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1 Introduction, Definitions and Preliminaries

Clausen’s integral (or, synonymously, Clausen’s function) Cl2(x) is defined by

Cl2(x) :=
∞∑
k=1

sin kx

k2
= −

∫ x

0

log

[
2 sin

(
1

2
η

)]
dη (x ∈ R), (1.1)

where R denotes the set of real numbers. This integral was first treated by Clausen
in 1832 [1] and has since then been investigated by many authors (see, e.g., [2],
[3], [4], [5, Chapter 4], [6, Section 2.4], and many of the references cited therein).
Some known properties and special values of the Clausen integral (or the Clausen
function) include the periodic properties given by

Cl2(2nπ ± θ) = Cl2(±θ) = ±Cl2(θ), (1.2)

which, for n = 1 and with θ replaced by π + θ, yields

Cl2(π + θ) = −Cl2(π − θ). (1.3)

From the series definition (1.1), it is obvious that

Cl2(nπ) = 0 (n ∈ Z := {0,±1,±2, · · · }), (1.4)

which, for n = 1, gives∫ π

0

log

(
2 sin

1

2
θ

)
dθ = 0 and

∫ π/2

0

log (sin θ) dθ = −π
2

log 2. (1.5)

Setting θ = 1
2π in the series definition (1.1), and using the periodic property (1.3),

we find that

Cl2

(
1

2
π

)
= G = −Cl2

(
3

2
π

)
, (1.6)

where G is the Catalan constant defined by

G :=
1

2

∫ 1

0

K(κ)dκ =

∞∑
m=0

(−1)m

(2m+ 1)2
∼= 0.91596 55941 · · · , (1.7)

where K(κ) is the complete elliptic integral of the first kind given by

K(κ) :=

∫ π/2

0

dt√
1− κ2 sin2 t

(|κ| < 1). (1.8)

From (1.2), (1.3) and (1.4), it suffices to consider Cl2 (x) in the interval (0, π).
The following special values of Cl2 (x) for arguments

x =
p π

q
(p, q ∈ N := {1, 2, 3, . . .})
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were presented by Grosjean [3, p. 334, Eq. (12)] (see also Doelder [2]):

Cl2

(
p

q
π

)
=

1

4 q2

q−1∑
r=1

[
ψ′
(
r

2q

)
− ψ′

(
1− r

2q

)]
sin

(
r
p

q
π

)
(
q ∈ N; p ∈ {1, 2, . . . , 2q − 1}; (p, q) = 1

)
,

(1.9)

where (and elsewhere in this paper) an empty sum is understood to be nil. For
example, we have

Cl2

(
1

3
π

)
=

√
3

6

[
ψ′
(
1

3

)
− 2

3
π2

]
(1.10)

and

Cl2

(
1

4
π

)
=

1

32

[√
2ψ′

(
1

8

)
− 2(

√
2 + 1)π2 − 8(2

√
2− 1)G

]
, (1.11)

where G is the Catalan constant given in (1.7). Here ψ(z) denotes the Psi (or
Digamma) function defined by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)

Γ(z)
or log Γ(z) =

∫ z

1

ψ(t) dt (1.12)

in terms of the familiar Gamma function Γ(z). The Polygamma functions ψ(n)(z) (n ∈
N) are defined by

ψ(n)(z) :=
dn+1

dzn+1
log Γ(z) =

dn

dzn
ψ(z) (n ∈ N0; z ∈ C \ Z−

0 ), (1.13)

where N0 := N ∪ {0}, C and Z−
0 denote the sets of nonnegative integers, com-

plex numbers and nonpositive integers, respectively. In terms of the Hurwitz (or
generalized) Zeta function ζ(s, a) defined by

ζ(s, a) :=

∞∑
k=0

1

(k + a)
s (ℜ(s) > 1; a ∈ C \ Z−

0 ), (1.14)

we can write

ψ(n)(z) = (−1)n+1 n! ζ(n+ 1, z) (n ∈ N; z ∈ C \ Z−
0 ), (1.15)

which may be used to deduce the properties of the Polygamma functions ψ(n)(z) (n ∈
N) from those of ζ(s, z) (s = n + 1; n ∈ N) and vice versa. For example, in view
of the relation (1.15), we find from (1.9), (1.10) and (1.11) that

Cl2

(
p

q
π

)
=

1

4 q2

q−1∑
r=1

[
ζ

(
2,

r

2q

)
− ζ

(
2, 1− r

2q

)]
sin

(
r
p

q
π

)
(
q ∈ N; p ∈ {1, 2, . . . , 2q − 1}; (p, q) = 1

)
,

(1.16)
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Cl2
(π
3

)
=

√
3

6

[
ζ

(
2,

1

3

)
− 2π2

3

]
(1.17)

and

Cl2
(π
4

)
=

1

32

[√
2 ζ

(
2,

1

8

)
− 2(

√
2 + 1)π2 − 8(2

√
2− 1)G

]
. (1.18)

The Riemann Zeta function ζ(s) is defined by

ζ(s) :=



∞∑
n=1

1

ns
=

1

1− 2−s

∞∑
n=1

1

(2n− 1)s
(
ℜ(s) > 1

)
1

1− 21−s

∞∑
n=1

(−1)n−1

ns
(
ℜ(s) > 0; s ̸= 1

)
,

(1.19)

which, when compared with the definition in (1.14), yields

ζ(s) = ζ(s, 1) = (2s − 1)
−1

ζ

(
s,

1

2

)
= 1 + ζ(s, 2). (1.20)

The Clausen function Cl2(x) arises in several applications. A large number of
indefinite integrals of logarithmic or trigonometric functions can be expressed in
closed form in terms of Cl2(x) (see, e.g., [5] and [7, Section 1.6]). The G-function
introduced and systematically investigated by Barnes in about 1900 (see [8, 9, 10]),
which was revived in about the middle of the 1980s in connection mainly with the
study of the determinants of the Laplacians, also has several useful and widely-
spread applications (see, e.g., [6, Chapter 5]). Here, in our present investigation, we
present some interesting definite integral formulas by using a known relationship
between the Clausen function Cl2(x) and the Barnes G-function.

2 The Clausen function Cl2(x) and the Barnes
G-function

Barnes (see [8]; see also [6, Section 1.4]) defined the G-function satisfying each
of the following properties:

(a) G(z + 1) = Γ(z)G(z) (z ∈ C);
(b) G(1) = 1;
(c) Asymptotically,

logG(z + n+ 2) =

(
n+ 1 + z

2

)
log(2π)

+

(
n2

2
+ n+

5

12
+
z2

2
+ (n+ 1)z

)
log n

− 3n2

4
− n− nz − logA+

1

12
+O

(
n−1

)
(n→ ∞),

(2.1)
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where A is the Glaisher-Kinkelin constant defined by

logA = lim
n→∞

{
n∑

k=1

k log k −
(
n2

2
+
n

2
+

1

12

)
log n+

n2

4

}
, (2.2)

the numerical value of A being given by

A ∼= 1.282427130 · · · .

From this definition, Barnes [8] deduced several explicit Weierstrass canonical
product forms of the G-function, one of which is recalled here in the following
form:

G(z + 1) = (2π)
1
2 z exp

(
−1

2
z − 1

2
(γ + 1)z2

)
·

∞∏
k=1

{(
1 +

z

k

)k
exp

(
−z + z2

2k

)}
,

(2.3)

where γ denotes the Euler-Mascheroni constant defined by

γ := lim
n→∞

(
n∑

k=1

1

k
− log n

)
∼= 0.57721 56649 01532 86060 65120 90082 40243 1042 · · · . (2.4)

For later use, we recall each of the following known special values of the G-
function (see [8] and [6, Section 1.4]):

G

(
1

2

)
= 2

1
24 ·π− 1

4 ·e 1
8 ·A− 3

2 . (2.5)

G(n+2) = 1! 2! 3! · · · n! and G(n+1) =
(n!)n

1·2·32·43 · · ·nn−1
(n ∈ N). (2.6)

G

(
1

4

)
= e

3
32−

G
4π ·A− 9

8

[
Γ

(
1

4

)]− 3
4

∼= 0.293756 · · · (2.7)

and

G

(
3

4

)
= 2−

1
8 ·π− 1

4 ·e 3
32+

G
π ·A− 9

8

[
Γ

(
1

4

)] 1
4

∼= 0.848718 · · · , (2.8)

where

Γ

(
1

4

)
∼= 3.62560 99082 21908 · · · . (2.9)

G
(
3
4

)
G
(
5
4

) = 2−
1
8 ·π− 1

4 ·e G
2π . (2.10)

There is an interesting known relationship between the Clausen function Cl2(x)
and the Barnes G-function, which is asserted by the following lemma (see, e.g., [6,
p. 175]; see also [5, Section 1.11]).
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Lemma. The following relationship holds true:

Cl2(x) = x log π − x log
(
sin

x

2

)
+ 2π log

(
G
(
1− x

2π

)
G
(
1 + x

2π

)) , (2.11)

where G is the Barnes G-function.

Proof. For the sake of completeness, we simply and briefly outline the demonstra-
tion of the Lemma. Indeed, in view of Kinkelin’s integral formula (see [11]):∫ z

0

πt cotπt dt = z log(2π) + log
G(1− z)

G(1 + z)
, (2.12)

which Kinkelin [11] derived mainly from the formula (2.3) and the following known
expansion:

πz cot(πz) = 1 + 2
∞∑

n=1

z2

z2 − n2
(z ∈ C \ Z). (2.13)

Now, by using integration by parts in (2.12), we have (see, e.g., [6, p. 45, Eq.
(28)]) ∫ z

0

log sin (πt) dt = z log

(
sin πz

2π

)
+ log

G(1 + z)

G(1− z)
. (2.14)

The Clausen integral in (1.1) is easily expressed as follows:

Cl2(x) = −x log 2− 2

∫ x
2

0

log(sin t) dt (x ∈ R). (2.15)

On the other hand, we find from (2.14) that∫ x
2

0

log(sin t) dt =
x

2
log

(
sin x/2

2π

)
+ π log

G
(
1 + x

2π

)
G
(
1− x

2π

) . (2.16)

Thus, by substituting from the integral (2.16) into (2.15), we are easily led to the
desired relation (2.11).

Setting x = p
qπ and x = π

k (k = 3, 4) in (2.11), and using the formulas (1.16),

(1.17) and (1.18), we obtain the following evaluations analogous to (2.10):

log

G
(
1− p

2q

)
G
(
1 + p

2q

)
 =

p

2q
log

[
1

π
sin

(
p π

2q

)]

+
1

8πq2

q−1∑
r=1

[
ζ

(
2,

r

2q

)
− ζ

(
2, 1− r

2q

)]
sin

(
rpπ

q

)
(
q ∈ N; p ∈ {1, 2, . . . , 2q − 1}; (p, q) = 1

)
,

(2.17)
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G
(
5
6

)
G
(
7
6

) = (2π)−
1
6 exp

[ √
3

12π
ζ

(
2,

1

3

)
− π

6
√
3

]
(2.18)

and

G
(
7
8

)
G
(
9
8

) =

(√
2−

√
2

2π

) 1
8

· exp

[ √
2

64π
ζ

(
2,

1

8

)
− π

32
(
√
2 + 1)− 1

8π
(2
√
2− 1)G

]
.

(2.19)

3 Integral Formulas Derivable from the
Relationship (2.11)

By applying (2.11) and (2.12), we can deduce the following integral formula
for Cl2(x):

Cl2(x) = −x log
(
2 sin

x

2

)
+
π2

2

∫ x
π

0

t cot
πt

2
dt (0 6 x < 2π), (3.1)

which was used by Wood [12] and Kölbig [4] to give the numerical calculation of
Cl2(x) with higher precision. Setting x = π

k (k = 1, 2, 3, 4) in (3.1), and applying
(1.5), (1.6), (1.17) and (1.18), we obtain the following integral formulas:∫ π

2

0

u cot u du =
π

2
log 2; (3.2)

∫ π
4

0

u cot u du =
π

8
log 2 +

G

2
, (3.3)

which is a known result (see, e.g., [6, p. 51, Eq. (59)]);∫ π
6

0

u cot u du =

√
3

12

[
ζ

(
2,

1

3

)
− 2π2

3

]
; (3.4)

∫ π
8

0

u cot u du =
π

16
log(2−

√
2)

+
1

64

[√
2 ζ

(
2,

1

8

)
− 2(

√
2 + 1)π2 − 8(2

√
2− 1)G

]
.

(3.5)

We now recall an integral formula [6, p. 46, Eq. (34)] in the following form:∫ πz

0

u tanu du = π log
G(1− z)

G(1 + z)
− π

2
log

G(1− 2z)

G(1 + 2z)
. (3.6)
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By setting z = 1
4 and z = 1

8 in (3.6) and using (2.10) and (2.19), we obtain the
following two further integral formulas:∫ π

4

0

u tanu du = −π
8

log 2 +
G

2
, (3.7)

which is a known result (see, e.g., [6, p. 52, Eq. (61)]);∫ π
8

0

u tanu du =
π

16
log

2−
√
2

2

+

√
2

64
ζ

(
2,

1

8

)
− π2

32

(√
2 + 1

)
− 1

8

(
1 + 2

√
2
)
G.

(3.8)

We next recall another integral formula [6, p. 46, Eq. (37)]:∫ z

0

(πt cotπt)2 dt

= −π
2z3

3
− πz2 cotπz + 2z log(2π) + 2 log

G (1− z)

G (1 + z)
,

(3.9)

which is the corrected version of [13, Eq. (2.11)]. By combining (3.9) and (2.11),
we get the following integral formula for Cl2(x):

Cl2(x) =
x3

24
+
x2

4
cot

x

2
− x log

(
2 sin

x

2

)
+

∫ x
2

0

(u cotu)
2
du. (3.10)

Setting x = π
k (k = 1, 2, 3, 4) in (3.9). and using (1.5), (1.6), (1.17) and (1.18),

we arrive at the following integral formulas:∫ π
2

0

(u cotu)
2
du = π log 2− π3

24
; (3.11)

∫ π
4

0

(u cotu)
2
du = − π3

192
− π2

16
+
π

4
log 2 + G, (3.12)

which is a known formula (see, e.g., [6, p. 52, Eq. (66)]);∫ π
6

0

(u cotu)
2
du = − π3

648
− 5

√
3π2

36
+

√
3

6
ζ

(
2,

1

3

)
; (3.13)

∫ π
8

0

(u cotu)
2
du = − π3

1536
− 5π2

64(
√
2− 1)

+
π

8
log(2−

√
2)

+

√
2

32
ζ

(
2,

1

8

)
− 1

4
(2
√
2− 1)G.

(3.14)
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The integral formula in [6, p. 46, Eq. (33)] should be corrected as follows (cf.
[13, Eq. (2.7)]):∫ z

0

(
πt

sinπt

)2

dt = −πz2 cot πz + 2z log(2π) + 2 log
G (1− z)

G (1 + z)
. (3.15)

By combining (2.11) and (3.15), we can deduce another integral formula for Cl2(x):

Cl2(x) =
x2

4
cot

x

2
− x log

(
2 sin

x

2

)
+

∫ x
2

0

( u

sinu

)2
du. (3.16)

Setting x = π
k (k = 1, 2, 3, 4) in (3.16), and using (1.5), (1.6), (1.17) and (1.18),

we obtain the following integral formulas:∫ π
2

0

( u

sinu

)2
du = π log 2; (3.17)

∫ π
4

0

( u

sinu

)2
du = −π

2

16
+
π

4
log 2 + G, (3.18)

which is a known formula (see, e.g., [6, p. 52, Eq. (64)]);∫ π
6

0

( u

sinu

)2
du = −5

√
3π2

36
+

√
3

6
ζ

(
2,

1

3

)
; (3.19)

∫ π
8

0

( u

sinu

)2
du = − 5π2

64(
√
2− 1)

+
π

8
log(2−

√
2)

+

√
2

32
ζ

(
2,

1

8

)
− 1

4
(2
√
2− 1)G.

(3.20)

By using integration by parts in (3.16), we obtain the following integral formula
for Cl2(x):

Cl2(x) =
x3

24
csc2

(x
2

)
+
x2

4
cot

x

2
− x log

(
2 sin

x

2

)
+

2

3

∫ x
2

0

u3 cosu

sin3 u
du.

(3.21)

Setting x = π
k (k = 1, 2, 3, 4) in (3.21), and applying (1.5), (1.6), (1.17) and

(1.18), we get the following integral formulas:∫ π
2

0

u3 cosu

sin3 u
du = −π

3

16
+

3π

2
log 2, (3.22)

∫ π
4

0

u3 cosu

sin3 u
du = −3π3

192
− 3π2

32
+

3π

8
log 2 +

3

2
G, (3.23)
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6

0

u3 cosu

sin3 u
du = − π3

108
− 5

√
3π2

24
+

√
3

4
ζ

(
2,

1

3

)
(3.24)

and ∫ π
8

0

u3 cosu

sin3 u
du = − π3

256(2−
√
2)

− 15π2

128(
√
2− 1)

+
3π

16
log(2−

√
2) +

3
√
2

64
ζ

(
2,

1

8

)
− 3

8
(2
√
2− 1)G.

(3.25)

Next, upon integration by parts in (3.21), we get the following integral formula
for Cl2(x):

Cl2(x) =
x4 cos x

2

96 sin3
(
x
2

) + x3

24
csc2

(x
2

)
+
x2

4
cot

x

2
− x log

(
2 sin

x

2

)
− 1

6

∫ x
2

0

u4
(
2 csc2 u− 3 csc4 u

)
du.

(3.26)

Setting x = π
k (k = 1, 2, 3, 4) in (3.26), and using (1.5), (1.6), (1.17) and (1.18),

we find the following integral formulas:∫ π
2

0

u4
(
2 csc2 u− 3 csc4 u

)
du =

π3

4
− 6π log 2, (3.27)

∫ π
4

0

u4
(
2 csc2 u− 3 csc4 u

)
du =

π4

128
+
π3

16
+

3π2

8
− 3π

2
log 2− 6G, (3.28)

∫ π
6

0

u4
(
2 csc2 u− 3 csc4 u

)
du

=

√
3π4

324
+
π3

27
+

5
√
3π2

6
−
√
3 ζ

(
2,

1

3

) (3.29)

and ∫ π
8

0

u4
(
2 csc2 u− 3 csc4 u

)
du

=
π4

1024 (3
√
2− 4)

+
π3

64(2−
√
2)

+
15π2

32(
√
2− 1)

− 3π

4
log(2−

√
2)− 3

√
2

16
ζ

(
2,

1

8

)
+

3

2
(2
√
2− 1)G.

(3.30)

4 Series Associated with the Zeta Functions

A classical about three-century-old theorem of Christian Goldbach (1690-
1764), which was stated in a letter dated 1729 from Goldbach to Daniel Bernoulli
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(1700-1782), was revived in 1986 by Shallit and Zikan [14] as the following problem:∑
ω∈S

1

ω − 1
= 1, (4.1)

where S denotes the set of all nontrivial integer kth powers, that is,

S :=
{
nk : n, k ∈ N \ {1}

}
.

In fact, Shallit and Zikan [14] showed that Goldbach’s theorem (4.1) assumes the
following elegant form: ∑

ω∈S

1

ω − 1
=

∞∑
k=2

[ζ(k)− 1] = 1 (4.2)

in terms of the Riemann Zeta function ζ(s) given in (1.19). An interesting histor-
ical introduction to the remarkably widely- and extensively-investigated subject
of closed-form evaluation of series involving the Zeta functions was presented by
Srivastava et al. (see [15] and [16]; see also [17] and [6]). The formula (4.2) is
presumably the origin of this fascinating subject (see [14] and [15]; see also [17]
and [18]). A considerably large number of formulas have been derived, by using
various methods and techniques, in the vast literature on this subject (see, e.g.,
[16, Chapter 3]; see also [19], [20], [15], [17], [6, Chapter 3], [18] and [21]). For a
simple example, we recall here the following sum:

∞∑
k=1

ζ(2k + 1)

(2k + 1) 22k
= log 2− γ, (4.3)

which, as noted by Srivastava [15], is contained in a memoir of 1781 by Leonhard
Euler (1707-1783) (see also [20, p. 28, Eq. (8)]; it was rederived by Wilton [21,
p. 92]). A rather extensive collection of closed-form sums of series involving the
Zeta functions was presented in [16] and [6]. For a very recent development in this
subject, see the work by Choi and Srivastava [22].

In this section. we present further integral formulas by using closed-form
evaluations of series involving the Zeta functions. To do this, we begin by applying
a well-known identity (see, e.g., [6, p. 166, Eq. (18)]):

ζ(2n) = (−1)n+1 (2π)2n

2 · (2n)!
B2n (n ∈ N0) , (4.4)

Bn being the classical Bernoulli numbers (see, e.g., [6, Section 1.7]), to a known
indefinite integral formula [23, p. 201, Entry 9.2.3-8] in order to present the
following integral formula:∫ x

2

0

u2n

sin2 u
du = −

(x
2

)2n
cot

x

2
+

2n

2n− 1

(x
2

)2n−1

− 4n

∞∑
k=1

ζ(2k)

(2n+ 2k − 1)π2k

(x
2

)2n+2k−1

(|x| < 2π; n ∈ N),
(4.5)
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which is expressed as a series involving the Riemann Zeta function. Setting x = π
in (4.5), and applying a known closed-form evaluation [6, p. 259, Eq. (71)] to the
series resulting from (4.5), we obtain the following integral formula:∫ π

2

0

u2n

sin2 u
du =

nπ2n−1

22n−2

·

[
log 2−

n−1∑
k=1

(−1)k
(
2n− 1

2k

)
(2k)!

(2π)2k
(
1− 22k

)
ζ(2k + 1)

]
(n ∈ N).

(4.6)
The special cases of this last result (4.6) when n = 1 and n = 2 yield, respectively,
the following integrals:∫ π

2

0

u2

sin2 u
du = 2

∫ π
2

0

u cotu du = π log 2, (4.7)

which is a known result (see, e.g., [24, p. 427, Entry 3.747-7]);∫ π
2

0

u4

sin2 u
du =

π3

2
log 2− 9π

4
ζ(3). (4.8)

By combining (4.8) and (3.27), we get the following integral formula:∫ π
2

0

( u

sinu

)4
du = −π

3

12
+

(
π3

3
+ 2π

)
log 2− 3π

2
ζ(3). (4.9)

Setting a = 1 in a known result [6, p. 258, Eq. (65)], and using (1.20) and
two other known identities (see, e.g., [6, p. 165, Eq. (10) and p. 166, Eq. (13)]),
we find that

∞∑
k=1

ζ(2k)

2k + 2n− 1
t2k+2n−1 =

1

2

2n−1∑
k=0

(
2n− 1

k

)
·
[
ζ ′(−k, 1− t) + (−1)k ζ ′(−k, 1 + t)

]
t2n−1−k +

t2n−1

2(2n− 1)
(4.10)

(|t| < 1; n ∈ N).

Finally, by applying (4.5) and (4.10), we obtain∫ πx

0

u2n

sin2 u
du = − (πx)

2n
cot(πx)− 2nπ2n−1

2n−1∑
k=0

(
2n− 1

k

)
·
[
ζ ′(−k, 1− x) + (−1)k ζ ′(−k, 1 + x)

]
x2n−1−k (|x| < 1; n ∈ N), (4.11)

where, as usual,

ζ ′(s, a) =
∂

∂s
{ζ(s, a)}. (4.12)
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