Thai Journal of Mathematics
Volume 12 (2014) Number 2 : 265-274
http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

The Generalized Stability of an n-Dimensional Jensen Type Functional Equation

J. Tipyan ${ }^{11}$, C. Srisawat, P. Udomkavanich and P. Nakmahachalasint

Department of Mathematics, Faculty of Science, Chulalongkorn University 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
e-mail: tipyan.j@gmail.com(J.Tipyan)
Paisan.N@chula.ac.th (P.Nakmahachalasint)

Abstract : In this paper, we will investigate the generalized Hyer-Ulam-Rassias stability of an n-dimensional functional equation,

$$
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)=f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)
$$

where $n>1$ is an integer, and p_{1}, \ldots, p_{n} are positive real number with

$$
\sum_{i=1}^{n} p_{i}=1
$$

Keywords : functional equation; Jensen functional equation; stability; generalized stability
2010 Mathematics Subject Classification : 47H09; 47H10 (2010 MSC)

1 Introduction and preliminaries

In 1940 S.M. Ulam[6] proposed the famous stability problem of linear functions. In 1941 D.H. Hyers [1] considered the case of an approximately additive function $f: E \rightarrow E^{\prime}$ where E and E^{\prime} are Banach spaces and f satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$

[^0]for all $x, y \in E$ and for some $\varepsilon>0$. It was shown that the limit
$$
L(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)
$$
exists for all $x \in E$ and that $L: E \rightarrow E^{\prime}$ is the unique additive function satisfying
$$
\|f(x)-L(x)\| \leq \epsilon .
$$

Hyers' theorem was generalized by Aoki[7] and Bourgin [2] for additive mappings by considering bounded Cauchy differences. In 1978 Th.M. Rassias $[8$ considered an approximately additive function $f: E \rightarrow E^{\prime}$ satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E$ where $\theta \geq 0$ and $0 \leq p<1$ are constants. Since then, the stability problem has been widely investigated for different types of functional equations. The Jensen functional equation given by

$$
\frac{f(x)+f(y)}{2}=f\left(\frac{x+y}{2}\right)
$$

has close connection [3, 4] with the Cauchy functional equation

$$
f(x)+f(y)=f(x+y) .
$$

Stability of Jensen equation has been studied at first by Kominek[?]. In 1998, S.M. Jung [5 investigated the Hyers-Ulam stability for Jensen's equation on a restricted domain.

In this paper, we will extend the Jensen functional equation to an n-dimensional version,

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)=f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \tag{1.1}
\end{equation*}
$$

where $n>1$ is an integer, and p_{1}, \ldots, p_{n} are positive rational numbers with

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}=1 \tag{1.2}
\end{equation*}
$$

will study a general solution and investigate its generalized stability. We will also discuss Hyers-Ulam stability and Hyers-Ulam-Rassias stability.

For our convenience, we let $n>1$ be an integer, p_{1}, \ldots, p_{n} be positive rational numbers with (1.2), X be a real vector space and Y be a Banach spaces.

2 Main Results

In this section, we will study the general solution and generalized stability of (1.1). The results are as follows.

2.1 General Solution

Theorem 2.1. Let X and Y be real vector spaces. A mapping $f: X \rightarrow Y$ satisfies the functional equation (1.1) where $n>1$ is an integer, and $p_{1}, \ldots p_{n}$ are positive rational numbers with $\sum_{i=1}^{n} p_{i}=1$ for all $x_{1}, \ldots x_{n} \in X$, if and only if $f(x)=A(x)-f(0)$ for all $x \in X$ where $A: X \rightarrow Y$ is additive function and $f(0)$ is a constant.

Proof. (Neccessity) Suppose $f: X \rightarrow Y$ satisfies the functional equation (1.1). Define a function $g: X \rightarrow y$ by

$$
g(x)=f(x)-f(0)
$$

for all $x \in X$. Note that $g(0)=0$.
Consider

$$
\begin{align*}
g\left(\sum_{i=1}^{n} p_{i} x_{i}\right) & =f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-f(0)=\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f(0) \\
& =\sum_{i=1}^{n} p_{i} g\left(x_{i}\right) \tag{2.1}
\end{align*}
$$

Thus g is satisfies (1.1). Let $s \in\{1, \ldots n\}$. Then set $x_{s}=x$ and $x_{1}=\ldots=x_{s-1}=$ $x_{s+1}=\ldots=x_{n}=0$, then (2.1) becomes

$$
\begin{equation*}
g\left(p_{s} x\right)=p_{s} g(x) \quad \text { for all } \quad s \in\{1, \ldots n\} \quad \text { for all } \quad x \in X \tag{2.2}
\end{equation*}
$$

Next, we put $x_{s}=x, x_{s+1}=y$ and $x_{1}=\ldots=x_{s-1}=x_{s+2}=\ldots=x_{n}=0$ in (2.1) and using (2.2), we will have

$$
g\left(p_{s} x+p_{s+1} y\right)=p_{s} g(x)+p_{s+1} g(y)
$$

for all $x, y \in X$. Therefore g is additive function, by definition of g we get $f(x)=A(x)-f(0)$ for all $x \in X$.
(Sufficiency) Suppose $f(x)=A(x)-f(0)$ for all $x \in X$ where $A: X \rightarrow Y$ is additive function and $f(0)$ is a constant. Then,

$$
\begin{aligned}
f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) & =A\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-f(0)=A\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} f(0) \\
& =\sum_{i=1}^{n} p_{i}\left(A\left(x_{i}\right)-f(0)\right)=\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)
\end{aligned}
$$

This completes the proof.

2.2 Generalied Stabiltiy

Theorem 2.2. Let $\phi: X^{n} \rightarrow[0, \infty)$ be a function. For each integer $s=1, \ldots, n$, let $\phi_{s}: X \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\phi_{s}(x)=\phi(\underbrace{0, \ldots, 0}_{s-1}, x, \underbrace{0, \ldots, 0}_{n-s}) \tag{2.3}
\end{equation*}
$$

and $\sum_{i=0}^{\infty} p_{s}^{-i} \phi\left(p_{s}^{i} x\right)$ converges and $\lim _{m \rightarrow \infty} p_{s}^{-m} \phi\left(p_{s}^{m} x_{1}, \ldots, p_{s}^{m} x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in X$. If a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)\right\| \leq \phi\left(x_{1}, \ldots, x_{n}\right) \tag{2.4}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in X$, then there exists a unique function $L: X \rightarrow Y$ that satisfies functional equation (1.1) and the inequality

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \sum_{i=0}^{\infty} p_{s}^{-i-1} \phi_{s}\left(p_{s}^{i} x\right) \tag{2.5}
\end{equation*}
$$

for all $x \in X$. The function L is given by

$$
\begin{equation*}
L(x)=f(0)+\lim _{m \rightarrow \infty} p_{s}^{-m}\left(f\left(p_{s}^{m} x\right)-f(0)\right) \tag{2.6}
\end{equation*}
$$

for all $x \in X$.
Proof. Suppose $f: X \rightarrow Y$ satisfies the inequality (2.4). Define a function $g: X \rightarrow Y$ by

$$
\begin{equation*}
g(x)=f(x)-f(0) \tag{2.7}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in X$. It should be noted that $g(0)=0$. By (1.2), we get

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} p_{i} g\left(x_{i}\right)-g\left(\sum_{i=1}^{n} p_{i} x_{i}\right)\right\| \leq \phi\left(x_{1}, \ldots, x_{n}\right) \tag{2.8}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in X$. Let $s \in\{1, \ldots, n\}$. Set $x_{s}=x$ and $x_{1}=\cdots=x_{s-1}=$ $x_{s+1}=\cdots=x_{n}=0$, then (2.8) becomes

$$
\begin{equation*}
\left\|p_{s} g(x)-g\left(p_{s} x\right)\right\| \leq \phi_{s}(x) \tag{2.9}
\end{equation*}
$$

for all $x \in X$. Rewrite the above equation to

$$
\begin{equation*}
\left\|g(x)-p_{s}^{-1} g\left(p_{s} x\right)\right\| \leq p_{s}^{-1} \phi_{s}(x) \tag{2.10}
\end{equation*}
$$

for all $x \in X$. For each positive integer m and each $x \in X$, we have

$$
\begin{align*}
\left\|g(x)-p_{s}^{-m} g\left(p_{s}^{m} x\right)\right\| & =\left\|\sum_{i=0}^{m-1}\left(p_{s}^{-i} g\left(p_{s}^{i} x\right)-p_{s}^{-(i+1)} g\left(p_{s}^{i+1} x\right)\right)\right\| \\
& \leq \sum_{i=0}^{m-1}\left\|p_{s}^{-i} g\left(p_{s}^{i} x\right)-p_{s}^{-(i+1)} g\left(p_{s}^{i+1} x\right)\right\| \\
& =\sum_{i=0}^{m-1} p_{s}^{-i}\left\|g\left(p_{s}^{i} x\right)-p_{s}^{-1} g\left(p_{s} p_{s}^{i} x\right)\right\| \\
& \leq \sum_{i=0}^{m-1} p_{s}^{-i-1} \phi_{s}\left(p_{s}^{i} x\right) \tag{2.11}
\end{align*}
$$

Consider the sequence $\left\{p_{s}^{-m} g\left(p_{s}^{m} x\right)\right\}$. For each positive integers $k<l$ and each $x \in X$,

$$
\begin{aligned}
\left\|p_{s}^{-k} g\left(p_{s}^{k} x\right)-p_{s}^{-l} g\left(p_{s}^{l} x\right)\right\| & =p_{s}^{-k}\left\|g\left(p_{s}^{k} x\right)-p_{s}^{-(l-k)} g\left(p_{s}^{l-k} p_{s}^{k} x\right)\right\| \\
& \leq p_{s}^{-k} \sum_{i=0}^{l-k-1} p_{s}^{-i-1} \phi_{s}\left(p_{s}^{i+k} x\right) \\
& \leq p_{s}^{-k-1} \sum_{i=0}^{\infty} p_{s}^{-i} \phi_{s}\left(p_{s}^{i+k} x\right)
\end{aligned}
$$

Since $\sum_{i=0}^{\infty} p_{s}^{-i} \phi\left(p_{s}^{i} x\right)$ converges, $\lim _{k \rightarrow \infty} p_{s}^{-k-1} \sum_{i=0}^{\infty} p_{s}^{-i} \phi_{s}\left(p_{s}^{i+k} x\right)=0$; therefore,

$$
\begin{equation*}
L(x)=f(0)+\lim _{m \rightarrow \infty} p_{s}^{-m} g\left(p_{s}^{m} x\right) \tag{2.12}
\end{equation*}
$$

is well-defined in the Banach space Y. Moreover, as $m \rightarrow \infty$, (2.11) becomes

$$
\|g(x)+f(0)-L(x)\| \leq \sum_{i=0}^{\infty} p_{s}^{-i-1} \phi_{s}\left(p_{s}^{i} x\right)
$$

Recalling the definition of $g(x)$, we see that inequality (2.5) is valid.
To show that L indeed satisfies (1.1), replace each x_{i} in (2.8) with $p_{s}^{m} x_{i}$,

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} p_{i} g\left(p_{s}^{m} x_{i}\right)-g\left(p_{s}^{m} \sum_{i=1}^{n} p_{i} x_{i}\right)\right\| \leq \phi\left(p_{s}^{m} x_{1}, \ldots, p_{s}^{m} x_{n}\right) \tag{2.13}
\end{equation*}
$$

If we multiply the above inequality by p_{s}^{-m} and take the limit as $m \rightarrow \infty$, then by the definition of L in (2.12) and (1.2), we obtain

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} p_{i} L\left(x_{i}\right)-L\left(\sum_{i=1}^{n} p_{i} x_{i}\right)\right\| \leq \lim _{m \rightarrow \infty} p_{s}^{-m} \phi\left(p_{s}^{m} x_{1}, \ldots, p_{s}^{m} x_{n}\right)=0 \tag{2.14}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} L\left(x_{i}\right)=L\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \tag{2.15}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in X$.
To prove the uniqueness, suppose there is another function $L^{\prime}: X \rightarrow Y$ satisfying (1.1) and (2.5). Observe that if we replace x_{s} by x and put $x_{1}=\cdots=$ $x_{s-1}=x_{s+1}=\cdots=x_{n}=0$ in (2.15), then

$$
\begin{equation*}
p_{s} L(x)+\left(1-p_{s}\right) L(0)=L\left(p_{s} x\right) \tag{2.16}
\end{equation*}
$$

for all $x \in X$, and

$$
L(0)=f(0)+\lim _{m \rightarrow \infty} p_{s}^{-m} g(0)=f(0)
$$

The function L^{\prime} obviously possesses the same properties. Therefore,

$$
\begin{equation*}
p_{s}\left(L(x)-L^{\prime}(x)\right)=L\left(p_{s} x\right)-L^{\prime}\left(p_{s} x\right) \tag{2.17}
\end{equation*}
$$

for all $x \in X$. We can prove by mathematical induction that for each positive integer m,

$$
p_{s}^{m}\left(L(x)-L^{\prime}(x)\right)=L\left(p_{s}^{m} x\right)-L^{\prime}\left(p_{s}^{m} x\right)
$$

for all $x \in X$. Therefore, for each positive integer m,

$$
\begin{aligned}
\left\|L(x)-L^{\prime}(x)\right\| & =p_{s}^{-m}\left\|L\left(p^{m} x\right)-L^{\prime}\left(p_{s}^{m} x\right)\right\| \\
& \leq p_{s}^{-m}\left(\left\|L\left(p^{m} x\right)-f\left(p_{s}^{m} x\right)\right\|+\left\|L^{\prime}\left(p_{s}^{m} x\right)-f\left(p_{s}^{m} x\right)\right\|\right) \\
& \leq 2 p_{s}^{-m} \sum_{i=0}^{\infty} p_{s}^{-i-1} \phi_{s}\left(p_{s}^{i+m} x\right)
\end{aligned}
$$

for all $x \in X$. Since $\sum_{i=0}^{\infty} p_{s}^{-i} \phi\left(p_{s}^{i} x\right)$ converges, $\lim _{m \rightarrow \infty} p_{s}^{-m} \sum_{i=0}^{\infty} p_{s}^{-i-1} \phi\left(p_{s}^{i+m} x\right)=0$. We conclude that $L(x)=L^{\prime}(x)$ for all $x \in X$.

Theorem 2.3. Let $\phi: X^{n} \rightarrow[0, \infty)$ be a function. For each integer $s=1, \ldots, n$, let $\phi_{s}: X \rightarrow[0, \infty)$ be a function such that (2.3) and $\sum_{i=0}^{\infty} p_{s}^{i} \phi\left(p_{s}^{-i} x\right)$ converges and $\lim _{m \rightarrow \infty} p_{s}^{m} \phi\left(p_{s}^{-m} x_{1}, \ldots, p_{s}^{-m} x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in X$.
If a function $f: X \rightarrow Y$ satisfies the inequality (2.4) then there exists a unique function $L: X \rightarrow Y$ that satisfies functional equation (1.1) and the inequality

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \sum_{i=1}^{\infty} p_{s}^{i-1} \phi_{s}\left(p_{s}^{-i} x\right) \tag{2.18}
\end{equation*}
$$

for all $x \in X$. The function L is given by

$$
\begin{equation*}
L(x)=f(0)+\lim _{m \rightarrow \infty} p_{s}^{m} f\left(p_{s}^{-m} x\right) \tag{2.19}
\end{equation*}
$$

for all $x \in X$.
Proof. Let $f: X \rightarrow Y$ satisfy the inequality (2.4). Referring the process (2.7)(2.10), we can replace inequality (2.10) with

$$
\left\|g(x)-p_{s} g\left(p_{s}^{-1} x\right)\right\| \leq \phi_{s}\left(p_{s}^{-1} x\right)
$$

for all $x \in X$. For each positive integer m and each $x \in X$, we get

$$
\begin{align*}
\left\|g(x)-p_{s}^{m} g\left(p_{s}^{-m} x\right)\right\| & =\left\|\left(\sum_{i=1}^{m} p_{s}^{i-1} g\left(p_{s}^{-(i-1)} x\right)-p_{s}^{i} g\left(p_{s}^{-i} x\right)\right)\right\| \\
& \leq \sum_{i=1}^{m}\left\|p_{s}^{i-1} g\left(p_{s}^{-(i-1)} x\right)-p_{s}^{i} g\left(p_{s}^{-i} x\right)\right\| \\
& =\sum_{i=1}^{m} p_{s}^{i-1}\left\|g\left(p_{s}^{-(i-1)} x\right)-p_{s} g\left(p_{s}^{-1} p_{s}^{-(i-1)} x\right)\right\| \\
& \leq \sum_{i=1}^{m} p_{s}^{i-1} \phi_{s}\left(p_{s}^{-i} x\right) \tag{2.20}
\end{align*}
$$

We investigate the sequence $\left\{p_{s}^{m} g\left(p_{s}^{-m} x\right)\right\}$. For each positive integer $k<l$ and each $x \in X$,

$$
\begin{aligned}
\left\|p_{s}^{k} g\left(p_{s}^{-k} x\right)-p_{s}^{l} g\left(p_{s}^{-l} x\right)\right\| & =p_{s}^{k}\left\|g\left(p_{s}^{-k} x\right)-p_{s}^{l-k} g\left(p_{s}^{-(l-k)} p_{s}^{-k} x\right)\right\| \\
& \leq p_{s}^{k} \sum_{i=1}^{l-k} p_{s}^{i-1} \phi_{s}\left(p_{s}^{-i-k} x\right) \\
& \leq p_{s}^{k-1} \sum_{i=1}^{\infty} p_{s}^{i} \phi_{s}\left(p_{s}^{-i-k} x\right)
\end{aligned}
$$

Since $\sum_{i=0}^{\infty} p_{s}^{i} \phi\left(p_{s}^{-i} x\right)$ converges, $\lim _{k \rightarrow \infty} p_{s}^{k-1} \sum_{i=0}^{\infty} p_{s}^{i} \phi_{s}\left(p_{s}^{-i-k} x\right)=0$. Thus,

$$
\begin{equation*}
L(x)=f(0)+\lim _{m \rightarrow \infty} p_{s}^{m} g\left(p_{s}^{-m} x\right) \tag{2.21}
\end{equation*}
$$

is well-defined in the Banach space Y. Furthermore, (2.20) becomes as $m \rightarrow \infty$,

$$
\|g(x)+f(0)-L(x)\| \leq \sum_{i=1}^{\infty} p_{s}^{i-1} \phi_{s}\left(p_{s}^{-i} x\right)
$$

By the definition of $g(x)$, inequality (2.18) is valid.

In order to show that L satisfies (1.1). We replace each x_{i} by $p_{s}^{-m} x_{i}$ in (2.8) and multiply p_{s}^{m}, then take the limit as $m \rightarrow \infty$, we have

$$
\left\|\sum_{i=1}^{n} p_{i} L\left(x_{i}\right)-L\left(\sum_{i=1}^{n} p_{i} x_{i}\right)\right\| \leq \lim _{m \rightarrow \infty} p_{s}^{m} \phi\left(p_{s}^{-m} x_{1}, \ldots, p_{s}^{-m} x_{n}\right)=0
$$

which implies (2.15).
To prove the uniqueness, suppose there is another function $L^{\prime}: X \longrightarrow Y$ satisfying (1.1) and (2.5). Replacing x by $p_{s}^{-1} x$ and put $x_{1}=\cdots=x_{s-1}=x_{s+1}=$ $\cdots=x_{n}=0$ in (2.15); consequently, (2.17) becomes

$$
p_{s}\left(L\left(p_{s}^{-1} x\right)-L^{\prime}\left(p_{s}^{-1} x\right)\right)=L(x)-L^{\prime}(x)
$$

For each positive m, we can show by mathematical induction that

$$
p_{s}^{m}\left(L\left(p_{s}^{-m} x\right)-L^{\prime}\left(p_{s}^{-m} x\right)\right)=L(x)-L^{\prime}(x)
$$

for all $x \in X$. Therefore, for each positive integer m,

$$
\begin{aligned}
\left\|L(x)-L^{\prime}(x)\right\| & =p_{s}^{m}\left\|L\left(p^{-m} x\right)-L^{\prime}\left(p_{s}^{-m} x\right)\right\| \\
& \leq p_{s}^{m}\left(\left\|L\left(p^{-m} x\right)-f\left(p_{s}^{-m} x\right)\right\|+\left\|L^{\prime}\left(p_{s}^{-m} x\right)-f\left(p_{s}^{-m} x\right)\right\|\right) \\
& \leq 2 p_{s}^{m} \sum_{i=1}^{\infty} p_{s}^{i-1} \phi_{s}\left(p_{s}^{-i-m} x\right)
\end{aligned}
$$

for all $x \in X$. Since $\sum_{i=1}^{\infty} p_{s}^{i} \phi\left(p_{s}^{-i} x\right)$ converges, $\lim _{m \rightarrow \infty} p_{s}^{m} \sum_{i=0}^{\infty} p_{s}^{i-1} \phi\left(p_{s}^{-i-m} x\right)=0$. We obtain that $L(x)=L^{\prime}(x)$ for all $x \in X$.

2.3 Stability

This section will give the stability of (1.1) in various case. The following theorem proves stability of (1.1).

Theorem 2.4. Let $\varepsilon>0$ be a real number. If a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)\right\| \leq \varepsilon \tag{2.22}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in X$, then there exists a unique function $L: X \rightarrow Y$ that satisfies (1.1) and

$$
\|f(x)-L(x)\| \leq \frac{\varepsilon}{1-p_{\min }}
$$

for all $x \in X$, where $p_{\text {min }}=\min \left\{p_{1}, \ldots, p_{n}\right\}$.

Proof. Let

$$
\phi\left(x_{1}, \ldots, x_{n}\right)=\varepsilon
$$

for all $x_{1}, \ldots, x_{n} \in X$ in Theorem [2.3, We can see that Theorem 2.3 holds for every $s=1, \ldots, n$. We choose s such that $p_{s}=p_{\text {min }}=\min \left\{p_{1}, \ldots, p_{n}\right\}$. Then (2.18) becomes

$$
\|f(x)-L(x)\| \leq \varepsilon \sum_{i=1}^{\infty} p_{s}^{i-1}=\frac{\varepsilon}{1-p_{s}}=\frac{\varepsilon}{1-p_{\min }}
$$

for all $x \in X$ as desired.
The following theorem proves the stability of (1.1).
Theorem 2.5. Let $\varepsilon>0$ and $r>0$ be real numbers with $r \neq 1$. If a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)\right\| \leq \varepsilon \sum_{i=1}^{n}\left\|x_{i}\right\|^{r} \tag{2.23}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in X$, then there exists a unique function $L: X \rightarrow Y$ that satisfies (1.1) and

$$
\|f(x)-L(x)\| \leq \frac{\varepsilon}{M}\|x\|^{r}
$$

for all $x \in X$, where $M=\max _{i=1, \ldots, n}\left|p_{i}-p_{i}^{r}\right|$.
Proof. In the case $0<r<1$, let

$$
\phi\left(x_{1}, \ldots, x_{n}\right)=\varepsilon \sum_{i=1}^{n}\left\|x_{i}\right\|^{r}
$$

for all $x_{1}, \ldots, x_{n} \in X$ in Theorem 2.3. Then we can see that Theorem 2.3 holds for every $s=1, \ldots, n$. We choose s such that

$$
\left|p_{s}-p_{s}^{r}\right|=M=\max _{i=1, \ldots, n}\left|p_{i}-p_{i}^{r}\right| .
$$

Thus, (2.5) becomes

$$
\begin{aligned}
\|f(x)-L(x)\| & \leq \varepsilon \sum_{i=1}^{\infty} p_{s}^{i-1}\left\|p_{s}^{-i} x\right\|^{r}=\varepsilon\|x\|^{r} p_{s}^{-1} \sum_{i=1}^{\infty} p_{s}^{i(1-r)} \\
& =\varepsilon p_{s}^{-1}\|x\|^{r}\left(\frac{p_{s}^{1-r}}{1-p_{s}^{1-r}}\right)=\frac{\varepsilon}{p_{s}^{r}-p_{s}}\|x\|^{r}=\frac{\varepsilon}{M}\|x\|^{r}
\end{aligned}
$$

for all $x \in X$. In the case $r>1$, let

$$
\phi\left(x_{1}, \ldots, x_{n}\right)=\varepsilon \sum_{i=1}^{n}\left\|x_{i}\right\|^{r}
$$

for all $x_{1}, \ldots, x_{n} \in X$ in Theorem 2.1. Since Theorem 2.1 holds for every $s=$ $1, \ldots, n$, (2.5) becomes

$$
\begin{aligned}
\|f(x)-L(x)\| & \leq \varepsilon \sum_{i=0}^{\infty} p_{s}^{-i-1}\left\|p_{s}^{i} x\right\|^{r}=\varepsilon\|x\|^{r} p_{s}^{-1} \sum_{i=0}^{\infty} p_{s}^{i(r-1)} \\
& =\varepsilon\|x\|^{r} p_{s}^{-1}\left(\frac{1}{1-p_{s}^{r-1}}\right)=\frac{\varepsilon}{p_{s}-p_{s}^{r}}\|x\|^{r}=\frac{\varepsilon}{M}\|x\|^{r}
\end{aligned}
$$

for all $x \in X$. This completes the proof.

References

[1] Acél J Dhombres J (1989) Functional Equations in Several variable, pp 142145. Cambridge University Press, Cambridge, UK.
[2] Czewik S (2002) Functional Equations and Inequalities in Several variable, pp 10-13. World Scientific, Singapore.
[3] Hyers DH (1941) On the Stability of the Linear Functional Equations, Proc. Nat.. Acad. Sci. Usa 27, 222-224.
[4] Jung SM (1998) Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 80, 411-416.
[5] Rassias JM (2003) On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl. 281, 516-524.
[6] Rassias JM and Rassias MJ (2005) Asympotic behavior of alternative Jensen and Jensen type functional equation, Bull. Sci. Math. 129, 545-558.
[7] Rassias ThM (1978) On the Stability of the Linear Mapping in Banach Spaces, Proc. Nat.. Acad. Sci. USA 72, 297-300.
[8] Ulam SM (1964) Problems in Modern Mathematics, chapter 6. Wiley, NY, USA.
(Received 13 June 2013)
(Accepted 26 October 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2014 by the Mathematical Association of Thailand. All rights reserved.

