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Abstract : One of the most important concepts in topological space is the pasting
lemma for continuous functions. It plays an important role in algebraic topology.
In the recent years pasting lemmas for some stronger and weaker forms of con-
tinuous functions such as g-continuous functions, gp-continuous functions, gpr-
continuous functions, g∗b-continuous functions have been introduced by several
mathematicians. In this sequel, the pasting lemmas for s∗g-continuous functions,
rg∗-continuous functions and g∗r-continuous functions have been introduced in
this paper.
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1 Introduction and Preliminaries

Levine introduced generalized closed sets [1] in topological spaces in 1970.
According to him, a set A is generalized closed {see also [2]} if cl(A) ⊆ U whenever
A ⊆ U and U is open. After the work of Levine on generalized closed sets as
the natural extension of closed sets, several types of generalized closed sets such
as s∗g-closed sets [3], rg∗-closed sets [4], g∗r-closed sets [4], regular generalized
closed sets [5, 6], generalized preclosed sets [7], generalized pre regular closed
[8], g∗b-closed [9] etc have been introduced in topological spaces. Consequently,
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the new types of continuous mappings and irresolute maps, namely g-continuous
[10], s∗g-continuous [11], rg-continuous [12], rg∗-continuous [12], g∗r-continuous
[12], gp-continuous [13], gpr-continuous [14], g∗b-continuous [15], gc-irresolute [10],
s∗g-irresolute [11], rg-irresolute [12], rg∗-irresolute [12], g∗r-irresolute [12], gp-
irresolute [13], gpr-irresolute [14], g∗b-irresolute [15]and so on are also studied.
Moreover, the pasting lemmas for continuous functions are established over last
two decades. Anitha et al. [16] established the pasting lemma for rg-continuous,
gc- irresolute, and gp-continuous functions. In this sequel, the pasting lemmas for
s∗g-continuous functions, rg∗-continuous functions and g∗r-continuous functions
have been introduced in this paper.

Throughout the paper, (X, τ) or X denote the topological space on which no
separation axiom is assumed unless explicitly stated. Let A be a subset of X.
Then the closure and interior of A are the intersection of all closed sets containing
A and union of all open sets contained in A respectively and they are denoted
by cl(A) and int(A). A set A is called semi open [17], {resp. regular open [18],
preopen [19], b-open [20]} if A ⊆ cl[int(A)] { resp. A = int[cl(A)], A ⊆ int[cl(A)]
and A ⊆ cl[int(A)]∪int[cl(A)]}. The complements of semi open, regular open, pre
open, b-open sets are called semi closed, regular closed, pre closed sets, b-closed
respectively. The regular closure, regular interior, preclosure, preinterior, b-closure
and b-interior of a set A are defined in similar way of closure and interior of a set A.
Moreover, A is called s∗g-closed [3] {resp. rg-closed [5], rg∗-closed [4], g∗r-closed
[4], gp-closed [7], gpr-closed and g∗b-closed [9]} if cl(A) ⊆ U {resp. cl(A) ⊆ U ,
rcl(A) ⊆ U , rcl(A) ⊆ U , pcl(A) ⊆ U , pcl(A) ⊆ U and bcl(A) ⊆ U} whenever
A ⊆ U and U is semi open {resp. regular open, regular open, open, open, regular
open and g-open}. The complements of semi open, {resp. regular open, preopen,
s∗g-closed, rg-closed, rg∗-closed, g∗r-closed, gp-closed, gpr-closed, g∗b-closed} are
called semi closed, {resp. regular closed, preclosed, s∗g-open, rg-open, rg∗-open,
g∗r-open, gp-open, gpr-open and g∗b-open}.

A function f : (X, τ) → (Y, σ) is called continuous, {resp. g-continuous, rg-
continuous, gp-continuous, gpr-continuous, s∗g-continuous, rg∗-continuous, g∗r-
continuous, g∗b-continuous} if f−1(V ) is closed {resp. g-closed, rg-closed, gp-
closed, gpr-closed, s∗g-closed, rg∗-closed, g∗r-closed, g∗b-closed} for every closed
set V in Y . A function f : (X, τ) → (Y, σ) is called irresolute, {resp. gc-
irresolute, rg-irresolute, gp-irresolute, gpr-irresolute, s∗g-irresolute, rg∗-irresolute,
g∗r-irresolute, g∗b-irresolute} if f−1(V ) is semi closed {resp. g-closed, rg-closed,
gp-closed, gpr-closed, s∗g-closed, rg∗-closed, g∗r-closed, g∗b-closed} for every semi
closed {resp. g-closed, rg-closed, gp-closed, gpr-closed, s∗g-closed, rg∗-closed, g∗r-
closed, g∗b-closed} set V in Y . A collection {Aα : α ∈ I} of subsets of a space X
is locally finite if every point of X has a neighborhood that intersects only finitely
many members of {Aα : α ∈ I}.
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2 Main Results

Theorem 2.1. Let X,Y be topological spaces, V ⊆ Y and f : X → Y . Then f is
s∗g-continuous if and only if V is closed in Y implies that f−1(V ) is s∗g-closed
in X.

Proof. Necessity: Let f : X → Y be s∗g-continuous. Let V ⊆ Y be closed. Then
V C ⊆ Y is open in Y . Since f : X → Y is s∗g-continuous, f−1(V ) is s∗g-open in
X. Hence f−1(V C) = [f−1(V )]C is s∗g-closed in X.

Sufficiency: Suppose that V is closed in Y implies that f−1(V ) is s∗g-closed
in X. Let A be open in Y . Then AC is closed in Y . By our assumption,
f−1(AC) = [f−1(A)]C is s∗g-closed in X. Consequently, f−1(A) is s∗g-open in X.
It completes the proof.

Theorem 2.2. Pasting lemma for s∗g-continuous functions.
Let X = A∪B where A and B are both open and s∗g-closed in X. Let f : A → Y
and g : B → Y be s∗g-continuous (s∗g-irresolute). If f(x) = g(x) for every
x ∈ A∩B. The f and g combine to give a s∗g-continuous (s∗g-irresolute) function
h : X → Y , defined by setting h(x) = f(x) if x ∈ A and h(x) = g(x) if x ∈ B.

Proof. Let U be closed (s∗g-closed) in Y . Then, h−1(U) = f−1(U) ∪ g−1(U).
Since f : A → Y is s∗g-continuous (s∗g-irresolute), f−1(U) is s∗g-closed in A.
Since g : B → Y is s∗g-continuous (s∗g-irresolute), g−1(U) is s∗g-closed in B.
Since A and B are both open and s∗g-closed in X, f−1(U) and g−1(U) are
s∗g-closed in X. Since the union of two s∗g-closed sets is s∗g-closed, we have
h−1(U) = f−1(U) ∪ g−1(U) is s∗g-closed in X. It completes the proof

Recall that arbitrary union of cl(Ai), i ∈ I is contained in closure of arbitrary
union of subsets Ai in any topological space. The equality holds if the collection
{Ai, i ∈ I} is locally finite.

Theorem 2.3 ([21]). The arbitrary union of s∗g-closed sets Ai, i ∈ I in a
topological space (X, τ) is s∗g-closed if the family {Ai, i ∈ I} is locally finite.

Theorem 2.4. Pasting lemma for s∗g-continuous functions.
Let X =

∪
Aα where {Aα, α ∈ I} is locally finite and Aα is both open and s∗g-

closed in X for each α ∈ I. Let fα : Aα → Y be s∗g-continuous (s∗g-irresolute)
for each α ∈ I such that fα(x) = fβ(x) for every x ∈ Aα ∩ Aβ. The fα, α ∈ I
combine to give a s∗g-continuous (s∗g-irresolute) function h : X → Y , defined by
setting h(x) = fα(x) for x ∈ Aα.

Proof. Let U be closed (s∗g-closed)in Y . Then, h−1(U) =
∪

f−1
α (U). Since fα :

Aα → Y is s∗g-continuous (s∗g-irresolute), f−1
α (U) is s∗g-closed in Aα. Since Aα

is both open and s∗g-closed in X for each α ∈ I, f−1
α (U) is s∗g-closed in X. Since

{Aα, α ∈ I} is locally finite, we have h−1(U) =
∪

f−1
α (U) is s∗g-closed in X. It

completes the proof
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Theorem 2.5. Pasting lemma for rg∗-continuous functions.
Let X = A∪B where A and B are both open and rg∗-closed in X. Let f : A → Y
and g : B → Y be rg∗-continuous (rg∗-irresolute). If f(x) = g(x) for every
x ∈ A∩B. The f and g combine to give a rg∗-continuous (rg∗-irresolute) function
h : X → Y , defined by setting h(x) = f(x) if x ∈ A and h(x) = g(x) if x ∈ B.

Proof. Let U be closed (rg∗-closed)in Y . Then, h−1(U) = f−1(U) ∪ g−1(U).
Since f : A → Y is rg∗-continuous (rg∗-irresolute), f−1(U) is rg∗-closed in A.
Since g : B → Y is rg∗-continuous (rg∗-irresolute), g−1(U) is rg∗-closed in B.
Since A and B are both open and rg∗-closed in X, f−1(U) and g−1(U) are
rg∗-closed in X. Since the union of two rg∗-closed sets is rg∗-closed, we have
h−1(U) = f−1(U) ∪ g−1(U) is rg∗-closed in X. It completes the proof

Theorem 2.6. Pasting lemma for g∗r-continuous functions.
Let X = A ∪ B where A and B are both regular open and g∗r-closed in X. Let
f : A → Y and g : B → Y be g∗r-continuous (g∗r-irresolute). If f(x) = g(x) for
every x ∈ A ∩ B. The f and g combine to give a g∗r-continuous (g∗r-irresolute)
function h : X → Y , defined by setting h(x) = f(x) if x ∈ A and h(x) = g(x) if
x ∈ B.

Proof. Let U be closed (g∗r-closed) in Y . Then, h−1(U) = f−1(U) ∪ g−1(U).
Since f : A → Y is g∗r-continuous (g∗r-irresolute), f−1(U) is g∗r-closed in A.
Since g : B → Y is g∗r-continuous (g∗r-irresolute), g−1(U) is g∗r-closed in B.
Since A and B are both regular open and g∗r-closed in X, f−1(U) and g−1(U)
are g∗r-closed in X. Since the union of two g∗r-closed sets is g∗r-closed, we have
h−1(U) = f−1(U) ∪ g−1(U) is g∗r-closed in X. It completes the proof
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