

A Non-Uniform Bound on Poisson Approximation for Sums of Bernoulli Random Variables with Small Mean

K. Teerapabolarn

Abstract : In many situations, the Poisson approximation is appropriate for sums of Bernoulli random variables where its mean, λ , is small. In this paper, we give non-uniform bounds of Poisson approximation with small values of λ , $\lambda \in (0, 3]$, by using the Stein-Chen method. These bounds are sharper than the bounds of Teerapabolarn and Neammanee [12].

Keywords : Bernoulli summands, non-uniform bound, Poisson approximation, Stein-Chen method.

2000 Mathematics Subject Classification : 60F05, 60G05.

1 Introduction

Consider a random variable W that can be written as a sum $\sum_{\alpha \in \Gamma} X_{\alpha}$ of Bernoulli random variables, where Γ is an arbitrary finite index set. The random variables X_{α} may be dependent, and we will be interested in the case where each of success probability $p_{\alpha} = P(X_{\alpha} = 1) = 1 - P(X_{\alpha} = 0)$ is small. It is then reasonable to approximate the distribution of W by Poisson distribution with mean $\lambda = E[W] = \sum_{\alpha \in \Gamma} p_{\alpha}$.

In the past few years, many mathematicians have been developed the method for approximating the distribution of W (for example, see Stein [10], Arratia, Goldstein and Gordon [1-2], Barbour, Holst and Janson [4], Neammanee [8] and Teerapabolarn and Neammanee [11]).

In 2006, Teerapabolarn and Neammanee [12] gave three formulas of nonuniform bounds as follows. For $w_0 \in \{0, 1, \ldots, |\Gamma|\}$, a non-uniform bound by using the coupling method is of the form

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \lambda^{-1} (1 - e^{-\lambda}) \min\left\{ 1, \frac{e^{\lambda}}{w_0 + 1} \right\} \sum_{\alpha \in \Gamma} p_\alpha E|W - W_\alpha^*|,$$

$$(1.1)$$

where W_{α}^* is a random variable which has the same distribution as $W - X_{\alpha}$ conditional on $X_{\alpha} = 1$, i.e. $W_{\alpha}^* \sim (W - X_{\alpha})|X_{\alpha} = 1$. Suppose that for each α there

is a subset $\Gamma_{\alpha} \subsetneq \Gamma$ such that X_{α} is independent of the collection $\{X_{\beta} : \beta \notin \Gamma_{\alpha}\}$, a non-uniform bound in this case is in the form of

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right|$$

$$\le \lambda^{-1} (1 - e^{-\lambda}) \min\left\{ 1, \frac{e^{\lambda}}{w_0 + 1} \right\} \left\{ \sum_{\alpha \in \Gamma} p_{\alpha}^2 + \sum_{\alpha \in \Gamma} \sum_{\beta \in \Gamma_{\alpha} \setminus \{\alpha\}} (p_{\alpha} p_{\beta} + E[X_{\alpha} X_{\beta}]) \right\}.$$
(1.2)

In the case of independent summands, (1.2) becomes

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \lambda^{-1} (1 - e^{-\lambda}) \min\left\{ 1, \frac{e^{\lambda}}{w_0 + 1} \right\} \sum_{\alpha \in \Gamma} p_\alpha^2.$$
(1.3)

We know that in many situations, the Poisson approximation is appropriate for W with small values of λ . In this paper, we improve the bounds in (1.1), (1.2) and (1.3) to be more accurately when λ is small, i.e. $\lambda \in (0,3]$.

Let

$$\Delta(\lambda, w_0) = \begin{cases} \lambda^{-2}(\lambda + e^{-\lambda} - 1), & \text{if } w_0 = 0, \\ \max\left\{\frac{1 - e^{-\lambda}(1 + \lambda)}{\lambda^2}, \frac{(1 - e^{-\lambda})(1 + \lambda)}{6\lambda}\right\}, & \text{if } w_0 = 1, \\ \max\left\{\frac{(2 + \lambda)[1 - e^{-\lambda}(1 + \lambda + \frac{\lambda^2}{2})]}{\lambda^3}, \frac{4(1 - e^{-\lambda})(1 + \lambda + \frac{\lambda^2}{2}) + \lambda}{60\lambda}\right\}, \\ \max\left\{\frac{(w_0!(w_0 - \lambda) + e^{-\lambda}\lambda^{w_0+1}](w_0 + 2)}{w_0(w_0 + 2 - \lambda)(w_0 + 1)!}, \frac{2\lambda^{-1}(1 - e^{-\lambda})e^{\lambda} + 1}{3(w_0 + 1)(w_0 + 2)}\right\}, \\ \max\left\{\frac{[w_0!(w_0 - \lambda) + e^{-\lambda}\lambda^{w_0+1}](w_0 + 2)}{w_0(w_0 + 2 - \lambda)(w_0 + 1)!}, \frac{2\lambda^{-1}(1 - e^{-\lambda})e^{\lambda} + 1}{3(w_0 + 1)(w_0 + 2)}\right\}, \\ (1.4) \end{cases}$$

Then the followings are our main results.

Theorem 1.1 Let $w_0 \in \{0, 1, ..., |\Gamma|\}$ and $\lambda \in (0, 3]$. Then

(i)

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \triangle(\lambda, w_0) \sum_{\alpha \in \Gamma} p_\alpha E |W - W_\alpha^*|, \quad (1.5)$$

where there exists W^*_{α} such that $W^*_{\alpha} \sim (W - X_{\alpha})|X_{\alpha} = 1$ and

(ii)

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \Delta(\lambda, w_0) \left\{ \sum_{\alpha \in \Gamma} p_{\alpha}^2 + \sum_{\alpha \in \Gamma} \sum_{\beta \in \Gamma_{\alpha} \setminus \{\alpha\}} (p_{\alpha} p_{\beta} + E[X_{\alpha} X_{\beta}]) \right\},$$
(1.6)

where there exists Γ_{α} such that X_{α} is independent of $\{X_{\beta} : \beta \notin \Gamma_{\alpha}\}$ for every $\alpha \in \Gamma$.

From (1.6), if $W \ge W_{\alpha}^*$ or $W - X_{\alpha} \le W_{\alpha}^*$ for every $\alpha \in \Gamma$, then we have the convenience forms in Theorem 1.2.

Theorem 1.2 Let $w_0 \in \{0, 1, ..., |\Gamma|\}$ and $\lambda \in (0, 3]$. Then

(i)

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \Delta(\lambda, w_0) \{\lambda - Var[W]\},\tag{1.7}$$

where $W \geq W^*_{\alpha}$ a.s. for every $\alpha \in \Gamma$ and

(ii)

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \triangle(\lambda, w_0) \left\{ Var[W] - \lambda + 2\sum_{\alpha \in \Gamma} p_\alpha^2 \right\}, \quad (1.8)$$

where $W - X_{\alpha} \leq W_{\alpha}^*$ a.s. for every $\alpha \in \Gamma$.

If $\{X_{\alpha} : \alpha \in \Gamma\}$ is independent, we have $W_{\alpha}^* = W - X_{\alpha}$ and $E|W - W_{\alpha}^*| = p_{\alpha}$. Then the following corollary follows immediately from (1.6).

Corollary 1.3 Let $\lambda \in (0,3]$ and $\{X_{\alpha} : \alpha \in \Gamma\}$ be independent Bernoulli random variables. Then, for $w_0 \in \{0, 1, ..., |\Gamma|\}$,

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \triangle(\lambda, w_0) \sum_{\alpha \in \Gamma} p_\alpha^2.$$
(1.9)

Theorem 1.4 For $w_0 \in \{0, 1, ..., |\Gamma|\}$ and $\lambda \in (0, 3]$, we have

$$\Delta(\lambda, w_0) < \lambda^{-1} (1 - e^{-\lambda}) \min\left\{1, \frac{e^{\lambda}}{w_0 + 1}\right\}.$$
(1.10)

Remark 1.5

- (i) From Theorem 1.4, we see that for $\lambda \in (0,3]$, the bounds in (1.5), (1.6) and (1.9) are sharper than the bounds in (1.1), (1.2) and (1.3), respectively.
- (ii) There are many applications such that the Poisson approximation to be more accurately for $\lambda \in (0, 1]$, see these applications in Arratia, Goldstein and Gordon [1-2], Barbour, Holst and Janson [4] and Lange [7]. In this case, we have

$$\triangle(\lambda, w_0) = \begin{cases} \lambda^{-2}(\lambda + e^{-\lambda} - 1), & \text{if } w_0 = 0, \\ \lambda^{-2}[1 - e^{-\lambda}(1 + \lambda)], & \text{if } w_0 = 1, \\ \lambda^{-3}(2 + \lambda)[1 - e^{-\lambda}(1 + \lambda + \frac{\lambda^2}{2})], & \text{if } w_0 = 2, \\ \frac{[w_0!(w_0 - \lambda) + e^{-\lambda}\lambda^{w_0 + 1}](w_0 + 2)}{w_0(w_0 + 2 - \lambda)(w_0 + 1)!}, & \text{if } w_0 \in \{3, ..., |\Gamma|\}. \end{cases}$$
(1.11)

2 Proof of Main Results

We will prove our main results by using the Stein-Chen method. The method was originally formulated for normal approximation by Stein [9] in 1972, and the idea was applied to Poisson case by Chen [5] in 1975. This method started by the Stein's equation for Poisson distribution which is, given h, defined by

$$\lambda f(w+1) - w f(w) = h(w) - \mathcal{P}_{\lambda}(h), \qquad (2.1)$$

where

$$\mathcal{P}_{\lambda}(h) = e^{-\lambda} \sum_{l=0}^{\infty} h(l) \frac{\lambda^{l}}{l!}$$

and f and h are bounded real valued functions defined on $\mathbb{N} \cup \{0\}$. For $w_0 \in \mathbb{N} \cup \{0\}$, let $C_{w_0} = \{0, 1, ..., w_0\}$ and $h_{C_{w_0}} : \mathbb{N} \cup \{0\} \to \mathbb{R}$ be defined by

$$h_{C_{w_0}}(w) = \begin{cases} 1, & \text{if } w \in C_{w_0}, \\ \\ 0, & \text{if } w \notin C_{w_0}. \end{cases}$$
(2.2)

Following Barbour, Holst and Janson [4] p.7, the solution $U_{\lambda}h_{C_{w_0}}$ of (2.1) can be expressed in the form

$$U_{\lambda}h_{C_{w_{0}}}(w) = \begin{cases} (w-1)!\lambda^{-w}e^{\lambda}[\mathcal{P}_{\lambda}(h_{C_{w_{0}}})\mathcal{P}_{\lambda}(1-h_{C_{w-1}})], & \text{if } w_{0} < w, \\ (w-1)!\lambda^{-w}e^{\lambda}[\mathcal{P}_{\lambda}(h_{C_{w-1}})\mathcal{P}_{\lambda}(1-h_{C_{w_{0}}})], & \text{if } w_{0} \ge w, \\ 0, & \text{if } w = 0. \end{cases}$$
(2.3)

Let
$$V_{\lambda}h_{C_{w_0}}(w) = U_{\lambda}h_{C_{w_0}}(w+1) - U_{\lambda}h_{C_{w_0}}(w)$$
. Then, from (2.3), we have
 $V_{\lambda}h_{C_{w_0}}(w)$

$$= \begin{cases} (w-1)!\lambda^{-(w+1)}e^{\lambda}\mathcal{P}_{\lambda}(h_{C_{w_0}})[w\mathcal{P}_{\lambda}(1-h_{C_w}) - \lambda\mathcal{P}_{\lambda}(1-h_{C_{w-1}})], & \text{if } w \ge w_0 + 1, \\ (w-1)!\lambda^{-(w+1)}e^{\lambda}\mathcal{P}_{\lambda}(1-h_{C_{w_0}})[w\mathcal{P}_{\lambda}(h_{C_w}) - \lambda\mathcal{P}_{\lambda}(h_{C_{w-1}})], & \text{if } 1 \le w \le w_0. \end{cases}$$

$$= \begin{cases} (w-1)!\lambda^{-(w+1)}e^{-\lambda}\sum_{j=0}^{w_0}\frac{\lambda^j}{j!}\sum_{k=w+1}^{\infty}(w-k)\frac{\lambda^k}{k!}, & \text{if } w \ge w_0 + 1, \\ (w-1)!\lambda^{-(w+1)}e^{-\lambda}\sum_{j=w_0+1}^{\infty}\frac{\lambda^j}{j!}\sum_{k=0}^{w}(w-k)\frac{\lambda^k}{k!}, & \text{if } 1 \le w \le w_0. \end{cases}$$

$$(2.4)$$

Hence, by(2.4),

$$V_{\lambda}h_{C_{w_0}}(w) \begin{cases} < 0, & \text{if } w \ge w_0 + 1, \\ \\ > 0, & \text{if } 1 \le w \le w_0. \end{cases}$$

The following lemmas are the properties of $V_\lambda h_{Cw_0}$ which are used in the main theorem.

Lemma 2.1 $V_{\lambda}h_{Cw_0}$ is increasing in w for $w \in \{1, \ldots, w_0\}$.

Proof. We shall show that $0 < V_{\lambda}h_{Cw_0}(w+1) - V_{\lambda}h_{Cw_0}(w)$ for $1 \le w \le w_0 - 1$. Note that, from (2.4),

 $V_{\lambda}h_{Cw_0}(w+1) - V_{\lambda}h_{Cw_0}(w) = (w-1)!\lambda^{-(w+2)}\mathcal{P}_{\lambda}(1-h_{Cw_0})$

$$\times \left\{ w \sum_{k=0}^{w+1} (w+1-k) \frac{\lambda^k}{k!} - \lambda \sum_{k=0}^w (w-k) \frac{\lambda^k}{k!} \right\}$$

and

$$\lambda \sum_{k=0}^{w} (w-k) \frac{\lambda^k}{k!} = \sum_{k=0}^{w} (w+1-(k+1)) \frac{\lambda^{k+1}}{(k+1)!} (k+1)$$
$$= \sum_{k=0}^{w+1} (w+1-k)k \frac{\lambda^k}{k!}.$$

So, we have

$$V_{\lambda}h_{Cw_{0}}(w+1) - V_{\lambda}h_{Cw_{0}}(w) = (w-1)!\lambda^{-(w+2)}\mathcal{P}_{\lambda}(1-h_{Cw_{0}})$$
$$\times \left\{\sum_{k=0}^{w+1} (w-k)(w+1-k)\frac{\lambda^{k}}{k!}\right\}$$
$$> 0.$$

Lemma 2.2 Let $w_0 \in \mathbb{N} \cup \{0\}$ and $w \ge 1$. Then

$$|V_{\lambda}h_{C_{w_0}}(w)| \le \Delta(\lambda, w_0). \tag{2.5}$$

Proof. Case 1. $w_0 = 0$.

Follows from Teerapabolarn, Neammanee and Chongcharoen[13] p.14. Case 2. $w_0 = 1$. Note that, from (2.4),

$$V_{\lambda}h_{C_1}(w) = \begin{cases} e^{-\lambda}(1+\lambda)(w-1)! \sum_{k=w+1}^{\infty} (w-k) \frac{\lambda^{k-(w+1)}}{k!}, & \text{if } w \ge 2, \\ \lambda^{-2}[1-e^{-\lambda}(1+\lambda)], & \text{if } w \le 1. \end{cases}$$

Hence, for $w \ge 2$, we have

$$\begin{aligned} 0 &< -V_{\lambda}h_{C_{1}}(w) \\ &= e^{-\lambda}(1+\lambda)(w-1)! \left\{ \frac{1}{(w+1)!} + \frac{2\lambda}{(w+2)!} + \frac{3\lambda^{2}}{(w+3)!} + \cdots \right\} \\ &= \frac{e^{-\lambda}(1+\lambda)(w-1)!}{(w+1)!} \left\{ 1 + \frac{2\lambda}{w+2} + \frac{3\lambda^{2}}{(w+2)(w+3)} + \cdots \right\} \\ &\leq \frac{e^{-\lambda}(1+\lambda)}{6} \left\{ 1 + \frac{2\lambda}{4} + \frac{3\lambda^{2}}{20} + \cdots \right\} \\ &\leq \frac{\lambda^{-1}(1-e^{-\lambda})(1+\lambda)}{6}, \end{aligned}$$

which implies that

$$|V_{\lambda}h_{C_1}(w)| \le \max\left\{\lambda^{-2}[1-e^{-\lambda}(1+\lambda)], \frac{\lambda^{-1}(1-e^{-\lambda})(1+\lambda)}{6}\right\}.$$

Case 3. $w_0 = 2$.

Since $V_{\lambda}h_{C_{w_0}}$ is positive for $1 \le w \le w_0$, by (2.4) and lemma 2.1, we have

$$V_{\lambda}h_{C_{2}}(w) \leq \begin{cases} e^{-\lambda}(1+\lambda+\frac{\lambda^{2}}{2})(w-1)! \sum_{k=w+1}^{\infty} (w-k)\frac{\lambda^{k-(w+1)}}{k!}, & \text{if } w \geq 3, \\ \lambda^{-3}(2+\lambda)[1-e^{-\lambda}(1+\lambda+\frac{\lambda^{2}}{2})], & \text{if } 1 \leq w \leq 2. \end{cases}$$

Hence, for $w \ge 3$,

$$\begin{split} 0 &< -V_{\lambda}h_{C_{2}}(w+1,w) \\ &= \frac{e^{-\lambda}(1+\lambda+\frac{\lambda^{2}}{2})(w-1)!}{(w+1)!} \left\{ 1 + \frac{2\lambda}{w+2} + \frac{3\lambda^{2}}{(w+2)(w+3)} + \cdots \right\} \\ &\leq \frac{e^{-\lambda}(1+\lambda+\frac{\lambda^{2}}{2})}{12} \left\{ 1 + \frac{2\lambda}{5} + \frac{3\lambda^{2}}{30} + \cdots \right\} \\ &\leq \frac{e^{-\lambda}(1+\lambda+\frac{\lambda^{2}}{2})}{12} \left\{ 1 + \frac{4\lambda^{-1}}{5} \left[\frac{\lambda^{2}}{2!} + \frac{\lambda^{3}}{3!} + \cdots \right] \right\} \\ &= \frac{e^{-\lambda}(1+\lambda+\frac{\lambda^{2}}{2})}{12} \left\{ \frac{5+4\lambda^{-1}(e^{\lambda}-1-\lambda)}{5} \right\} \\ &= \frac{4\lambda^{-1}(1-e^{-\lambda})(1+\lambda+\frac{\lambda^{2}}{2}) + e^{-\lambda}(1+\lambda+\frac{\lambda^{2}}{2})}{60} \\ &\leq \frac{4\lambda^{-1}(1-e^{-\lambda})(1+\lambda+\frac{\lambda^{2}}{2}) + 1}{60}. \end{split}$$

So,

$$|V_{\lambda}h_{C_2}(w)| \leq \max\left\{\lambda^{-3}(2+\lambda)\left[1-e^{-\lambda}\left(1+\lambda+\frac{\lambda^2}{2}\right)\right], \frac{4\lambda^{-1}(1-e^{-\lambda})(1+\lambda+\frac{\lambda^2}{2})+1}{60}\right\}.$$

Case 4. $w_0 \ge 3$. Note that for $1 \le w \le w_0$, we have, by (2.4) and lemma 2.1,

$$\begin{split} V_{\lambda}h_{C_{w_0}}(w) &\leq (w_0-1)!\lambda^{-(w_0+1)} \left\{ e^{-\lambda} \sum_{k=w_0+1}^{\infty} \frac{\lambda^k}{k!} \right\} \left\{ (w_0-\lambda) \sum_{k=0}^{w_0} \frac{\lambda^k}{k!} + \frac{\lambda^{w_0+1}}{w_0!} \right\} \\ &\leq \frac{w_0!(w_0-\lambda) + e^{-\lambda}\lambda^{w_0+1}}{w_0} \sum_{k=w_0+1}^{\infty} \frac{\lambda^{k-(w_0+1)}}{k!} \\ &= \frac{w_0!(w_0-\lambda) + e^{-\lambda}\lambda^{w_0+1}}{w_0(w_0+1)!} \left\{ \frac{1}{(w_0+1)!} + \frac{\lambda}{(w_0+2)!} + \frac{\lambda^2}{(w_0+3)!} + \cdots \right\} \\ &= \frac{w_0!(w_0-\lambda) + e^{-\lambda}\lambda^{w_0+1}}{w_0(w_0+1)!} \left\{ 1 + \frac{\lambda}{w_0+2} + \frac{\lambda^2}{(w_0+2)(w_0+3)} + \cdots \right\} \\ &\leq \frac{w_0!(w_0-\lambda) + e^{-\lambda}\lambda^{w_0+1}}{w_0(w_0+1)!} \left\{ 1 + \frac{\lambda}{w_0+2} + \frac{\lambda^2}{(w_0+2)^2} + \cdots \right\} \\ &= \frac{[w_0!(w_0-\lambda) + e^{-\lambda}\lambda^{w_0+1}](w_0+2)}{w_0(w_0+2-\lambda)(w_0+1)!} \end{split}$$

and for $w \ge w_0 + 1$,

$$0 < -V_{\lambda}h_{C_{w_0}}(w) \leq \frac{(w-1)!}{(w+1)!} \left\{ 1 + \frac{2\lambda}{w+2} + \frac{3\lambda^2}{(w+2)(w+3)} + \cdots \right\}$$

$$= \frac{1}{(w_0+1)(w_0+2)} \left\{ 1 + \frac{2\lambda}{(w_0+3)} + \frac{3\lambda^2}{(w_0+3)(w_0+4)} + \cdots \right\}$$

$$\leq \frac{1}{(w_0+1)(w_0+2)} \left\{ 1 + \frac{\lambda}{3} + \frac{\lambda^2}{14} + \cdots \right\}$$

$$\leq \frac{1}{(w_0+1)(w_0+2)} \left\{ 1 + \frac{2\lambda^{-1}}{3} \left[\frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} + \cdots \right] \right\}$$

$$\leq \frac{1}{(w_0+1)(w_0+2)} \left\{ \frac{3 + 2\lambda^{-1}(e^{\lambda} - 1 - \lambda)}{3} \right\}$$

$$= \frac{2\lambda^{-1}(1 - e^{-\lambda})e^{\lambda} + 1}{3(w_0+1)(w_0+2)}.$$

So, we have

$$|V_{\lambda}h_{C_{w_0}}(w)| \le \max\left\{\frac{[w_0!(w_0-\lambda)+e^{-\lambda}\lambda^{w_0+1}](w_0+2)}{w_0(w_2+2-\lambda)(w_0+1)!}, \frac{2\lambda^{-1}(1-e^{-\lambda})e^{\lambda}+1}{3(w_0+1)(w_0+2)}\right\}.$$

Hence, from case 1 to case 4, we have (2.5).

Hence, from case 1 to case 4, we have (2.5).

Proof of Theorem 1.1.

(i) Teerapabolarn and Neammanee showed in [12] that

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \sup_{w \ge 1} |V_\lambda h_{C_{w_0}}(w)| \sum_{\alpha \in \Gamma} p_\alpha E |W - W_\alpha^*|.$$

Hence, by lemma 2.2, (1.5) holds. (ii) Since

$$\sum_{\alpha \in \Gamma} p_{\alpha} E |W - W_{\alpha}^{*}| = \sum_{\alpha \in \Gamma} p_{\alpha} E \left| \sum_{\beta \in \Gamma} X_{\beta} - \sum_{\beta \in \Gamma \setminus \{\alpha\}} X_{\beta} | X_{\alpha} = 1 \right|$$

$$= \sum_{\alpha \in \Gamma} p_{\alpha} E \left| X_{\alpha} + \sum_{\beta \in \Gamma_{\alpha} \setminus \{\alpha\}} X_{\beta} - \sum_{\beta \in \Gamma_{\alpha} \setminus \{\alpha\}} X_{\beta} | X_{\alpha} = 1 \right|$$

$$\leq \sum_{\alpha \in \Gamma} p_{\alpha}^{2} + \sum_{\alpha \in \Gamma} \sum_{\beta \in \Gamma_{\alpha} \setminus \{\alpha\}} \{p_{\alpha} p_{\beta} + P(X_{\alpha} = 1) E[X_{\beta} | X_{\alpha} = 1]\}$$

$$= \sum_{\alpha \in \Gamma} p_{\alpha}^{2} + \sum_{\alpha \in \Gamma} \sum_{\beta \in \Gamma_{\alpha} \setminus \{\alpha\}} \{p_{\alpha} p_{\beta} + E[E[X_{\alpha} X_{\beta} | X_{\alpha}]]\}$$

$$= \sum_{\alpha \in \Gamma} p_{\alpha}^{2} + \sum_{\alpha \in \Gamma} \sum_{\beta \in \Gamma_{\alpha} \setminus \{\alpha\}} (p_{\alpha} p_{\beta} + E[X_{\alpha} X_{\beta}]), \qquad (2.6)$$

so, by (1.5) and (2.6), (1.6) holds.

Proof of Theorem 1.2. Energy (15)

From (1.5),

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \Delta(\lambda, w_0) \sum_{\alpha \in \Gamma} p_\alpha E |W - W_\alpha^*|,$$

it suffices to show that $\sum_{\alpha \in \Gamma} p_{\alpha} E |W - W_{\alpha}^*| = \lambda - Var[W]$ where $W \ge W_{\alpha}^*$ a.s. for every $\alpha \in \Gamma$ and $\sum_{\alpha \in \Gamma} p_{\alpha} E |W - W_{\alpha}^*| = Var[W] - \lambda + 2\sum_{\alpha \in \Gamma} p_{\alpha}^2$ where $W - X_{\alpha} \le W_{\alpha}^*$ a.s. for every $\alpha \in \Gamma$.

(i) If $W \ge W_{\alpha}^*$, then

$$\begin{split} \sum_{\alpha \in \Gamma} p_{\alpha} E | W - W_{\alpha}^{*} | &= \sum_{\alpha \in \Gamma} p_{\alpha} E[(W+1) - (W_{\alpha}^{*}+1)] \\ &= \lambda^{2} + \lambda - \sum_{\alpha \in \Gamma} p_{\alpha} E[(W - X_{\alpha} + 1) | X_{\alpha} = 1] \\ &= \lambda^{2} + \lambda - \sum_{\alpha \in \Gamma} E[E[X_{\alpha} W | X_{\alpha}]] \\ &= \lambda^{2} + \lambda - \sum_{\alpha \in \Gamma} E[X_{\alpha} W] \\ &= \lambda^{2} + \lambda - E[W^{2}] \\ &= \lambda - Var[W]. \end{split}$$

(ii) If $W - X_{\alpha} \leq W_{\alpha}^*$, then

$$\begin{split} \sum_{\alpha \in \Gamma} p_{\alpha} E | W - W_{\alpha}^{*} | &= \sum_{\alpha \in \Gamma} p_{\alpha} E | X_{\alpha} + (W - X_{\alpha}) - W_{\alpha}^{*} | \\ &= \sum_{\alpha \in \Gamma} p_{\alpha} \{ E[X_{\alpha}] + E | (W_{\alpha}^{*} + 1) - (W - X_{\alpha} + 1) | \} \\ &= \sum_{\alpha \in \Gamma} p_{\alpha} \{ E[W_{\alpha}^{*} + 1] - E[W + 1] + 2E[X_{\alpha}] \} \\ &= \sum_{\alpha \in \Gamma} p_{\alpha} E[(W - X_{\alpha} + 1) | X_{\alpha} = 1] - \lambda^{2} - \lambda + 2 \sum_{\alpha \in \Gamma} p_{\alpha}^{2} \\ &= E[W^{2}] - \lambda^{2} - \lambda + 2 \sum_{\alpha \in \Gamma} p_{\alpha}^{2} \\ &= Var[W] - \lambda + 2 \sum_{\alpha \in \Gamma} p_{\alpha}^{2}. \end{split}$$

Proof of Theorem 1.4. We shall show that

$$\Delta(\lambda, w_0) < \lambda^{-1}(1 - e^{-\lambda}) \min\left\{1, \frac{e^{\lambda}}{w_0 + 1}\right\}.$$

Case 1. $w_0 = 0$. Since $0 < \lambda^{-2} e^{-\lambda} (e^{\lambda} - 1 - \lambda)$, we have

$$\begin{split} \lambda^{-2}(\lambda+e^{-\lambda}-1) &= \lambda^{-1}(1-e^{-\lambda}) - \lambda^{-2}e^{-\lambda}(e^{\lambda}-1-\lambda) \\ &< \lambda^{-1}(1-e^{-\lambda}) \\ &= \lambda^{-1}(1-e^{-\lambda})\min\{1,e^{\lambda}\}. \end{split}$$

Case 2. $w_0 = 1$.

$$\frac{(1-e^{-\lambda})(1+\lambda)}{6\lambda} = \frac{\lambda^{-1}(1-e^{-\lambda})(1+\lambda)}{6}$$
$$< \lambda^{-1}(1-e^{-\lambda})\min\left\{1,\frac{e^{\lambda}}{2}\right\}$$

and

$$\frac{1 - e^{-\lambda}(1 + \lambda)}{\lambda^2} = \frac{e^{-\lambda}(e^{\lambda} - 1 - \lambda)}{\lambda^2}$$
$$= \lambda^{-1}e^{-\lambda}\sum_{k=2}^{\infty}\frac{\lambda^{k-1}}{k!}$$
$$= \frac{\lambda^{-1}e^{-\lambda}}{2}\left\{\lambda + \frac{\lambda^2}{3} + \frac{\lambda^3}{12} + \cdots\right\}$$
$$\leq \frac{\lambda^{-1}(1 - e^{-\lambda})}{2}$$
$$< \lambda^{-1}(1 - e^{-\lambda})\min\left\{1, \frac{e^{\lambda}}{2}\right\}.$$

So, we have

$$\max\left\{\frac{1-e^{-\lambda}(1+\lambda)}{\lambda^2},\frac{(1-e^{-\lambda})(1+\lambda)}{6\lambda}\right\} < \lambda^{-1}(1-e^{-\lambda})\min\left\{1,\frac{e^{\lambda}}{2}\right\}.$$

Case 3. $w_0 = 2$. we observe that, for $\lambda \in (0, 3]$,

$$\frac{1}{4} < \lambda^{-1} (1 - e^{-\lambda}) \tag{2.7}$$

 ${\rm thus}$

$$\begin{aligned} \frac{4(1-e^{-\lambda})(1+\lambda+\frac{\lambda^2}{2})+\lambda}{60\lambda} &= \frac{\lambda^{-1}(1-e^{-\lambda})(1+\lambda+\frac{\lambda^2}{2})}{15} + \frac{1}{60}\\ &< \frac{\lambda^{-1}(1-e^{-\lambda})(2+\lambda+\frac{\lambda^2}{2})}{15}\\ &< \lambda^{-1}(1-e^{-\lambda})\min\left\{1,\frac{e^{\lambda}}{3}\right\} \end{aligned}$$

and

$$\begin{split} \frac{(2+\lambda)[1-e^{-\lambda}(1+\lambda+\frac{\lambda^2}{2})]}{\lambda^3} &= \frac{(2+\lambda)e^{-\lambda}(e^{\lambda}-1-\lambda-\frac{\lambda^2}{2})}{\lambda^3} \\ &= (2+\lambda)\lambda^{-1}e^{-\lambda}\sum_{k=3}^{\infty}\frac{\lambda^{k-2}}{k!} \\ &= \frac{(2+\lambda)\lambda^{-1}e^{-\lambda}}{3!}\left\{\lambda+\frac{\lambda^2}{4}+\frac{\lambda^3}{4\cdot 5}+\cdots\right\} \\ &< \frac{\lambda^{-1}(1-e^{-\lambda})(2+\lambda)}{6} \\ &\leq \lambda^{-1}(1-e^{-\lambda})\min\left\{1,\frac{e^{\lambda}}{3}\right\}. \end{split}$$

Hence

$$\begin{split} \max\left\{\frac{(2+\lambda)[1-e^{-\lambda}(1+\lambda+\frac{\lambda^2}{2})]}{\lambda^3},\frac{4(1-e^{-\lambda})(1+\lambda+\frac{\lambda^2}{2})+\lambda}{60\lambda}\right\}\\ <\lambda^{-1}(1-e^{-\lambda})\min\left\{1,\frac{e^{\lambda}}{3}\right\}. \end{split}$$

Case 4. $w_0 \ge 3$. By (2.7),

$$\frac{2\lambda^{-1}(1-e^{-\lambda})e^{\lambda}+1}{3(w_{0}+1)(w_{0}+2)} = \frac{2\lambda^{-1}(1-e^{-\lambda})e^{\lambda}+4(\frac{1}{4})}{3(w_{0}+1)(w_{0}+2)} \\
< \frac{2\lambda^{-1}(1-e^{-\lambda})(e^{\lambda}+2)}{3(w_{0}+1)(w_{0}+2)} \\
\leq \frac{2\lambda^{-1}(1-e^{-\lambda})(e^{\lambda}+2)}{15(w_{0}+1)} \\
< \lambda^{-1}(1-e^{-\lambda})\min\left\{1,\frac{e^{\lambda}}{w_{0}+1}\right\}.$$
(2.8)

By the fact that
$$\frac{w_0 + 2}{w_0 + 2 - \lambda} = 1 + \frac{\lambda}{w_0 + 2} + \frac{\lambda^2}{(w_0 + 2)^2} + \cdots$$
, we have

$$\frac{[w_0!(w_0 - \lambda) + e^{-\lambda}\lambda^{w_0+1}](w_0 + 2)}{w_0(w_0 + 2 - \lambda)(w_0 + 1)!} = \frac{w_0!(w_0 - \lambda) + e^{-\lambda}\lambda^{w_0+1}}{w_0(w_0 + 1)!} \left\{ 1 + \frac{\lambda}{w_0 + 2} + \frac{\lambda^2}{(w_0 + 2)^2} + \cdots \right\}$$

$$\leq \frac{w_0!(w_0 - \lambda)e^{\lambda} e^{-\lambda} + e^{-\lambda}\lambda^{w_0+1}}{w_0(w_0 + 1)!} \lambda^{-1} \left\{ \lambda + \frac{\lambda^2}{5} + \frac{\lambda^3}{25} + \cdots \right\}$$

$$< \frac{w_0!(w_0 - \lambda)e^{\lambda} + \lambda^{w_0+1}}{w_0(w_0 + 1)!} \lambda^{-1}e^{-\lambda}(e^{\lambda} - 1)$$

$$= \frac{w_0!(w_0 - \lambda)e^{\lambda} + \lambda w_0!\frac{\lambda^{w_0}}{w_0!}}{w_0(w_0 + 1)!} \lambda^{-1}(1 - e^{-\lambda})$$

$$= \lambda^{-1}(1 - e^{-\lambda})\frac{w_0e^{\lambda} - \lambda(e^{\lambda} - \frac{\lambda^{w_0}}{w_0!})}{w_0(w_0 + 1)}$$

$$< \frac{\lambda^{-1}(1 - e^{-\lambda})e^{\lambda}}{w_0 + 1}.$$
(2.9)

For $0 < \lambda \leq 1$, it follows from (2.9) that

$$\frac{[w_0!(w_0 - \lambda) + e^{-\lambda}\lambda^{w_0+1}](w_0 + 2)}{w_0(w_0 + 2 - \lambda)(w_0 + 1)!} < \lambda^{-1}(1 - e^{-\lambda}),$$
(2.10)

and in the case of $1 < \lambda \leq 3$, we observe that $\frac{e^{-\lambda}\lambda^{w_0+1}}{w_0!}$ is decreasing for $w_0 \geq 3$ and $f(t) = e^{-t}t^2$ has maximum at t = 2 for $t \in [1,3]$. Thus

$$\frac{e^{-\lambda}\lambda^{w_0+1}}{w_0!} \le \frac{e^{-\lambda}\lambda^4}{3!} \le \frac{3^2 e^{-\lambda}\lambda^2}{3!} = 1.5e^{-\lambda}\lambda^2 \le 6e^{-2} < 1.5e^{-\lambda}\lambda^2 \le 6e^{-\lambda}\lambda^2 \le 1.5e^{-\lambda}\lambda^2 \ge 1.5e^{-$$

Hence, for $1 < \lambda \leq 3$, we have

$$\frac{[w_0!(w_0 - \lambda) + e^{-\lambda}\lambda^{w_0+1}](w_0 + 2)}{w_0(w_0 + 2 - \lambda)(w_0 + 1)!} = \frac{[w_0 - \lambda + \frac{e^{-\lambda}\lambda^{w_0+1}}{w_0!}](w_0 + 2)}{w_0(w_0 + 1)(w_0 + 2 - \lambda)}$$
$$< \frac{(w_0 + 2)(w_0 + 1 - \lambda)}{w_0(w_0 + 1)(w_0 + 2 - \lambda)}$$
$$= \frac{1}{w_0} - \frac{\lambda}{w_0(w_0 + 1)(w_0 + 2 - \lambda)}.$$
 (2.11)

If $w_0 \ge 4$, by (2.7) and (2.11), we have

$$\frac{[w_0!(w_0 - \lambda) + e^{-\lambda}\lambda^{w_0+1}](w_0 + 2)}{w_0(w_0 + 2 - \lambda)(w_0 + 1)!} < \frac{1}{4} < \lambda^{-1}(1 - e^{-\lambda}).$$
(2.12)

If $w_0 = 3$, then by (2.11),

$$\frac{[w_0!(w_0 - \lambda) + e^{-\lambda}\lambda^{w_0+1}](w_0 + 2)}{w_0(w_0 + 2 - \lambda)(w_0 + 1)!} < \frac{1}{3} - \frac{\lambda}{3(4)(5 - \lambda)} \leq \frac{1}{3} - \frac{1}{3(4)(4)} < 3^{-1}(1 - e^{-3}) \leq \lambda^{-1}(1 - e^{-\lambda}).$$
(2.13)

By (2.8), (2.9), (2.10), (2.12) and (2.13), we have

$$\max\left\{\frac{[w_0!(w_0-\lambda)+e^{-\lambda}\lambda^{w_0+1}](w_0+2)}{w_0(w_0+2-\lambda)(w_0+1)!},\frac{2\lambda^{-1}(1-e^{-\lambda})e^{\lambda}+1}{3(w_0+1)(w_0+2)}\right\} < \lambda^{-1}(1-e^{-\lambda})\min\left\{1,\frac{e^{\lambda}}{w_0+1}\right\}.$$

Hence, from case 1 to 4, the theorem is proved.

3 Applications

In this section, we apply the results in (1.5) and (1.6) of Theorem 1.1 and in (1.7) and (1.8) of Theorem 1.2 to some related problems.

Example 3.1 (The number of triangles in a random graph problem)

Consider a graph with n nodes which is created by randomly connecting some pairs of nodes by edges. If the connection probability per pair is p, then all pairs from a triple of nodes are connected with probability p^3 . Let Γ be the set of all triple of nodes in the random graph, and let W be the number of such triangles in the random graph. So $W = \sum_{\alpha \in \Gamma} X_{\alpha}$ where $X_{\alpha} = 1$ if triple of nodes α is connected to be the triangle and $X_{\alpha} = 0$ otherwise. We then have $p_{\alpha} = P(X_{\alpha} = 1) = p^3$ and $\lambda = |\Gamma|p^3 = \binom{n}{3}p^3$. If p is small, W is approximately Poisson with mean λ .

We apply Theorem 1.1 (2) to bound the error of this approximation by taking $\Gamma_{\alpha} = \{\beta : |\alpha \cap \beta| \ge 2\}$, and observe that X_{α} and X_{β} are independent for $\beta \notin \Gamma_{\alpha}$. For $\alpha \neq \beta$, $E[X_{\alpha}X_{\beta}] = P(X_{\alpha} = 1, X_{\beta} = 1) = p^{5}$ and $|\Gamma_{\alpha}| = 3(n-3) + 1$. Hence, by (1.6), we have

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \Delta(\lambda, w_0) \left\{ \binom{n}{3} p^5 \{ (3n-8)p + 3(n-3) \} \right\}, \quad (3.1)$$

where $w_0 \in \{0, 1, ..., \binom{n}{3}\}$. For n = 10 and p = 0.1, we can show some Poisson estimate $P(W \le w_0)$ and the bound of (3.1) in Table 3.1.

w_0	Estimate	Uniform	Non-uniform	Non-uniform
		bound	bound (1.2)	bound (1.6)
0	0.66697681	0.18208043	0.18208043	0.09716869
1	0.93710242	0.18208043	0.13649682	0.08491173
2	0.99180285	0.18208043	0.09099788	0.06571378
3	0.99918741	0.18208043	0.06824841	0.04289475
4	0.99993510	0.18208043	0.05459873	0.03510103
5	0.99999566	0.18208043	0.04549894	0.02960146
6	0.99999975	0.18208043	0.03899909	0.02554915
7	0.999999999	0.18208043	0.03412421	0.02245364
8	1.00000000	0.18208043	0.03033263	0.02001767

Table 3.1 Poisson estimate of $P(W \le w_0)$ for n = 10 and p = 0.1

Example 3.2 (The number of isolated vertices in a random graph problem)

Let G(n, p) be a graph on n labeled vertices $\{1, 2, \ldots, n\}$, where each possible edge is present randomly and independently with probability p. Let $X_{\alpha} = 1$ if vertex α is an isolated vertex in G(n, p) and $X_{\alpha} = 0$ otherwise. Then $W = \sum_{\alpha=1}^{n} X_{\alpha}$ is the number of isolated vertices in G(n, p), and $p_{\alpha} = P(X_{\alpha} = 1) = (1 - p)^{n-1}$, $\lambda = E[W] = n(1 - p)^{n-1}$ and $Var[W] = \lambda + n(n-1)(1 - p)^{2n-3} - \lambda^2$. In constructing W_{α}^* , Barbour [3] setting W_{α}^* is the number of isolated vertices obtained from the graph G(n, p), by dropping vertex α and deleting all the edges $\{\alpha, \beta\}$ for $1 \leq \beta \leq n$ and $\beta \neq \alpha$, and showed that $W_{\alpha}^* \geq W - X_{\alpha}$. By applying (1.8), a non-uniform bound of the error in Poisson approximation to the distribution of W is of the form

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \triangle(\lambda, w_0) \lambda^2 \left[\frac{(n-2)p+1}{n(1-p)} \right],$$

where $w_0 \in \{0, ..., n\}$. Table 3.2 shows some Poisson estimate $P(W \leq w_0)$ for n = 100 and p = 0.036.

Example 3.3 (The ménage problem)

The classical ménage problem of combinatorics is defined as follows: if n married couples are seated around a circle table with men and women alternating, but husbands and wives are randomly scrambled, then the number of married couples W seated next to each other is approximately Poisson distributed. We number the places around the table from 1 to 2n, so W can be represented as $W = \sum_{\alpha=1}^{2n} X_{\alpha}$ where $X_{2n+1} = X_1$, and $X_{\alpha} = 1$ if a couple occupies seats α and $\alpha + 1$ and $X_{\alpha} = 0$ otherwise. We then have, by symmetry, $p_{\alpha} = P(X_{\alpha} = 1) = 1/n$ and $\lambda = E[W] = 2$.

To construct the coupled random variable W^*_{α} , Janson [6] constructed it by exchange the person in seat $\alpha + 1$ with the spouse of the person in seat α and then count the number of adjacent spouse pairs, excluding the pair now occupying

seats α and $\alpha + 1$. Since it does not easily to calculate $E|W - W_{\alpha}^*|$, Lange [7] p.251 bounded it by 6/n, i.e., $E|W - W_{\alpha}^*| \le 6/n$. Hence, by (1.5), we have

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \frac{12\triangle(\lambda, w_0)}{n}, \tag{3.2}$$

where $w_0 \in \{0, 1, ..., 2n\}$. Table 3.3 shows some representative Poisson estimate of $P(W \leq w_0)$ for n = 100.

Uniform w_0 Estimate Non-uniform Non-uniform bound bound (1.1)bound (1.8)0 0.07048730 0.11580067 0.11580067 0.08092203 1 0.257442380.11580067 0.11580067 0.07049023 20.50537497 0.115800670.11580067 0.060857840.724574053 0.11580067 0.11580067 0.060269150.869920720.05132209 4 0.11580067 0.11580067 50.94702197 0.11580067 0.11580067 0.0452597360.98110487 0.11580067 0.11580067 0.0404644070.994018990.11580067 0.11580067 0.036659558 0.99830055 0.115800670.11580067 0.0334723390.999562330.115800670.115800670.03072631100.999897000.115800670.115800670.028338020.999977690.11580067 11 0.115800670.02625339120.99999553 0.11580067 0.11580067 0.02442781 130.99999916 0.11580067 0.11580067 0.022822330.99999985 0.115800670.109523900.02140347 140.99999998 0.115800670.10267866 0.02014297 15

Table 3.2 Poisson estimate of $P(W \le w_0)$ for n = 100 and p = 0.036

w_0	Estimate	Uniform	Non-uniform	Non-uniform
		bound	bound (1.1)	bound (1.5)
0	0.13533528	0.05187988	0.05187988	0.03406006
1	0.40600585	0.05187988	0.05187988	0.02593994
2	0.67667642	0.05187988	0.05187988	0.01939942
3	0.85712346	0.05187988	0.05187988	0.02268157
4	0.94734698	0.05187988	0.05187988	0.01962402
5	0.98343639	0.05187988	0.05187988	0.01720420
6	0.99546619	0.05187988	0.05187988	0.01532975
7	0.99890328	0.05187988	0.04791792	0.01379445
8	0.99976255	0.05187988	0.04259371	0.01250358
9	0.99995350	0.05187988	0.03833434	0.01140803
10	0.99999169	0.05187988	0.03484940	0.01047283
11	0.99999864	0.05187988	0.03194528	0.00966944

Table 3.3 Poisson estimate of $P(W \le w_0)$ for n = 100

Example 3.4 (Pólya's urn model)

The urn contains N balls of n different colors in proportions $\pi_1, \pi_2, ..., \pi_n$. Balls are drawn at random from the urn in such away that at each draw the probability of obtaining a specific ball is the same for all balls. When a ball is sampled, it is put back into urn with another ball of the same color. Let $X_{\alpha} = 1$ if no balls of color α are drawn in the first r samplings and $X_{\alpha} = 0$ otherwise. So $W = \sum_{\alpha=1}^{n} X_{\alpha}$ is the number of colors which have not appeared in the first r samplings. Then

$$p_{\alpha} = P(X_{\alpha} = 1)$$

$$= P(\text{ No balls of color } \alpha \text{ are drawn in the first } r \text{ samplings })$$

$$= \left(\frac{N - N\pi_{\alpha}}{N}\right) \left(\frac{N + 1 - N\pi_{\alpha}}{N + 1}\right) \cdots \left(\frac{N + r - 1 - N\pi_{\alpha}}{N + r - 1}\right)$$

$$= \exp\left\{\sum_{k=0}^{r-1} \log\left(1 - \frac{N\pi_{\alpha}}{N + k}\right)\right\},$$

 $p_{\alpha\beta} = E[X_{\alpha}X_{\beta}]$

= P(No balls of colors α and β are drawn in the first r samplings)

$$= \left[\frac{N - N(\pi_{\alpha} + \pi_{\beta})}{N}\right] \left[\frac{N + 1 - N(\pi_{\alpha} + \pi_{\beta})}{N + 1}\right] \cdots \left[\frac{N + r - 1 - N(\pi_{\alpha} + \pi_{\beta})}{N + r - 1}\right]$$
$$= \exp\left\{\sum_{k=0}^{r-1} \log\left(1 - \frac{N(\pi_{\alpha} + \pi_{\beta})}{N + k}\right)\right\}.$$

For constructing W^*_{α} such that $W^*_{\alpha} \sim (W - X_{\alpha})|X_{\alpha} = 1$, Barbour, Holst and Janson [4] letting W^*_{α} is the number of colors which have not appeared in the first r samplings given that no balls of color α are drawn in the first r samplings, and showed that $W \geq W^*_{\alpha}$. So, by (1.7), a non-uniform bound of the error of this approximation is in the form of

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \triangle(\lambda, w_0) \{\lambda - Var[W]\},$$
(3.3)

where $w_0 \in \{0, ..., n\}$ and

$$Var[W] = E[W^2] - \lambda^2$$

= $\sum_{\alpha=1}^n E[X_\alpha] + \sum_{\alpha=1}^n \sum_{\beta=1,\beta\neq\alpha}^n E[X_\alpha X_\beta] - \sum_{\alpha=1}^n p_\alpha^2 - \sum_{\alpha=1}^n \sum_{\beta=1,\beta\neq\alpha}^n p_\alpha p_\beta$
= $\sum_{\alpha=1}^n p_\alpha (1 - p_\alpha) + \sum_{\alpha=1}^n \sum_{\beta=1,\beta\neq\alpha}^n (p_{\alpha\beta} - p_\alpha p_\beta).$

In the case of $\pi_1 = \pi_2 = \cdots = \pi_n = \pi$, we have, for all $\alpha, \beta \in \{1, \dots, n\}$,

$$p_{\alpha} = \exp\left\{\sum_{k=0}^{r-1} \log\left(1 - \frac{N\pi}{N+k}\right)\right\}, \ p_{\alpha\beta} = \exp\left\{\sum_{k=0}^{r-1} \log\left(1 - \frac{2N\pi}{N+k}\right)\right\},$$
$$\lambda = np_{\alpha} \text{ and } Var[W] = \lambda - \lambda^2 + n(n-1)p_{\alpha\beta}.$$

So, by (3.3),

$$\left| P(W \le w_0) - \sum_{k=0}^{w_0} \frac{\lambda^k e^{-\lambda}}{k!} \right| \le \triangle(\lambda, w_0) \{\lambda^2 - n(n-1)p_{\alpha\beta}\},$$

where $w_0 \in \{0, ..., n\}$. Table 3.3 shows all Poisson estimate $P(W \le w_0)$ for N = 100, n = 10, r = 25 and $\pi_1 = \cdots = \pi_{10} = 0.1$.

Table 3.4 Poisson estimate of $P(W \le w_0)$ for N = 100, n = 10 and r = 25

w_0	Estimate	Uniform	Non-uniform	Non-uniform
		bound	bound (1.1)	bound (1.7)
0	0.38491106	0.17364302	0.17364302	0.10043145
1	0.75240220	0.17364302	0.17364302	0.07321157
2	0.92783199	0.17364302	0.15037501	0.06604059
3	0.98366211	0.17364302	0.11278126	0.05825994
4	0.99698796	0.17364302	0.09022501	0.04900929
5	0.99953251	0.17364302	0.07518751	0.04210898
6	0.99993741	0.17364302	0.06444643	0.03676769
7	0.99999264	0.17364302	0.05639063	0.03254910
8	0.99999923	0.17364302	0.05012500	0.02915746
9	0.99999993	0.17364302	0.04511250	0.02638366
10	0.99999999	0.17364302	0.04101137	0.02407906

References

- R. Arratia, L. Goldstein, and L. Gordon, Two moments suffice for Poisson approximations: the Chen-Stein method, Annals of probability, 17(1989), 9– 25.
- [2] R. Arratia, L. Goldstein and L. Gordon, Poisson approximations and the Chen-Stein method. *Statistical Science*, 5(1990), 403–434.
- [3] A. D. Barbour, Stochastic Processes : Theory and Methods, Handbook of Statistics 19, Elsevier Science(2001), 79-115.
- [4] A. D. Barbour, L. Holst and S. Janson, *Poisson approximation*, Oxford Studies in probability 2, Clarendon Press, Oxford, 1992.

- [5] L. H. Y. Chen, Poisson approximation for dependent trials, Annals of probability, 3(1975), 534–545.
- [6] S. Janson, Coupling and Poisson approximation. Acta Applicandae Mathematicae, 34(1994), 7–15.
- [7] K. Lange, Applied Probability, Springer-Verlag, New York, 2003.
- [8] K. Neammanee, Pointwise Approximation of Poisson Binomial by Poisson Distribution, Stochastic Modelling and Applications, 6(2003), 20–26.
- [9] C. M. Stein, A bound for the error in normal approximation to the distribution of a sum of dependent random variables. Proc.Sixth Berkeley Sympos, *Math. Statist. Probab.*, 3(1972), 583–602.
- [10] C. M. Stein, Approximate Computation of Expectations, IMS, Hayward California, 1986.
- [11] K. Teerapabolarn and K. Neammanee, A non-uniform bound on Poisson approximation for dependent Trials. *Stochastic Modelling and Applications*, 8(1972), 17–31.
- [12] K. Teerapabolarn and K. Neammanee, Poisson approximation for Sums of Dependent Bernoulli Random Varables, Acta Mathematica, 22(2006), 87–99.
- [13] K. Teerapabolarn, K. Neammanee and S. Chongcharoen, Approximation of the probability of non-isolated vertices in random Graph. Annual Meeting in Applied Statistics 2004, National Institute of Development Administration. (2004), 9–18.

(Received 5 June 2005)

K. Teerapabolarn Department of Mathematics Burapha University Chonburi 20131, Thailand. e-mail : kanint@buu.ac.th