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1 Introduction

Let A denote the class of analytic functions of the form:

f(z) = z +
∞∑
k=2

akz
k (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}. Let S∗ (α) and
K (α) (0 ≤ α < 1) denote the subclasses of A that consists, respectively, of starlike
of order α and convex of order α in U. It is well-known that S∗ (α) ⊂ S∗ (0) = S∗

and K (α) ⊂ K (0) = K.
If f (z) and g (z) are analytic in U, we say that f (z) is subordinate to g (z),

written f(z) ≺ g(z) if there exists a Schwarz function ω, which (by definition)
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is analytic in U with ω(0) = 0 and |ω(z)| < 1 for all z ∈ U, such that f(z) =
g(ω(z)), z ∈ U. Furthermore, if the function g (z) is univalent in U, then we have
the following equivalence, (cf., e.g., [1–3]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

For functions f(z) given by (1.1) and g(z) given by

g(z) = z +
∞∑
k=2

bkz
k (1.2)

the Hadamard product or convolution of f(z) and g(z) is defined by

(f ∗ g) (z) = z +
∞∑
k=2

akbkz
k = (g ∗ f) (z). (1.3)

Nasr and Aouf [4] defined and studied the class F (b,M)(b ∈ C∗ = C\{0},M >
1
2 ), of bounded starlike functions of complex order, for f (z) /z ̸= 0, z ∈ U and
fixed M , satisfying ∣∣∣∣∣∣b− 1 + zf

′
(z)

f(z)

b
−M

∣∣∣∣∣∣ < M (z ∈ U) . (1.4)

We note that

(i) F (1, 1) = class of functions f(z) satisfying the condition∣∣∣∣∣zf
′
(z)

f (z)
− 1

∣∣∣∣∣ < 1 (z ∈ U) (see Singh [5]);

(ii) F (1,M) = class of functions f(z) satisfying the condition∣∣∣∣∣zf
′
(z)

f (z)
−M

∣∣∣∣∣ < M

(
M >

1

2
, z ∈ U

)
(see Singh and Singh [6]);

(iii) F (cosλe−iλ,M) = Fλ,M (|λ| < π
2 ;M > 1

2 ) is the bounded λ−spirallike
functions f(z) satisfying the condition∣∣∣∣∣∣e

iλ zf
′
(z)

f(z) − i sinλ

cosλ
−M

∣∣∣∣∣∣ < M (z ∈ U) (see Kulshestha [7]).

(iv) F ((1 − α) cosλe−iλ,M) = Fλ,M (α) (|λ| < π
2 ; 0 ≤ α < 1;M > 1

2 ) is the
bounded λ−spirallike functions f(z) of order α satisfying the condition∣∣∣∣∣∣e

iλ zf
′
(z)

f(z) − α cosλ− i sinλ

(1− α) cosλ
−M

∣∣∣∣∣∣ < M (z ∈ U) (see Aouf [8], with p = 1).
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Obviously F (cosλe−iλ,∞) = Sλ(|λ| < π
2 ), is the class of λ−spirallike functions

introduced by Špaček [9] and studied by [10, 11]. Also F ((1− α) cosλe−iλ,∞) =
Sλ(α)( |λ| < π

2 , 0 ≤ α < 1), is the class of λ−spirallike functions of order α
introduced by Libera [11]. Furthermore, F (b,∞) = S(b), the class of starlike
functions of complex order introduced and studied by Nasr and Aouf [12] and
F (1 − α,∞) = S∗(α) (0 ≤ α < 1) the class of starelike functions of order α (see
Robertson [13]).

Also, Nasr and Aouf [14] defined and studied the class G(b,M)(b ∈ C∗,M >
1
2 ), of bounded convex functions of complex order, for g′ (z) ̸= 0, z ∈ U and fixed
M , satisfying ∣∣∣∣∣∣b+

zg′′(z)
g′(z)

b
−M

∣∣∣∣∣∣ < M (z ∈ U) . (1.5)

It follows from (1.4) and (1.5) that

g(z) ∈ G(b,M) if and only if zg′ (z) ∈ F (b,M) (1.6)

We note that

(i) G(cosλe−iλ,M) = Gλ,M (|λ| < π
2 ) is the class of bounded Robertson func-

tions investigated by Kulshestha [7];

(ii) G((1 − α) cosλe−iλ,M) = Gλ,M (α) (|λ| < π
2 ; 0 ≤ α < 1) is the class of

boundsd Robertson functions of order α investigated by Aouf [8] with p = 1.

Obviously G(cosλe−iλ,∞) = Cλ(|λ| < π
2 ), is the class of functions f(z) regular

in U and satisfying the condition that zf ′ (z) is λ−spirallike, the class Cλ was
introduced by Robertson [15]. Also G((1−α) cosλe−iλ,∞) = Cλ(α)(|λ| < π

2 ; 0 ≤
α < 1), is the class of functions f(z) regular in U and satisfying the condition that
zf ′ (z) is λ−spirallike of order α was introduced by Libera and Ziegler [16] (see
also [17, 18]). Furthermore, G(b,∞) = C(b), is the class of convex functions of
complex order introduced and studied by Nasr and Aouf [19] and G(1− α,∞) =
C(α)(0 ≤ α < 1) the class of convex functions of order α (see Robertson [13]).

In [20] Aouf et al. used Salagean operator [21] to define the classHn(b,M) (n ∈
N0 = N ∪ {0},N = {1, 2, . . .}, b ∈ C∗,M > 1

2 ) of functions f(z) ∈ A satisfying the
condition ∣∣∣∣∣∣b− 1 + Dn+1f(z)

Dnf(z)

b
−M

∣∣∣∣∣∣ < M (z ∈ U) . (1.7)

We note that H0(b,M) = F (b,M).
Also, we define Kn(b,M) (n ∈ N0, b ∈ C∗,M > 1

2 ) as follows∣∣∣∣∣∣b− 1 + Dn+2f(z)
Dn+1f(z)

b
−M

∣∣∣∣∣∣ < M (z ∈ U) . (1.8)

We note that K0(b,M) = H1(b,M) = G(b,M).
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It follows from (1.7) and (1.8) that

g(z) ∈ Kn(b,M) if and only if zg′ (z) ∈ Hn(b,M). (1.9)

Making use of the principal of subordination between analytic functions, we
introduce the subclasses F ∗(b,M) and G∗(b,M) of the class A

F ∗(b,M) =

{
f ∈ A :

zf
′
(z)

f (z)
≺ 1 + [b(1 +m)−m]z

1−mz(
b ∈ C∗;m = 1− 1

M
,M >

1

2
; z ∈ U

)}
, (1.1)

and

G∗(b,M) =

{
f ∈ A :

zg′′ (z)

g′ (z)
≺ b(1 +m)z

1−mz(
b ∈ C∗;m = 1− 1

M
,M >

1

2
; z ∈ U

)}
. (1.2)

In this paper, we investigate convolution properties of the classes F ∗(b,M) and
G∗(b,M) associated with the Salagean operator. Using convolution properties,
we find the necessary and sufficient condition, coefficient estimate and inclusion
properties for these classes.

2 Convolution properties

Unless otherwise mentioned, we assume throughout this paper that 0 ≤ θ <
2π, b ∈ C∗, n ∈ N0 and m = 1− 1

M ,M > 1
2 .

Theorem 2.1. The function f (z) defined by (1.1) is in the class F ∗ (b,M) if and
only if

1

z

[
f (z) ∗ z − Cz2

(1− z)
2

]
̸= 0 (z ∈ U) (2.1)

for all C = Cθ =
e−iθ + [b(1 +m)−m]

b(1 +m)
, θ ∈ [0, 2π), and also for C = 1.

Proof. First suppose f (z) defined by (1.1) is in the class F ∗ (b,M) , we have

zf
′
(z)

f (z)
≺ 1 + [b(1 +m)−m]z

1−mz
(z ∈ U) (2.2)

since the function from the left-hand side of the subordination is analytic in U, it
follows f (z) ̸= 0, z ∈ U∗ = U\{0}, i.e. 1z f (z) ̸= 0, z ∈ U, this is equivalent to the
fact that (2.1) holds for C = 1.
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From (2.2) according to the subordination of two functions we say that there
exists a function w(z) analytic in U with w(0) = 0, | w(z) |< 1 such that

zf ′(z)

f(z)
=

1 + [b(1 +m)−m]w(z)

1−mw(z)
(z ∈ U)

which is equivalent to

zf ′(z)

f(z)
̸= 1 + [b(1 +m)−m]eiθ

1−meiθ
(z ∈ U; 0 ≤ θ < 2π),

or
z{zf ′(z)(1−meiθ)− f(z)(1 + [b(1 +m)−m]eiθ)} ≠ 0. (2.3)

Since
f(z) ∗ z

(1− z)
= f(z) (2.4)

and

f(z) ∗
[

z

(1− z)2

]
= zf ′(z) . (2.5)

Now from (2.3), (2.4) and (2.5), we obtain

=
1

z

f(z) ∗ z −
[
e−iθ+[b(1+m)−m]

b(1+m)

]
z2

(1− z)2
.− b(1 +m)eiθ

 ̸= 0 (z ∈ U; 0 ≤ θ < 2π),

which leads to (2.1), which proves the necessary part of Theorem 2.1.

(ii) Reversely, because the assumption (2.1) holds for C = 1, it follows that
1
z f(z) ̸= 0 for all z ∈ U, hence the function φ(z) = zf ′(z)

f(z) is analytic in U (i.e. it

is regular at z0 = 0, with φ(0) = 1).
Since it was shown in the first part of the proof that the assumption (2.1) is

equivalent to (2.3), we obtain that

zf ′(z)

f(z)
̸= 1 + [b(1 +m)−m]eiθ

1−meiθ
(z ∈ U; θ ∈ [0, 2π)), (2.6)

if we denote

ψ(z) =
1 + [b(1 +m)−m]z

1−mz
,

the relation (2.6) shows that φ(U) ∩ ψ(∂U) = ∅. Thus, the simply-connected
domain φ(U) is included in a connected component of C \ ψ(∂U). From here,
using the fact that φ(0) = ψ(0) together with the univalence of the function ψ,
it follows that φ(z) ≺ ψ(z), which represents in fact the subordination (2.2), i.e.
f ∈ F ∗ (b;M).
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Remark 2.2.

(i) Putting M = ∞ and e−iθ = −κ (0 < θ < 2π) in Theorem 2.1, we obtain the
result obtained by Nasr and Aouf [22, Theorem 2];

(ii) Putting b = 1, M = ∞ and eiθ = κ (0 < θ < 2π) in Theorem 2.1 , we
obtain the result obtained by Padmanabhan and Ganesan [23, Theorem 2,
with B = −1 and A = 1];

(iii) Putting b = 1 − α (0 ≤ α < 1) , M = ∞ and e−iθ = −κ (0 < θ < 2π) in
Theorem 2.1, we obtain the result obtained by Silverman et al. [24, Theorem
2];

(iv) Putting b = cosλe−iλ
(
|λ| < π

2

)
, M = ∞ and eiθ = κ (0 < θ < 2π) in

Theorem 2.1, we obtain the result obtained by Padmanabhan and Ganesan
[23, Theorem 4, with B = −1 and A = 1];

(v) Putting b = cosλe−iλ
(
|λ| < π

2

)
, M = ∞ and e−iθ = −κ (0 < θ < 2π) in

Theorem 2.1, we obtain the result obtained by Silverman et al. [24, Theorem
4];

(vi) Putting b = cosλe−iλ
(
|λ| < π

2

)
, M = ∞ and e−iθ = −κ (0 < θ < 2π) in

Theorem 2.1, we obtain the result obtained by Ahuja [25, Corollary 1].

Putting b = (1 − α) cosλe−iλ
(
|λ| < π

2 ; 0 ≤ α < 1
)
and M = ∞ in Theorem

2.1, we obtain the following corollary (see Ahuja [26, Lemma 1] with e−iθ =
−κ and γ = 1).

Corollary 2.3. The function f (z) defined by (1.1) is in the class Sλ(α) if and
only if

1

z

f (z) ∗ z − e−iθ+(1−α)[e−2iλ+1]−1
(1−α)[e−2iλ+1]

z2

(1− z)
2

 ̸= 0 (0 ≤ θ < π; z ∈ U) .

Theorem 2.4. The function f (z) defined by (1.1) is in the class G∗ (b,M) if and
only if

1

z

[
f (z) ∗ z + (1− 2C)z2

(1− z)
3

]
̸= 0 (z ∈ U) . (2.7)

for all C = Cθ =
e−iθ + [b(1 +m)−m]

b(1 +m)
, θ ∈ [0, 2π), and also for C = 1.

Proof. Set

g (z) =
z − Cz2

(1− z)
2 ,

and we note that

zg
′
(z) =

z + (1− 2C)z2

(1− z)
3 . (2.8)
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From the identity zf
′
(z) ∗ g (z) = f (z) ∗ zg′

(z) (f, g ∈ A) and the fact that

f (z) ∈ G∗ (b,M) ⇔ zf
′
(z) ∈ F ∗ (b,M) .

The result follows from Theorem 2.1.

Remark 2.5.

(i) Putting M = ∞ and e−iθ = −κ (0 < θ < 2π) in Theorem 2.4, we obtain the
result obtained by Nasr and Aouf [22, Theorem 1];

(ii) Putting b = 1, M = ∞ and eiθ = κ (0 < θ < 2π) in Theorem 2.4, we obtain
the result obtained by Padmanabhan and Ganesan [23, Theorem 1, with
B = −1 and A = 1];

(iii) Putting b = 1 − α (0 ≤ α < 1) , M = ∞ and e−iθ = −κ (0 < θ < 2π) in
Theorem 2.4, we obtain the result obtained by Silverman et al. [24, Theorem
1];

(iv) Putting b = cosλe−iλ
(
|λ| < π

2

)
, M = ∞ and eiθ = κ (0 < θ < 2π) in

Theorem 2.4, we obtain the result obtained by Padmanabhan and Ganesan
[23, Theorem 3, with B = −1 and A = 1];

(v) Putting b = cosλe−iλ
(
|λ| < π

2

)
, M = ∞ and e−iθ = −κ (0 < θ < 2π) in

Theorem 2.4, we obtain the result obtained by Silverman et al. [24, Theorem
3].

Putting b = (1 − α) cosλe−iλ
(
|λ| < π

2 , 0 ≤ α < 1
)
and M = ∞ in Theorem

2.4, we obtain the following corollary.

Corollary 2.6. The function f (z) defined by (1.1) is in the class Cλ(α) if and
only if

1

z

f (z) ∗ z − 2e−iθ+(1−α)[e−2iλ+1]−2
(1−α)[e−2iλ+1]

z2

(1− z)
3

 ̸= 0 (0 ≤ θ < π; z ∈ U) .

Theorem 2.7. A necessary and sufficient condition for the function f (z) defined
by (1.1) to be in the class Hn(b,M) is that

1−
∞∑
k=2

knakz
k−1 ̸= 0 (z ∈ U) . (2.9)

and

1−
∞∑
k=2

kn
(k − 1) [e−iθ −m]− b(1 +m)

b(1 +m)
akz

k−1 ̸= 0 (z ∈ U) . (2.10)
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Proof. From Theorem 2.1, we find that f (z) ∈ Hn(b,M) if and only if

1

z

[
Dnf(z) ∗ z − Cz2

(1− z)
2

]
̸= 0 (z ∈ U) . (2.11)

for all C = Cθ =
e−iθ + [b(1 +m)−m]

b(1 +m)
, θ ∈ [0, 2π), and also for C = 1.

The left hand side of (2.11) may be written as

1

z

[
Dnf(z) ∗

(
z

(1− z)
2 − Cz2

(1− z)
2

)]

=
1

z

[
Dn+1f(z)− C

{
Dn+1f(z)−Dnf(z)

}]
= 1−

∞∑
k=2

kn
(k − 1) [e−iθ −m]− b(1 +m)

b(1 +m)
akz

k−1.

Thus, the proof of Theorem 2.7 is completed.

Theorem 2.8. A necessary and sufficient condition for the function f (z) defined
by (1.1) to be in the class Kn(b,M) is that

1−
∞∑
k=2

kn+1akz
k−1 ̸= 0 (z ∈ U) . (2.12)

and

1−
∞∑
k=2

kn+1 (k − 1) [e−iθ −m]− b(1 +m)

b(1 +m)
akz

k−1 ̸= 0 (z ∈ U) . (2.13)

Proof. From Theorem 2.4, we find that f (z) ∈ Kn(b.M) if and only if

1

z

[
Dnf(z) ∗ z + (1− 2C)z2

(1− z)
3

]
̸= 0 (z ∈ U) . (2.14)

for all C = Cθ =
e−iθ + [b(1 +m)−m]

b(1 +m)
, θ ∈ [0, 2π), and also for C = 1.

Using the relation

z

(1− z)2
= z +

∞∑
k=2

kzk (z ∈ U),

it is easy to see that (2.14) holds for C = 1 if and only if (2.12) satisfied.
Now from the formula

z

(1− z)3
= z +

∞∑
k=2

k(k + 1)

2
zk−1 (z ∈ U),
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we may easily deduce that

z + (1− 2C)z2

(1− z)
3 = z +

∞∑
k=2

k
(k − 1)[e−iθ −m]− b(1 +m)

b(1 +m)
zk

⇔ 1−
∞∑
k=1

kn+1

[
(k − 1)[e−iθ −m]− b(1 +m)

b(1 +m)

]
akz

k ̸= 0,

this proves Theorem 2.8.

3 Coefficient estimate and inclusion property

As an applications of Theorems 2.7 and 2.8, we next determine coefficient
estimate and inclusion property for a function of the form (1.1) to be in the classes
Hn(b,M) and Kn(b,M).

Theorem 3.1. If the function f(z) defined by (1.1) and satisfy the inequalities

∞∑
k=2

kn | ak |< 1 , (3.1)

and
∞∑
k=2

kn[(k − 1)(1 +m) + (1 +m) |b|] | ak |< (1 +m) |b| , (3.2)

then f(z) ∈ Hn(b,M).

Proof. According to (3.1) a simple computation shows that∣∣∣∣∣1 +
∞∑
k=2

knakz
k−1

∣∣∣∣∣ ≥ 1−

∣∣∣∣∣
∞∑
k=2

knakz
k−1

∣∣∣∣∣
≥ 1−

∞∑
k=2

kn |ak| |z|
k−1

≥ 1−
∞∑
k=1

kn |ak| > 0 (z ∈ U),

hence the condition (2.9) is satisfied.
Using the inequality∣∣∣∣ (k − 1) [e−iθ −m]− b(1 +m)

b(1 +m)

∣∣∣∣ =
∣∣(k − 1) [e−iθ −m]− b(1 +m)

∣∣
|b| (1 +m)

≤ (k − 1) [1 +m] + |b| (1 +m)

|b| (1 +m)
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together with the assumption (3.2), we may easily deduce that∣∣∣∣∣1 +
∞∑
k=1

kn
(
(k − 1) [e−iθ −m]− b(1 +m)

b(1 +m)

)
akz

k−1

∣∣∣∣∣
> 1−

∞∑
k=1

kn
∣∣∣∣ (k − 1) [e−iθ −m]− b(1 +m)

b(1 +m)

∣∣∣∣ | ak |

≥ 1−
∞∑
k=2

kn
(k − 1) [1 +m] + |b| (1 +m)

|b| (1 +m)
| ak |> 0 (z ∈ U)

which show that (2.10) holds, hence the result follows from Theorem 2.7.

Similarly, we can prove the following theorem.

Theorem 3.2. If the function f(z) defined by (1.1) and satisfy the inequalities

∞∑
k=1

kn+1 | ak |< 1, (3.3)

and
∞∑
k=1

kn+1[(k − 1)(1 +m) + (1 +m) |b|] | ak |< (1 +m) |b| , (3.4)

then f(z) ∈ Kn (b;M) .

Remark 3.3. By specializing the parameters b,m and n, in Theorems 3.1 and
3.2, we obtain results corresponding to different subclasses of A defined in the
introduction.

Theorem 3.4. Hn+1(b,M) ⊂ Hn(b,M).

Proof. If f ∈ Hn+1(b,M), then Theorem 2.7 gives

1−
∞∑
k=1

kn+1 | ak |̸= 0, (3.5)

and

1−
∞∑
k=2

kn+1 (k − 1) [e−iθ −m]− b(1 +m)

b(1 +m)
akz

k−1 ̸= 0 (z ∈ U; 0 ≤ θ < 2π) .

(3.6)
In general, we note that (3.6) may be written as(

1 +

∞∑
k=2

kzk−1

)
∗

(
1−

∞∑
k=2

kn
(k − 1) [e−iθ −m]− b(1 +m)

b(1 +m)
akz

k−1

)
̸= 0. (3.7)
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But(
1 +

∞∑
k=2

kzk−1

)
∗

(
1 +

∞∑
k=2

k−1zk−1

)
= 1 +

∞∑
k=2

zk−1 =
1

1− z
(z ∈ U) . (3.8)

Thus it follows from (3.7) that

1−
∞∑
k=2

kn
(k − 1) [e−iθ −m]− b(1 +m)

b(1 +m)
akz

k−1 ̸= 0 (z ∈ U; 0 < θ < 2π) .

In view of Theorem 2.7, we conclude that f ∈ Hn(b,M).

Similary, we can prove Theorem 3.5.

Theorem 3.5. Kn+1 (b,M) ⊂ Kn (b,M) .

Acknowledgement : The author thanks the referees for their valuable sugges-
tions which led to improvement of this paper.
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