibalanced if and only if one of S1 and S2 is balanced and the other is

antibalanced.

Proof. Necessity: Suppose S = S1 ⊗ S2 is antibalanced. That means, η(S) is
balanced. Clearly, η(S) = η(S1) ⊗ S2. Now due to Theorem 2.6, η(S1) and S2

are both balanced or both antibalanced. If η(S1) and S2 are both balanced, then
η(η(S1)) = S1 is antibalanced and S2 is balanced. Again, if η(S1) and S2 are both
antibalanced, then η(η(S1)) = S1 is balanced and S2 is antibalanced.

Sufficiency: Suppose one of S1 and S2 is balanced and the other is antibalanced.
We shall show that S = S1 ⊗ S2 is antibalanced. Without loss of generality, let
S1 be balanced and S2 be antibalanced. That means, S1 and η(S2) are both
balanced. Now due to Theorem 2.6, S1⊗ η(S2) = η(S) is balanced. It follows that
S is antibalanced. Hence the theorem.

4 Conclusion

In this paper, we have established a characterization of balanced and antibal-
anced tensor product signed graphs. In view of main result, it become interest-
ing to investigate a characterization of balanced and antibalanced tensor product
signed graph S = S1⊗S2⊗ . . .⊗Sn. We strongly believe that our characterization
of balanced and antibalanced tensor product signed graph for n = 2 would work
for general n, also. The problem will be taken elsewhere.
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