Thai Journal of Mathematics Volume 12 (2014) Number 2 : 373–384

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Some Convolution and Inclusion Properties for Subclasses of Bounded Univalent Functions of Complex Order

R. M. El-Ashwah

Department of Mathematics, Faculty of Science Damietta University, New Damietta 34517, Egypt e-mail : r_elashwah@yahoo.com

Abstract : Making use of the Salagean operator, we defined two subclasses of bounded univalent functions of complex order and investigate convolution and inclusion properties of these classes.

Keywords : analytic functions; bounded functions; Salagean operator; complex order.

2010 Mathematics Subject Classification : 30C45; 30C50.

1 Introduction

Let \mathcal{A} denote the class of analytic functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1.1}$$

which are analytic in the open unit disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Let $\mathcal{S}^*(\alpha)$ and $\mathcal{K}(\alpha)$ $(0 \le \alpha < 1)$ denote the subclasses of \mathcal{A} that consists, respectively, of starlike of order α and convex of order α in \mathbb{U} . It is well-known that $\mathcal{S}^*(\alpha) \subset \mathcal{S}^*(0) = \mathcal{S}^*$ and $\mathcal{K}(\alpha) \subset \mathcal{K}(0) = \mathcal{K}$.

If f(z) and g(z) are analytic in \mathbb{U} , we say that f(z) is subordinate to g(z), written $f(z) \prec g(z)$ if there exists a Schwarz function ω , which (by definition)

Copyright \bigodot 2014 by the Mathematical Association of Thailand. All rights reserved.

is analytic in \mathbb{U} with $\omega(0) = 0$ and $|\omega(z)| < 1$ for all $z \in \mathbb{U}$, such that $f(z) = g(\omega(z)), z \in \mathbb{U}$. Furthermore, if the function g(z) is univalent in \mathbb{U} , then we have the following equivalence, (cf., e.g., [1–3]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

For functions f(z) given by (1.1) and g(z) given by

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k \tag{1.2}$$

the Hadamard product or convolution of f(z) and g(z) is defined by

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g * f)(z).$$
(1.3)

Nasr and Aouf [4] defined and studied the class $F(b, M)(b \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}, M > \frac{1}{2})$, of bounded starlike functions of complex order, for $f(z)/z \neq 0, z \in \mathbb{U}$ and fixed M, satisfying

$$\left| \frac{b-1 + \frac{zf'(z)}{f(z)}}{b} - M \right| < M \quad (z \in \mathbb{U}).$$

$$(1.4)$$

We note that

(i) F(1,1) = class of functions f(z) satisfying the condition

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < 1 \quad (z \in \mathbb{U}) \text{ (see Singh [5])};$$

(ii) F(1, M) = class of functions f(z) satisfying the condition

$$\left|\frac{zf'(z)}{f(z)} - M\right| < M \quad \left(M > \frac{1}{2}, z \in \mathbb{U}\right) \text{ (see Singh and Singh [6]);}$$

(iii) $F(\cos \lambda e^{-i\lambda}, M) = F_{\lambda,M} (|\lambda| < \frac{\pi}{2}; M > \frac{1}{2})$ is the bounded λ -spirallike functions f(z) satisfying the condition

$$\frac{e^{i\lambda}\frac{zf'(z)}{f(z)} - i\sin\lambda}{\cos\lambda} - M \left| < M \ (z \in \mathbb{U}) \ (\text{see Kulshestha} \ [7]). \right|$$

(iv) $F((1-\alpha)\cos\lambda e^{-i\lambda}, M) = F_{\lambda,M}(\alpha)$ $(|\lambda| < \frac{\pi}{2}; 0 \le \alpha < 1; M > \frac{1}{2})$ is the bounded λ -spirallike functions f(z) of order α satisfying the condition

$$\left|\frac{e^{i\lambda}\frac{zf'(z)}{f(z)} - \alpha\cos\lambda - i\sin\lambda}{(1-\alpha)\cos\lambda} - M\right| < M \ (z \in \mathbb{U}) \ (\text{see Aouf [8], with } p = 1).$$

Obviously $F(\cos \lambda e^{-i\lambda}, \infty) = S^{\lambda}(|\lambda| < \frac{\pi}{2})$, is the class of λ -spirallike functions introduced by Špaček [9] and studied by [10, 11]. Also $F((1-\alpha)\cos \lambda e^{-i\lambda}, \infty) =$ $S^{\lambda}(\alpha)(|\lambda| < \frac{\pi}{2}, 0 \le \alpha < 1)$, is the class of λ -spirallike functions of order α introduced by Libera [11]. Furthermore, $F(b, \infty) = S(b)$, the class of starlike functions of complex order introduced and studied by Nasr and Aouf [12] and $F(1-\alpha,\infty) = S^*(\alpha)$ ($0 \le \alpha < 1$) the class of starelike functions of order α (see Robertson [13]).

Also, Nasr and Aouf [14] defined and studied the class $G(b, M)(b \in \mathbb{C}^*, M > \frac{1}{2})$, of bounded convex functions of complex order, for $g'(z) \neq 0, z \in \mathbb{U}$ and fixed M, satisfying

$$\left| \frac{b + \frac{zg''(z)}{g'(z)}}{b} - M \right| < M \quad (z \in \mathbb{U}).$$

$$(1.5)$$

It follows from (1.4) and (1.5) that

$$g(z) \in G(b, M)$$
 if and only if $zg'(z) \in F(b, M)$ (1.6)

We note that

- (i) $G(\cos \lambda e^{-i\lambda}, M) = G_{\lambda,M} (|\lambda| < \frac{\pi}{2})$ is the class of bounded Robertson functions investigated by Kulshestha [7];
- (ii) $G((1-\alpha)\cos\lambda e^{-i\lambda}, M) = G_{\lambda,M}(\alpha)$ $(|\lambda| < \frac{\pi}{2}; 0 \le \alpha < 1)$ is the class of boundsd Robertson functions of order α investigated by Aouf [8] with p = 1.

Obviously $G(\cos \lambda e^{-i\lambda}, \infty) = C^{\lambda}(|\lambda| < \frac{\pi}{2})$, is the class of functions f(z) regular in U and satisfying the condition that zf'(z) is λ -spirallike, the class C^{λ} was introduced by Robertson [15]. Also $G((1-\alpha)\cos \lambda e^{-i\lambda}, \infty) = C^{\lambda}(\alpha)(|\lambda| < \frac{\pi}{2}; 0 \le \alpha < 1)$, is the class of functions f(z) regular in U and satisfying the condition that zf'(z) is λ -spirallike of order α was introduced by Libera and Ziegler [16] (see also [17, 18]). Furthermore, $G(b, \infty) = C(b)$, is the class of convex functions of complex order introduced and studied by Nasr and Aouf [19] and $G(1-\alpha,\infty) = C(\alpha)(0 \le \alpha < 1)$ the class of convex functions of order α (see Robertson [13]).

In [20] Aouf et al. used Salagean operator [21] to define the class $H_n(b, M)$ $(n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \mathbb{N} = \{1, 2, \ldots\}, b \in \mathbb{C}^*, M > \frac{1}{2})$ of functions $f(z) \in A$ satisfying the condition

$$\left| \frac{b-1 + \frac{D^{n+1}f(z)}{D^n f(z)}}{b} - M \right| < M \quad (z \in \mathbb{U}).$$

$$(1.7)$$

We note that $H_0(b, M) = F(b, M)$.

Also, we define $K_n(b, M)$ $(n \in \mathbb{N}_0, b \in \mathbb{C}^*, M > \frac{1}{2})$ as follows

$$\left| \frac{b - 1 + \frac{D^{n+2}f(z)}{D^{n+1}f(z)}}{b} - M \right| < M \quad (z \in \mathbb{U}).$$
 (1.8)

We note that $K_0(b, M) = H_1(b, M) = G(b, M)$.

It follows from (1.7) and (1.8) that

$$g(z) \in K_n(b, M)$$
 if and only if $zg'(z) \in H_n(b, M)$. (1.9)

Making use of the principal of subordination between analytic functions, we introduce the subclasses $F^*(b, M)$ and $G^*(b, M)$ of the class \mathcal{A}

$$F^{*}(b, M) = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \frac{1 + [b(1+m) - m]z}{1 - mz} \\ \left(b \in \mathbb{C}^{*}; m = 1 - \frac{1}{M}, M > \frac{1}{2}; z \in \mathbb{U} \right) \right\},$$
(1.1)

and

$$G^*(b,M) = \left\{ f \in \mathcal{A} : \frac{zg''(z)}{g'(z)} \prec \frac{b(1+m)z}{1-mz} \\ \left(b \in \mathbb{C}^*; m = 1 - \frac{1}{M}, M > \frac{1}{2}; z \in \mathbb{U} \right) \right\}.$$
 (1.2)

In this paper, we investigate convolution properties of the classes $F^*(b, M)$ and $G^*(b, M)$ associated with the Salagean operator. Using convolution properties, we find the necessary and sufficient condition, coefficient estimate and inclusion properties for these classes.

2 Convolution properties

Unless otherwise mentioned, we assume throughout this paper that $0 \leq \theta < 2\pi, b \in \mathbb{C}^*, n \in \mathbb{N}_0$ and $m = 1 - \frac{1}{M}, M > \frac{1}{2}$.

Theorem 2.1. The function f(z) defined by (1.1) is in the class $F^*(b, M)$ if and only if

$$\frac{1}{z} \left[f\left(z\right) * \frac{z - Cz^2}{\left(1 - z\right)^2} \right] \neq 0 \quad (z \in \mathbb{U})$$
(2.1)

for all $C = C_{\theta} = \frac{e^{-i\theta} + [b(1+m) - m]}{b(1+m)}, \ \theta \in [0, 2\pi), \ and \ also \ for \ C = 1.$

Proof. First suppose f(z) defined by (1.1) is in the class $F^*(b, M)$, we have

$$\frac{zf'(z)}{f(z)} \prec \frac{1 + [b(1+m) - m]z}{1 - mz} \quad (z \in \mathbb{U})$$
(2.2)

since the function from the left-hand side of the subordination is analytic in \mathbb{U} , it follows $f(z) \neq 0, z \in \mathbb{U}^* = U \setminus \{0\}, i.e.\frac{1}{z}f(z) \neq 0, z \in \mathbb{U}$, this is equivalent to the fact that (2.1) holds for C = 1.

From (2.2) according to the subordination of two functions we say that there exists a function w(z) analytic in U with w(0) = 0, |w(z)| < 1 such that

$$\frac{zf'(z)}{f(z)} = \frac{1 + [b(1+m) - m]w(z)}{1 - mw(z)} \quad (z \in \mathbb{U})$$

which is equivalent to

$$\frac{zf'(z)}{f(z)}\neq \frac{1+[b(1+m)-m]e^{i\theta}}{1-me^{i\theta}} \quad (z\in\mathbb{U}; 0\leq\theta<2\pi),$$

or

$$z\{zf'(z)(1-me^{i\theta}) - f(z)(1+[b(1+m)-m]e^{i\theta})\} \neq 0.$$
(2.3)

Since

$$f(z) * \frac{z}{(1-z)} = f(z)$$
 (2.4)

and

$$f(z) * \left[\frac{z}{(1-z)^2}\right] = zf'(z)$$
 (2.5)

Now from (2.3), (2.4) and (2.5), we obtain

$$=\frac{1}{z}\left[f(z)*\frac{z-\left[\frac{e^{-i\theta}+[b(1+m)-m]}{b(1+m)}\right]z^2}{(1-z)^2}.-b(1+m)e^{i\theta}\right]\neq 0 \ (z\in\mathbb{U}; 0\leq\theta<2\pi),$$

which leads to (2.1), which proves the necessary part of Theorem 2.1.

(ii) Reversely, because the assumption (2.1) holds for C = 1, it follows that $\frac{1}{z}f(z) \neq 0$ for all $z \in \mathbb{U}$, hence the function $\varphi(z) = \frac{zf'(z)}{f(z)}$ is analytic in \mathbb{U} (i.e. it is regular at $z_0 = 0$, with $\varphi(0) = 1$).

Since it was shown in the first part of the proof that the assumption (2.1) is equivalent to (2.3), we obtain that

$$\frac{zf'(z)}{f(z)} \neq \frac{1 + [b(1+m) - m]e^{i\theta}}{1 - me^{i\theta}} \quad (z \in \mathbb{U}; \theta \in [0, 2\pi)),$$
(2.6)

if we denote

$$\psi(z) = \frac{1 + [b(1+m) - m]z}{1 - mz},$$

the relation (2.6) shows that $\varphi(\mathbb{U}) \cap \psi(\partial \mathbb{U}) = \emptyset$. Thus, the simply-connected domain $\varphi(\mathbb{U})$ is included in a connected component of $\mathbb{C} \setminus \psi(\partial \mathbb{U})$. From here, using the fact that $\varphi(0) = \psi(0)$ together with the univalence of the function ψ , it follows that $\varphi(z) \prec \psi(z)$, which represents in fact the subordination (2.2), i.e. $f \in F^*(b; M)$.

Remark 2.2.

- (i) Putting $M = \infty$ and $e^{-i\theta} = -\varkappa (0 < \theta < 2\pi)$ in Theorem 2.1, we obtain the result obtained by Nasr and Aouf [22, Theorem 2];
- (ii) Putting b = 1, $M = \infty$ and $e^{i\theta} = \varkappa (0 < \theta < 2\pi)$ in Theorem 2.1, we obtain the result obtained by Padmanabhan and Ganesan [23, Theorem 2, with B = -1 and A = 1];
- (iii) Putting $b = 1 \alpha$ ($0 \le \alpha < 1$), $M = \infty$ and $e^{-i\theta} = -\varkappa (0 < \theta < 2\pi)$ in Theorem 2.1, we obtain the result obtained by Silverman et al. [24, Theorem 2];
- (iv) Putting $b = \cos \lambda e^{-i\lambda}$ $(|\lambda| < \frac{\pi}{2})$, $M = \infty$ and $e^{i\theta} = \varkappa (0 < \theta < 2\pi)$ in Theorem 2.1, we obtain the result obtained by Padmanabhan and Ganesan [23, Theorem 4, with B = -1 and A = 1];
- (v) Putting $b = \cos \lambda e^{-i\lambda} \left(|\lambda| < \frac{\pi}{2} \right)$, $M = \infty$ and $e^{-i\theta} = -\varkappa \left(0 < \theta < 2\pi \right)$ in Theorem 2.1, we obtain the result obtained by Silverman et al. [24, Theorem 4];
- (vi) Putting $b = \cos \lambda e^{-i\lambda} \left(|\lambda| < \frac{\pi}{2} \right)$, $M = \infty$ and $e^{-i\theta} = -\varkappa (0 < \theta < 2\pi)$ in Theorem 2.1, we obtain the result obtained by Ahuja [25, Corollary 1].

Putting $b = (1 - \alpha) \cos \lambda e^{-i\lambda}$ ($|\lambda| < \frac{\pi}{2}; 0 \le \alpha < 1$) and $M = \infty$ in Theorem 2.1, we obtain the following corollary (see Ahuja [26, Lemma 1] with $e^{-i\theta} = -\varkappa$ and $\gamma = 1$).

Corollary 2.3. The function f(z) defined by (1.1) is in the class $S^{\lambda}(\alpha)$ if and only if

$$\frac{1}{z} \left[f(z) * \frac{z - \frac{e^{-i\theta} + (1-\alpha)[e^{-2i\lambda} + 1] - 1}{(1-\alpha)[e^{-2i\lambda} + 1]} z^2}{(1-z)^2} \right] \neq 0 \ (0 \le \theta < \pi; z \in \mathbb{U}).$$

Theorem 2.4. The function f(z) defined by (1.1) is in the class $G^*(b, M)$ if and only if

$$\frac{1}{z} \left[f(z) * \frac{z + (1 - 2C)z^2}{(1 - z)^3} \right] \neq 0 \quad (z \in \mathbb{U}).$$
(2.7)

for all $C = C_{\theta} = \frac{e^{-i\theta} + [b(1+m) - m]}{b(1+m)}, \ \theta \in [0, 2\pi), \ and \ also \ for \ C = 1.$

Proof. Set

$$g(z) = \frac{z - Cz^2}{(1-z)^2},$$

and we note that

$$zg'(z) = \frac{z + (1 - 2C)z^2}{(1 - z)^3}.$$
(2.8)

From the identity zf'(z) * g(z) = f(z) * zg'(z) $(f, g \in \mathcal{A})$ and the fact that

$$f\left(z\right)\in G^{\ast}\left(b,M\right)\Leftrightarrow zf^{'}\left(z\right)\in F^{\ast}\left(b,M\right).$$

The result follows from Theorem 2.1.

Remark 2.5.

- (i) Putting $M = \infty$ and $e^{-i\theta} = -\varkappa (0 < \theta < 2\pi)$ in Theorem 2.4, we obtain the result obtained by Nasr and Aouf [22, Theorem 1];
- (ii) Putting b = 1, $M = \infty$ and $e^{i\theta} = \varkappa (0 < \theta < 2\pi)$ in Theorem 2.4, we obtain the result obtained by Padmanabhan and Ganesan [23, Theorem 1, with B = -1 and A = 1];
- (iii) Putting $b = 1 \alpha$ ($0 \le \alpha < 1$), $M = \infty$ and $e^{-i\theta} = -\varkappa (0 < \theta < 2\pi)$ in Theorem 2.4, we obtain the result obtained by Silverman et al. [24, Theorem 1];
- (iv) Putting $b = \cos \lambda e^{-i\lambda}$ $(|\lambda| < \frac{\pi}{2})$, $M = \infty$ and $e^{i\theta} = \varkappa (0 < \theta < 2\pi)$ in Theorem 2.4, we obtain the result obtained by Padmanabhan and Ganesan [23, Theorem 3, with B = -1 and A = 1];
- (v) Putting $b = \cos \lambda e^{-i\lambda} \left(|\lambda| < \frac{\pi}{2} \right)$, $M = \infty$ and $e^{-i\theta} = -\varkappa \left(0 < \theta < 2\pi \right)$ in Theorem 2.4, we obtain the result obtained by Silverman et al. [24, Theorem 3].

Putting $b = (1 - \alpha) \cos \lambda e^{-i\lambda}$ ($|\lambda| < \frac{\pi}{2}, 0 \le \alpha < 1$) and $M = \infty$ in Theorem 2.4, we obtain the following corollary.

Corollary 2.6. The function f(z) defined by (1.1) is in the class $C^{\lambda}(\alpha)$ if and only if

$$\frac{1}{z} \left[f\left(z\right) * \frac{z - \frac{2e^{-i\theta} + (1-\alpha)[e^{-2i\lambda} + 1] - 2}{(1-\alpha)[e^{-2i\lambda} + 1]} z^2}{(1-z)^3} \right] \neq 0 \quad (0 \le \theta < \pi; z \in \mathbb{U}) \,.$$

Theorem 2.7. A necessary and sufficient condition for the function f(z) defined by (1.1) to be in the class $H_n(b, M)$ is that

$$1 - \sum_{k=2}^{\infty} k^n a_k z^{k-1} \neq 0 \ (z \in \mathbb{U}).$$
(2.9)

and

$$1 - \sum_{k=2}^{\infty} k^n \frac{(k-1)\left[e^{-i\theta} - m\right] - b(1+m)}{b(1+m)} a_k z^{k-1} \neq 0 \quad (z \in \mathbb{U}).$$
 (2.10)

Proof. From Theorem 2.1, we find that $f(z) \in H_n(b, M)$ if and only if

$$\frac{1}{z} \left[D^n f(z) * \frac{z - Cz^2}{(1-z)^2} \right] \neq 0 \ (z \in \mathbb{U}).$$
(2.11)

for all $C = C_{\theta} = \frac{e^{-i\theta} + [b(1+m) - m]}{b(1+m)}, \ \theta \in [0, 2\pi)$, and also for C = 1. The left hand side of (2.11) may be written as

$$\begin{split} \frac{1}{z} \left[D^n f(z) * \left(\frac{z}{\left(1-z\right)^2} - \frac{Cz^2}{\left(1-z\right)^2} \right) \right] \\ &= \frac{1}{z} \left[D^{n+1} f(z) - C \left\{ D^{n+1} f(z) - D^n f(z) \right\} \right] \\ &= 1 - \sum_{k=2}^{\infty} k^n \frac{(k-1) \left[e^{-i\theta} - m \right] - b(1+m)}{b(1+m)} a_k z^{k-1}. \end{split}$$

Thus, the proof of Theorem 2.7 is completed.

Theorem 2.8. A necessary and sufficient condition for the function f(z) defined by (1.1) to be in the class $K_n(b, M)$ is that

$$1 - \sum_{k=2}^{\infty} k^{n+1} a_k z^{k-1} \neq 0 \quad (z \in \mathbb{U}) \,. \tag{2.12}$$

and

$$1 - \sum_{k=2}^{\infty} k^{n+1} \frac{(k-1) \left[e^{-i\theta} - m \right] - b(1+m)}{b(1+m)} a_k z^{k-1} \neq 0 \quad (z \in \mathbb{U}) \,. \tag{2.13}$$

Proof. From Theorem 2.4, we find that $f(z) \in K_n(b,M)$ if and only if

$$\frac{1}{z} \left[D^n f(z) * \frac{z + (1 - 2C)z^2}{(1 - z)^3} \right] \neq 0 \qquad (z \in \mathbb{U}).$$
(2.14)

for all $C = C_{\theta} = \frac{e^{-i\theta} + [b(1+m) - m]}{b(1+m)}, \ \theta \in [0, 2\pi)$, and also for C = 1.

Using the relation

$$\frac{z}{(1-z)^2} = z + \sum_{k=2}^{\infty} k z^k \ (z \in U),$$

it is easy to see that (2.14) holds for C = 1 if and only if (2.12) satisfied. Now from the formula

$$\frac{z}{(1-z)^3} = z + \sum_{k=2}^{\infty} \frac{k(k+1)}{2} z^{k-1} \ (z \in U),$$

we may easily deduce that

$$\frac{z + (1 - 2C)z^2}{(1 - z)^3} = z + \sum_{k=2}^{\infty} k \frac{(k - 1)[e^{-i\theta} - m] - b(1 + m)}{b(1 + m)} z^k$$
$$\Leftrightarrow 1 - \sum_{k=1}^{\infty} k^{n+1} \left[\frac{(k - 1)[e^{-i\theta} - m] - b(1 + m)}{b(1 + m)} \right] a_k z^k \neq 0,$$

this proves Theorem 2.8.

3 Coefficient estimate and inclusion property

As an applications of Theorems 2.7 and 2.8, we next determine coefficient estimate and inclusion property for a function of the form (1.1) to be in the classes $H_n(b, M)$ and $K_n(b, M)$.

Theorem 3.1. If the function f(z) defined by (1.1) and satisfy the inequalities

$$\sum_{k=2}^{\infty} k^n \mid a_k \mid < 1 , \qquad (3.1)$$

and

$$\sum_{k=2}^{\infty} k^{n} [(k-1)(1+m) + (1+m) |b|] |a_{k}| < (1+m) |b|, \qquad (3.2)$$

then $f(z) \in H_n(b, M)$.

Proof. According to (3.1) a simple computation shows that

$$\left| 1 + \sum_{k=2}^{\infty} k^{n} a_{k} z^{k-1} \right| \geq 1 - \left| \sum_{k=2}^{\infty} k^{n} a_{k} z^{k-1} \right|$$
$$\geq 1 - \sum_{k=2}^{\infty} k^{n} |a_{k}| |z|^{k-1}$$
$$\geq 1 - \sum_{k=1}^{\infty} k^{n} |a_{k}| > 0 \ (z \in U).$$

hence the condition (2.9) is satisfied.

Using the inequality

$$\left|\frac{(k-1)\left[e^{-i\theta}-m\right]-b(1+m)}{b(1+m)}\right| = \frac{\left|(k-1)\left[e^{-i\theta}-m\right]-b(1+m)\right|}{|b|(1+m)} \le \frac{(k-1)\left[1+m\right]+|b|(1+m)}{|b|(1+m)}$$

381

together with the assumption (3.2), we may easily deduce that

$$\begin{aligned} \left| 1 + \sum_{k=1}^{\infty} k^n \left(\frac{(k-1) \left[e^{-i\theta} - m \right] - b(1+m)}{b(1+m)} \right) a_k z^{k-1} \right| \\ > 1 - \sum_{k=1}^{\infty} k^n \left| \frac{(k-1) \left[e^{-i\theta} - m \right] - b(1+m)}{b(1+m)} \right| |a_k| \\ \ge 1 - \sum_{k=2}^{\infty} k^n \frac{(k-1) \left[1+m \right] + |b| (1+m)}{|b| (1+m)} |a_k| > 0 \ (z \in U) \end{aligned}$$

which show that (2.10) holds, hence the result follows from Theorem 2.7.

Similarly, we can prove the following theorem.

Theorem 3.2. If the function f(z) defined by (1.1) and satisfy the inequalities

$$\sum_{k=1}^{\infty} k^{n+1} \mid a_k \mid < 1, \tag{3.3}$$

and

$$\sum_{k=1}^{\infty} k^{n+1} [(k-1)(1+m) + (1+m) |b|] |a_k| < (1+m) |b|, \qquad (3.4)$$

then $f(z) \in K_n(b; M)$.

Remark 3.3. By specializing the parameters b, m and n, in Theorems 3.1 and 3.2, we obtain results corresponding to different subclasses of A defined in the introduction.

Theorem 3.4. $H_{n+1}(b, M) \subset H_n(b, M)$.

Proof. If $f \in H_{n+1}(b, M)$, then Theorem 2.7 gives

$$1 - \sum_{k=1}^{\infty} k^{n+1} \mid a_k \mid \neq 0, \tag{3.5}$$

and

$$1 - \sum_{k=2}^{\infty} k^{n+1} \frac{(k-1) \left[e^{-i\theta} - m \right] - b(1+m)}{b(1+m)} a_k z^{k-1} \neq 0 \quad (z \in \mathbb{U}; 0 \le \theta < 2\pi).$$
(3.6)

In general, we note that (3.6) may be written as

$$\left(1+\sum_{k=2}^{\infty} kz^{k-1}\right) * \left(1-\sum_{k=2}^{\infty} k^n \frac{(k-1)\left[e^{-i\theta}-m\right]-b(1+m)}{b(1+m)} a_k z^{k-1}\right) \neq 0.$$
(3.7)

But

$$\left(1+\sum_{k=2}^{\infty}kz^{k-1}\right)*\left(1+\sum_{k=2}^{\infty}k^{-1}z^{k-1}\right)=1+\sum_{k=2}^{\infty}z^{k-1}=\frac{1}{1-z}\quad (z\in\mathbb{U}).$$
(3.8)

Thus it follows from (3.7) that

$$1 - \sum_{k=2}^{\infty} k^n \frac{(k-1) \left[e^{-i\theta} - m \right] - b(1+m)}{b(1+m)} a_k z^{k-1} \neq 0 \quad (z \in \mathbb{U}; 0 < \theta < 2\pi).$$

In view of Theorem 2.7, we conclude that $f \in H_n(b, M)$.

Similary, we can prove Theorem 3.5.

Theorem 3.5. $\mathcal{K}_{n+1}(b, M) \subset \mathcal{K}_n(b, M)$.

Acknowledgement : The author thanks the referees for their valuable suggestions which led to improvement of this paper.

References

- T. Bulboacă, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- [2] S.S. Miller, P.T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- [3] S.S. Miller, P.T. Mocanu, Subordinates of differential superordinations, Complex Variables 48 (10) (2003) 815–826.
- [4] A.M. Nasr, M.K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad Sci. (Math. Sci.) 92 (2) (1983) 97–102.
- [5] R. Singh, On a class of starlike functions, J. Math. Soc. 32 (1968) 208–213.
- [6] R. Singh, V. Singh, On a class of bounded starlike functions, Indian J. Pure Appl. Math. 5 (1974) 733–754.
- [7] P.K. Kulshrestha, Bounded Rebertson functions, Rend. Mat. 6 (1) (1976) 137–150.
- [8] M.K. Aouf, Bounded p-valent Robertson functions of order α, Indian J Pure Appl. Math. 16 (7) (2001) 775–790.
- [9] L. Špaček, Přispěvek k teorii funkci prostyčh, Časopis Pěst. Mat. Fys. 62 (1933) 12–19.

383

- [10] P.K. Kulshrestha, Distortion of spiral-like mapping, Proc. Royal Irish Acad. 73A (1973) 1–5.
- [11] R.J. Libera, Univalent α -spiral functions, Canad. J. Mat. 19 (1969) 449–456.
- [12] A.M. Nasr, M.K. Aouf, Starlike function of complex order, J. Natural Sci. Math. 25(1985) 1–12.
- [13] M.S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936) 374–408.
- [14] A.M. Nasr, M.K. Aouf, On convex functions of complex order, Mansoura Sci. Bull. 8 (1982) 565–582.
- [15] M.S. Robertson, Univalent functions f(z) for which zf'(z) is spirallike, Michigan Math. J. 16 (1969) 97–101.
- [16] R.J. Libera, M.R. Ziegler, Regular functions f(z) for which zf'(z) is α -spiral, Trans. Amer. Math. Soc. 166 (1972) 361–370.
- [17] P.N. Chichra, Regular functions f(z) for which zf'(z) is α -spirallike, Proc. Amer. Math. Soc. 49 (1975) 151–160.
- [18] P.I. Sizuk, Regular functions f(z) for which zf'(z) is α -spirallike, Proc. Amer. Math. Soc. 49 (1975) 151–160.
- [19] A.M. Nasr, M.K. Aouf, Bounded convex functions of complex order, Mansoura Sci. Bull. 10 (1983) 513–526.
- [20] M.K. Aouf, H.E. Darwish, A.A. Attya, On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math. 32 (1) (2001) 1443–1452.
- [21] G.S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013 (1983) 362–372.
- [22] A.M. Nasr, M.K. Aouf, Characterizations for convex functions and starlike functions of complex order in $U = \{z : |z| < 1\}$, Bull. Fac. Sci., Assiut Univ. 11 (33) (1982) 117–121.
- [23] K.S. Padmanabhan, M.S. Ganesan, Convolution conditions for certain class of analytic functions, Indian J. Pure Appl. Math. 15 (1984) 777–780.
- [24] H. Silverman, E.M. Silvia, D. Telage, Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Z 162 (1978) 125–130.
- [25] O.P. Ahuja, Hadamard products and neighbourhoods of spiral-like functions, Yokohama Math. J. 40 (1993) 97–103.
- [26] O.P. Ahuja, Some results concerning spiral-likeness of class of analytic functions, Demontratio Math. 26 (3-4) (1993) 688–702.

(Received 10 August 2012) (Accepted 17 April 2013)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th