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1 Introduction

Throughout this paper, R denotes the set of real numbers. We shall assume
that H is a real Hilbert space with inner product ⟨, ⟩ and norm ||.||, while K will
stand for a nonempty, closed and convex subset of H.

A mapping A : K → H is called α− inverse-strongly monotone (see, for
example, [1, 2]) if and only if there exists α > 0 such that ⟨Ax − Ay, x − y⟩ ≥
α||Ax−Ay||2 ∀ x, y ∈ K.

Let A : H → H be a single-valued nonlinear mapping and let M : H → 2H be
a set-valued mapping. The variational inclusion is to find u ∈ H such that

θ ∈ A(u) +M(u), (1.1)

where θ is a zero vector in H. The set of solutions to the variational inclusion
(1.1) is denoted by I(A,M). When A ≡ 0, (1.1) becomes the inclusion problem
introduced by Rockafellar [3].

A set-valued mapping M : H → 2H is called monotone if and only if for all
x, y ∈ H, f ∈ M(x) and g ∈ M(y) we have that ⟨x − y, f − g⟩ ≥ 0. A monotone
mapping M is said to be maximal if and only if the graph G(M) is not properly
contained in the graph of any other monotone map, where G(M) := {(x, y) ∈
H ×H : y ∈M(x)}. Equivalently, M is maximal if and only if for (x, f) ∈ H ×H,
⟨x − y, f − g⟩ ≥ 0 for every (y, g) ∈ G(M) implies that f ∈ M(x). The resolvent
operator JM,λ associated with M and λ is the mapping JM,λ : H → H defined by

JM,λ(u) = (I + λM)−1(u), u ∈ H, λ > 0. (1.2)

It is known that the resolvent operator JM,λ is single-valued, nonexpansive and
1−inverse-strongly monotone (see, for example, [4]) and that a solution of (1.1) is
a fixed point of JM,λ(I − λA),∀ λ > 0 (see, for example, [5]). If 0 < λ ≤ 2α, it is
easy to see that JM,λ(I − λA) is nonexpansive and I(A,M) is closed and convex.

Let φ : K → R be a real-valued function and A : K → H be a nonlinear
mapping. Suppose F : K×K → R is an equilibrium bi-function, that is, F (u, u) =
0, ∀ u ∈ K. The generalized mixed equilibrium problem is to find x ∈ K (see
e.g., [6–8]) such that

F (x, y) + φ(y)− φ(x) + ⟨Ax, y − x⟩ ≥ 0, (1.3)

for all y ∈ K. We shall denote the set of solutions of the generalized mixed equi-
librium problem by Ω. Thus

Ω := {x∗ ∈ K : F (x∗, y) + φ(y)− φ(x∗) + ⟨Ax∗, y − x∗⟩ ≥ 0 ∀y ∈ K}.

If φ = 0, A = 0, then problem (1.3) reduces to equilibrium problem studied by
many authors (see e.g., [9–15]) which is to find x∗ ∈ K such that

F (x∗, y) ≥ 0, (1.4)

for all y ∈ K. The set of solutions of (1.4) is denoted by EP (F ).
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If φ = 0, then problem (1.3) reduces to generalized equilibrium problem stud-
ied by many authors (see e.g., [16–18]) which is to find x∗ ∈ K such that

F (x∗, y) + ⟨Ax∗, y − x∗⟩ ≥ 0 (1.5)

for all y ∈ K. The set of solutions of (1.5) is denoted by GEP (F,A).
If A = 0, then problem (1.3) reduces to mixed equilibrium problem considered

by many authors (see, for example, [19–22]) which is to find x∗ ∈ K such that

F (x∗, y) + φ(y)− φ(x∗) ≥ 0, (1.6)

for all y ∈ K. The set of solutions of (1.6) is denoted by MEP (F,φ).
The generalized mixed equilibrium problem includes fixed point problems, op-

timization problems, variational inequality problems, Nash equilibrium problems
and equilibrium problems as special cases (see e.g., [23]). Numerous problems in
Physics, optimization and economics reduce to find a solution of problem (1.3).
Several methods have been proposed to solve the fixed point problems, variational
inequality problems and generalized mixed equilibrium problems in the literature.
See e.g., [18, 21, 24, 25].

A mapping T : K → K is said to be nonexpansive if

||Tx− Ty|| ≤ ||x− y||, (1.7)

for all x, y ∈ K. A point x ∈ K is called a fixed point of T if Tx = x. The set of
fixed points of T is the set F (T ) := {x ∈ K : Tx = x}.

Finding a common element of the set of fixed points of nonexpansive mappings
and the set of solutions of variational inclusions and equilibrium problems has been
studied by many researchers (see e.g., [18, 26–28] and the references contained
therein).

Recently, Takahashi and Takahashi [18] introduced an iterative scheme for
approximating the common element of the set of fixed points of a nonexpansive
mapping and the set of solutions to a generalized equilibrium problem in a real
Hilbert space. In particular, they proved the following theorem.

Theorem 1.1 (Takahashi and Takahashi [18]). Let K be a nonempty, closed and
convex subset of a real Hilbert space H. Let F be a bi-function from K×K satisfying
(A1) − (A4), ψ be an µ− inverse-strongly monotone mapping of K into H and
let T be a nonexpansive mapping of K into itself. Suppose F (T ) ∩ EP ̸= ∅ and
u ∈ K. Let {xn}∞n=1 and {zn}∞n=1 be generated by x1 ∈ K,{

F (zn, y) + ⟨ψxn, y − zn⟩+ 1
rn
⟨y − zn, zn − xn⟩ ≥ 0 ∀y ∈ K

xn+1 = βnxn + (1− βn)T [αnu+ (1− αn)zn], n ≥ 1;
(1.8)

where {αn}∞n=1, {βn}∞n=1 ⊂ [0, 1) and {rn}∞n=1 ⊂ [0, 2µ]. If {αn}∞n=1, {βn}∞n=1 and
{rn}∞n=1 are chosen so that {rn}∞n=1 ⊂ [a, b] for some a, b with 0 < a < b < 2µ,
limn→∞ αn = 0,

∑∞
n=1 αn = ∞, limn→∞ |rn+1 − rn| = 0, 0 < c ≤ βn ≤ d < 1

then, {xn}∞n=1 converges strongly to z0 = PF (T )∩EPu.
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Most recently, Shehu [28] modified the algorithm (1.9) and obtained strong
convergence of the scheme to an element common to the set of fixed points of
nonexpansive maps, set of solution of generalized equilibrium problems and the
set of solution of variational inclusion. He proved the following result.

Theorem 1.2 (Shehu [28]). Let K be a nonempty, closed and convex subset of a
real Hilbert space H. Let F be a bi-function from K×K → R satisfying (A1)−(A4),
ψ be a µ− inverse-strongly monotone mapping of K into H A an α− inverse-
strongly monotone mapping of K into H and M : H → 2H a maximal monotone
mapping. Let T : H → H be a nonexpansive mapping such that Ω := F (T ) ∩
I(A,M) ∩ EP ̸= ∅ and suppose f : H → H is a contraction map with constant
γ ∈ (0, 1). Let {xn}∞n=1 and {zn}∞n=1 be generated by x1 ∈ K,{

F (zn, y) + ⟨ψxn, y − zn⟩+ 1
rn
⟨y − zn, zn − xn⟩ ≥ 0 ∀y ∈ K

xn+1 = βnxn + (1− βn)T [αnf(xn) + (1− αn)JM,λ(un − λAun)], n ≥ 1;
(1.9)

where {αn}∞n=1, {βn}∞n=1 ⊂ [0, 1] and {rn}∞n=1 ⊂ [0,∞) satisfying (i) 0 < c ≤ βn ≤
d < 1, (ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞, (iii) λ ∈ (0, 2α], (iv) 0 < a < rn <

b < 2µ, limn→∞ |rn+1 − rn| = 0.
Then, {xn}∞n=1 converges strongly to z0 = PF (T )∩EPu.

Let K be a nonempty subset of a real normed linear space E. A mapping
T : K → K is called asymptotically nonexpansive (see e.g., Goebel and Kirk [29])
if there exists a sequence {kn}, kn ≥ 1, such that limn→∞ kn = 1, and

||Tnx− Tny|| ≤ kn||x− y||

holds for each x, y ∈ K and for each integer n ≥ 1. Many authors have studied
the approximation of fixed points of asymptotically nonexpansive maps (see e.g.,
[30–34] and the references contained therein).

Motivated by [18, 28], we introduce an iterative scheme by using the so-called
hybrid method, and prove that the scheme strongly converges to an element com-
mon to the set of solutions of a system of generalized mixed equilibrium problem,
the set of fixed points of infinite family of asymptotically nonexpansive mappings
and the set of solutions to a variational inclusion in a real Hilbert space. Finally,
we give some applications of our results to Optimization problems in a real Hilbert
space.

2 Preliminaries

Let H be a real Hilbert space with inner product ⟨., .⟩ and norm ||.|| and let
K be a nonempty closed and convex subset of H. In what follows, we shall write
xn → x as n→ ∞ to mean that {xn}∞n=1 converges strongly to x.

For any point u ∈ H,there exists a unique point PKu ∈ K such that

||u− PKu|| ≤ ||u− y||, ∀y ∈ K. (2.1)



Iterative Solution of Fixed Points Problem, System of Generalized Mixed ... 227

PK is called the metric projection of H onto K. We know that PK is a nonexpan-
sive mapping of H onto K. It is also known that PK satisfies

⟨x− y, PKx− PKy⟩ ≥ ||PKx− PKy||2, (2.2)

for all x, y ∈ H. Furthermore, PKx is characterized by the properties PKx ∈ K
and

⟨x− PKx, PKx− y⟩ ≥ 0, (2.3)

for all y ∈ K and

||x− PKx||2 ≤ ||x− y||2 − ||y − PKx||2 ∀ x ∈ H, y ∈ K. (2.4)

If A is an α-inverse-strongly monotone mapping of K into H, then it is obvious
that A is 1

α -Lipschitz continuous. We also have that for all x, y ∈ K and r > 0,

||(I − rA)x− (I − rA)y||2 = ||x− y − r(Ax−Ay)||2

= ||x− y||2 − 2r⟨Ax−Ay, x− y⟩+ r2||Ax−Ay||2

≤ ||x− y||2 + r(r − 2α)||Ax−Ay||2. (2.5)

So, if r ≤ 2α, then I − rA is a nonexpansive mapping of K into H.

For solving the generalized mixed equilibrium problem for a bifunction F :
K ×K → R, let us assume that F, φ and K satisfy the following conditions:

(A1) F (x, x) = 0 for all x ∈ K;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y,∈ K;

(A3) for each x, y, z ∈ K, limt→0 F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ K, y 7→ F (x, y) is convex and lower semicontinuous;

(B1) for each x ∈ H and r > 0 there exist a bounded subset Dx ⊆ K and yx ∈ K
such that for any z ∈ K \Dx,

F (z, yx) + φ(yx)− φ(z) +
1

r
⟨yx − z, z − x⟩ < 0; (2.6)

(B2) K is a bounded set.

Then, we have the following lemma.

Lemma 2.1 (Wangkeeree and Wangkeeree [35]). Assume that F : K × K → R
satisfies (A1)-(A4) and let φ : K → R be a proper lower semicontinuous and
convex function. Assume that either (B1) or (B2) holds. For r > 0 and x ∈ H,

define a mapping T
(F,φ)
r : H → K as follows:

T (F,φ)
r (x) =

{
z ∈ K : F (z, y) + φ(y)− φ(z) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ K

}
for all z ∈ H. Then, the following hold:
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1. for each x ∈ H, T
(F,φ)
r (x) ̸= ∅;

2. T
(F,φ)
r is single-valued;

3. T
(F,φ)
r is firmly nonexpansive, i.e., for any x, y ∈ H,

||T (F,φ)
r x− T (F,φ)

r y||2 ≤ ⟨T (F,φ)
r x− T (F,φ)

r y, x− y⟩;

4. F (T
(F,φ)
r ) = GMEP (F );

5. GMEP (F ) is closed and convex.

We shall also use the following lemma in our results

Lemma 2.2 (Baillon and Haddad [36]). Let E be a Banach space, let f be a con-
tinuously Fréchet differentiable convex functional on E and let ∇f be the gradient
of f . If ∇f is 1

α -Lipschitz continuous, then ∇f is α-inverse-strongly monotone.

Lemma 2.3. Let H be a real Hilbert space, and K a nonempty closed convex
subset of H. Then for all x, y, z ∈ H and a real number a ∈ R, the set{

v ∈ K : ||y − v||2 ≤ ||x− v||2 + ⟨z, v⟩+ a
}

is closed and convex.

Lemma 2.4 (Goebel and Kirk [29]). Let K be a nonempty, closed and convex
and bounded subset of a uniformly convex Banach space X, and let T : K → K be
asymptotically nonexpansive. Then T has a fixed point.

Lemma 2.5 (Lemaire [5]). Let M : H → 2H be a maximal monotone mapping
and A : H → H be a Lipschitz continuous mapping. Then the mapping S =
M +A : H → 2H is a maximal monotone mapping.

3 Main Results

We now prove our main theorems.

Lemma 3.1 (Goebel and Kirk [29]). Let K be a nonempty closed and convex sub-
set of a real Hilbert space H and let T : K → K be assymptotically nonexpansive.
Then the set of fixed points of T, F (T ) is closed and convex.

Lemma 3.2. Let K be a nonempty, closed and convex subset of a real Hilbert space
H. For each m = 1, 2, let Fm be a bi-function from K ×K → R satisfying (A1)−
(A4), φm : K → R∪{+∞} be a proper lower semicontinuous and convex function
with assumption (B1) or (B2), A be an α-inverse-strongly monotone mapping of
K into H, B be a β-inverse-strongly monotone mapping of K into H and for
each i = 1, 2, . . . , let Ti : K → K be an asymptotically nonexpansive mapping.
Let D be a γ-inverse-strongly monotone mapping of K into H. Suppose F :=
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∩∞
i=1F (Ti)∩GMEP (F1, A, φ1)∩GMEP (F2, B, φ2)∩I(D,M) ̸= ∅ and bounded .

Let {zn}∞n=1, {un}∞n=1, {wn}∞n=1, {yn,i}∞n=1 (i = 1, 2, . . .) and {xn}∞n=0 be
generated by x0 ∈ K, C1,i = K, C1 = ∩∞

i=1C1,i, x1 = PC1x0

zn = T
(F1,φ1)
rn (xn − rnAxn)

un = T
(F2,φ2)
λn

(zn − λnBzn)
wn = JM,sn(un − snDun)
yn,i = αnxn + (1− αn)T

n
i wn

Cn+1,i = {z ∈ Cn,i : ||yn,i − z||2 ≤ ||xn − z||2
−αn(1− αn)||xn − Tn

i yn,i||2 + θn,i}
Cn+1 = ∩∞

i=1Cn+1,i

xn+1 = PCn+1x0, n ≥ 1,

(3.1)

where θn,i = (1 − αn)(k
2
n,i − 1)(supx∗∈F {||xn − x∗||2}), i = 1, 2, . . . . Assume that

{αn}∞n=1 ⊂ (0, 1), {rn}∞n=1 ⊂ [0, 2α] and {λn}∞n=1 ⊂ [0, 2β] satisfy (i)0 < a ≤
rn ≤ b < 2α, (ii)0 < c ≤ λn ≤ f < 2β, (iii) limn→∞ αn = 0, (iv) 0 < h ≤ sn ≤
j < 2γ.
Then for each n ≥ 0, the following hold:

1. Cn is closed and convex,

2. F ⊂ Cn,

3. {xn} is well defined.

Proof. Observe that Lemma 2.3 implies that Cn,i is closed and convex for each
n ≥ 1 and for each i = 1, 2, . . . . This implies that Cn is closed and convex for
n ≥ 1, establishing (1). For n = 1, F ⊂ K = C1,i. For n ≥ 2, let x∗ ∈ F . We have

||yn,i − x∗||2 = ||αn(xn − x∗) + (1− αn)(Tiwn − x∗)||2

= αn||xn − x∗||2 + (1− αn)||Tiwn − x∗||2 − αn(1− αn)||xn − Tiwn||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||wn − x∗||2 − αn(1− αn)||xn − Tiwn||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||xn − x∗||2 − αn(1− αn)||xn − Tiwn||2

= [1 + (1− αn)(k
2
n,i − 1)]||xn − x∗||2 − αn(1− αn)||xn − Tiwn||2

≤ ||xn − x∗||2 − αn(1− αn)||xn − Tiwn||2 + θn,i

which shows that x∗ ∈ Cn,i, ∀ n ≥ 2, ∀ i = 1, 2, . . . . Thus F ⊂ Cn,i ∀ n ≥
1, ∀ i = 1, 2, . . . . Hence F ⊂ Cn ∀ n ≥ 1, establishing (2). Therefore {xn} is
well defined, completing the proof.

Lemma 3.3. Let K be a nonempty, closed and convex subset of a real Hilbert
space H. For each m = 1, 2, let Fm be a bi-function from K × K → R sat-
isfying (A1) − (A4), φm : K → R ∪ {+∞} be a proper lower semicontinuous
and convex function with assumption (B1) or (B2), A be an α-inverse-strongly
monotone mapping of K into H, B be a β-inverse-strongly monotone mapping
of K into H and for each i = 1, 2, . . . , let Ti : K → K be an asymptotically
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nonexpansive mapping such that ∩∞
i=1F (Ti) ̸= ∅. Let D be a γ-inverse-strongly

monotone mapping of K into H. Suppose F := ∩∞
i=1F (Ti) ∩GMEP (F1, A, φ1) ∩

GMEP (F2, B, φ2)∩I(D,M) ̸= ∅ and bounded . Let {zn}∞n=1, {un}∞n=1, {wn}∞n=1,
{yn,i}∞n=1 (i = 1, 2, . . .) and {xn}∞n=0 be as defined in Lemma 3.2, then the
sequences {zn}∞n=1, {un}∞n=1, {wn}∞n=1, {yn,i}∞n=1 (i = 1, 2, . . .), {xn}∞n=0 are
bounded and ||xn+1 − xn|| → 0, n→ ∞.

Proof. Since xn = PCnx0 ∀n ≥ 1 and xn+1 ∈ Cn+1 ⊂ Cn ∀n ≥ 1, we have

||xn − x0|| ≤ ||xn+1 − x0|| ∀n ≥ 0. (3.2)

Again, from F ⊂ Cn and using inequality (2.1), we obtain

||xn − x0|| ≤ ||z − x0|| z ∈ F ∀n ≥ 0. (3.3)

From inequalities (3.2) and (3.3), we have that limn→∞ ||xn − x0|| exists. Hence
{xn}∞n=0 is bounded and so are {zn}∞n=0, {Axn}∞n=0, {un}∞n=0, {Dun}∞n=0, {Bzn}∞n=0,
{wn}∞n=0, {Tn

i wn}∞n=0 and {yn,i}∞n=0 i = 1, 2, . . . . For m > n ≥ 1, we have that
xm = PCmx0 ∈ Cm ⊂ Cn. By inequality (2.4), we obtain

||xm − xn||2 ≤ ||xn − x0||2 − ||xm − x0||2. (3.4)

Letting m,n → ∞ in inequality (3.4), we obtain ||xm − xn|| → 0. In particular
limn→∞ ||xn+1 − xn|| = 0, completing the proof.

Lemma 3.4. Let K be a nonempty, closed and convex subset of a real Hilbert space
H. For each m = 1, 2, let Fm be a bi-function from K ×K → R satisfying (A1)−
(A4), φm : K → R∪{+∞} be a proper lower semicontinuous and convex function
with assumption (B1) or (B2), A be an α-inverse-strongly monotone mapping of
K into H, B be a β-inverse-strongly monotone mapping of K into H and for each
i = 1, 2, . . . , let Ti : K → K be an asymptotically nonexpansive mapping such that
∩∞
i=1F (Ti) ̸= ∅. Let D be a γ-inverse-strongly monotone mapping of K into H.

Suppose F := ∩∞
i=1F (Ti) ∩ GMEP (F1, A, φ1) ∩ GMEP (F2, B, φ2) ∩ I(D,M) ̸=

∅ and bounded . Let {zn}∞n=1, {un}∞n=1, {wn}∞n=1, {yn,i}∞n=1 (i = 1, 2, . . .) and
{xn}∞n=0 be as defined in Lemma 3.2, then limn→∞ ||zn − un|| = limn→∞ ||wn −
xn|| = 0. In addition limn→∞ ||yn,i − xn|| = limn→∞ ||wn − Tiwn|| = 0 (i =
1, 2, . . .).

Proof. By hypothesis F ̸= ∅. Let x∗ ∈ F, then using the fact that JM,λ(I − snD)
is nonexpansive for all n ∈ N, we have

||wn − x∗||2 = ||JM,λ(un − snDun)− JM,λ(x
∗ − snDx

∗)||2

≤ ||un − x∗||2.

Since both I− rnA and I−λnB are nonexpansive for each n ≥ 1, using inequality

(2.5) and the fact that x∗ = T
(F1,φ1)
rn (x∗ − rnAx

∗), x∗ = T
(F2,φ2)
λn

(x∗ −λnBx
∗), we
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obtain

||un − x∗||2 = ||T (F2,φ2)
λn

(zn − λnBzn)− T
(F2,φ2)
λn

(x∗ − λnBx
∗)||2

≤ ||zn − x∗||2

and

||zn − x∗||2 = ||T (F1,φ1)
rn (xn − rnAxn)− T (F1,φ1)

rn (x∗ − rnAx
∗)||2

≤ ||xn − x∗||2.

Therefore, ||un − x∗|| ≤ ||xn − x∗||. Since xn+1 = PCn+1x0 ∈ Cn+1, then for each
i = 1, 2, . . . ,

||yn,i − xn+1||2 ≤ ||xn − xn+1||2 − αn(1− αn)||xn − Tiwn||2 + θn,i → 0.

Using the fact that

||yn,i − xn|| ≤ ||yn,i − xn+1||+ ||xn − xn+1||,

we obtain that lim
n→∞

||yn,i − xn|| = 0, i = 1, 2, . . . . Furthermore, for each i =

1, 2, . . . ,

||yn,i − x∗||2

≤ αn||xn − x∗||2 + (1− αn)||Tn
i wn − x∗||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||un − x∗||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||T

(F2,φ2)
λn

(zn − λnBzn)− T
(F2,φ2)
λn

(x∗ − λnBx
∗)||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||(zn − λnBzn)− (x∗ − λnBx

∗)||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i

[
||zn − x∗||2 + λn(λn − 2β)||Bzn −Bx∗||2

]
≤ αn||xn − x∗||2 + (1− αn)k

2
n,i

[
||xn − x∗||2 + λn(λn − 2β)||Bzn −Bx∗||2

]
≤ ||xn − x∗||2 + (1− αn)(k

2
n,i − 1)||xn − x∗||2

+ (1− αn)k
2
n,iλn(λn − 2β)||Bzn −Bx∗||2

≤ ||xn − x∗||2 + (1− αn)k
2
n,iλn(λn − 2β)||Bzn −Bx∗||2 + θn,i.

Since 0 < c ≤ λn ≤ f < 2β, we have for each i = 1, 2, . . . ,

c(2β − f)(1− αn)k
2
n,i||Bzn −Bx∗||2 ≤ ||xn − x∗||2 − ||yn,i − x∗||2 + θn,i

≤ ||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||) + θn,i.

So,

||Bzn −Bx∗||2 ≤ 1

(1− αn)k2n,ic(2β − f)
||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||)

+
1

k2n,ic(2β − f)
θn,i.
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Hence, limn→∞ ||Bzn −Bx∗|| = 0. From the recursion formula (3.1), we have

||yn,i − x∗||2 ≤ αn||xn − x∗||2 + (1− αn)||Tn
i wn − x∗||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||un − x∗||2. (3.5)

On the other hand,

||un − x∗||2 ≤ ||T (F2,φ2)
λn

(zn − λnBzn)− T
(F2,φ2)
λn

(x∗ − λnBx
∗)||2

≤ ⟨(zn − λnBzn)− (x∗ − λnBx
∗), un − x∗⟩

=
1

2

[
||(zn − λnBzn)− (x∗ − λnBx

∗)||2 + ||un − x∗||2

− ||(zn − λnBzn)− (x∗ − λnBx
∗)− (un − x∗)||2

]
≤ 1

2

[
||zn − x∗||2 + ||un − x∗||2

− ||(zn − λnBzn)− (x∗ − λnBx
∗)− (un − x∗)||2

]
=

1

2

[
||zn − x∗||2 + ||un − x∗||2 − ||un − zn||2

+ 2λn⟨zn − un, Bzn −Bx∗⟩ − λ2n||Bzn −Bx∗||2
]

and hence

||un − x∗||2 ≤ ||zn − x∗||2 − ||un − zn||2 + 2λn⟨zn − un, Bzn −Bx∗⟩
− ||Bzn −Bx∗||2

≤ ||zn − x∗||2 − ||un − zn||2 + 2λn||zn − un||||Bzn −Bx∗||
≤ ||xn − x∗||2 − ||un − zn||2 + 2λn||zn − un||||Bzn −Bx∗||. (3.6)

Putting inequality (3.6) into inequality (3.5), we have

||yn,i − x∗||2 ≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||xn − x∗||2 − (1− αn)k

2
n,i||un − zn||2

+ 2(1− αn)k
2
n,iλn||zn − un||||Bzn −Bx∗||

= ||xn − x∗||2 − (1− αn)k
2
n,i||un − zn||2

+ 2(1− αn)k
2
n,iλn||zn − un||||Bzn −Bx∗||+ θn,i.

It follows that

(1− αn)k
2
n,i||zn − un||2 ≤ ||xn − x∗||2 − ||yn,i − x∗||2

+ 2(1− αn)k
2
n,iλn||zn − un||||Bzn −Bx∗||+ θn,i

≤ ||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||)
+ 2(1− αn)k

2
n,iλn||zn − un||||Bzn −Bx∗||+ θn,i.
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Consequently,

||zn − un||2 ≤ 1

(1− αn)k2n,i
||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||)

+ 2λn||zn − un||||Bzn −Bx∗||+ 1

(1− αn)k2n,i
θn,i.

Therefore limn→∞ ||zn − un|| = 0. Furthermore,

||yn,i − x∗||2 ≤ αn||xn − x∗||2 + (1− αn)||Tn
i wn − x∗||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||un − x∗||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||zn − x∗||2

≤ αn||xn − x∗||2

+ (1− αn)k
2
n,i||T (F1,φ1)

rn (xn − rnAxn)− T (F1,φ1)
rn (x∗ − rnAx

∗)||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||(xn − rnAxn)− (x∗ − rnAx

∗)||2

≤ αn||xn − x∗||2

+ (1− αn)k
2
n,i

[
||xn − x∗||2 + rn(rn − 2α)||Axn −Ax∗||2

]
≤ ||xn − x∗||2 + (1− αn)(k

2
n,i − 1)||xn − x∗||2

+ (1− αn)k
2
n,irn(rn − 2α)||Axn −Ax∗||2

≤ ||xn − x∗||2 + (1− αn)k
2
n,irn(rn − 2α)||Axn −Ax∗||2 + θn,i.

Since 0 < a ≤ rn ≤ b < 2α, we have

(1− αn)k
2
n,ia(2α− b)||Axn −Ax∗||2 ≤ ||xn − x∗||2 − ||yn,i − x∗||2 + θn,i

≤ ||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||) + θn,i.

So,

||Axn −Ax∗||2 ≤ 1

(1− αn)k2n,ia(2α− b)
||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||)

+
1

(1− αn)k2n,ia(2α− b)
θn,i.

Hence limn→∞ ||Axn −Ax∗|| = 0. From (3.1), we have

||yn,i − x∗||2 ≤ αn||xn − x∗||2 + (1− αn)||Tn
i wn − x∗||2

= αn||xn − x∗||2 + (1− αn)k
2
n,i||zn − x∗||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||zn − x∗||2. (3.7)
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Moreover,

||zn − x∗||2 ≤ ||T (F1,φ1)
rn (xn − rnAzn)− T (F1,φ1)

rn (x∗ − rnAx
∗)||2

≤ ⟨(xn − rnAxn)− (x∗ − rnAx
∗), xn − x∗⟩

=
1

2

[
||(xn − rnAxn)− (x∗ − rnAx

∗)||2 + ||zn − x∗||2

− ||(xn − rnAxn)− (x∗ − rnAx
∗)− (zn − x∗)||2

]
≤ 1

2

[
||xn − x∗||2 + ||zn − x∗||2

− ||(xn − rnAxn)− (x∗ − rnAx
∗)− (xn − x∗)||2

]
=

1

2

[
||xn − x∗||2 + ||zn − x∗||2 − ||xn − zn||2

+ 2rn⟨xn − zn, Axn −Ax∗⟩ − r2n||Axn −Ax∗||2
]

and hence

||zn − x∗||2 ≤ ||xn − x∗||2 − ||xn − zn||2 + 2rn⟨xn − zn, Axn −Ax∗⟩
− ||Axn −Ax∗||2

≤ ||xn − x∗||2 − ||zn − zn||2 + 2rn||zn − zn||||Axn −Ax∗||
≤ ||xn − x∗||2 − ||xn − zn||2 + 2rn||xn − zn||||Axn −Ax∗||. (3.8)

Putting (3.8) into (3.7), we have for each i = 1, 2, . . . ,

||yn,i − x∗||2 ≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||xn − x∗||2 − (1− αn)k

2
n,i||xn − zn||2

+ 2(1− αn)k
2
n,irn||xn − zn||||Axn −Ax∗||

= ||xn − x∗||2 + (1− αn)(k
2
n,i − 1)||xn − x∗||2 − (1− αn)k

2
n,i||xn − zn||2

+ 2(1− αn)k
2
n,irn||xn − zn||||Axn −Ax∗||

≤ ||xn − x∗||2 − (1− αn)k
2
n,i||xn − zn||2

+ 2(1− αn)k
2
n,irn||xn − zn||||Axn −Ax∗||+ θn,i.

It follows that for each i = 1, 2, . . . ,

(1− αn)k
2
n,i||xn − zn||2 ≤ ||xn − x∗||2 − ||yn,i − x∗||2

+ 2(1− αn)k
2
n,irn||xn − un||||Axn −Ax∗||+ θn,i

≤ ||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||)
+ 2(1− αn)k

2
n,irn||xn − zn||||Axn −Ax∗||+ θn,i.
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Consequently,

||xn − zn||2 ≤ 1

(1− αn)k2n,i
||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||)

+ 2rn||xn − zn||||Azn −Ax∗||+ 1

(1− αn)k2n,i
θn,i, i = 1, 2, . . . .

Therefore, limn→∞ ||xn − zn|| = 0. But yn,i = αnxn + (1 − αn)T
n
i wn for each

i = 1, 2, . . . , implies that

||yn,i − Tn
i wn|| = αn||xn − Tn

i wn|| → 0. (3.9)

Consequently, we have

||xn − Tn
i wn|| ≤ ||yn,i − Tn

i wn||+ ||yn,i − xn|| → 0, i = 1, 2, . . . .

Furthermore, for each i = 1, 2, . . . ,

||yn,i − x∗||2 ≤ αn||xn − x∗||2 + (1− αn)||Tn
i wn − x∗||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||wn − x∗||2

≤ αn||xn − x∗||2

+ (1− αn)k
2
n,i||JM,λ(un − snDun)− JM,λ(x

∗ − snDx
∗)||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||(un − snDun)− (x∗ − snDx

∗)||2

≤ αn||xn − x∗||2

+ (1− αn)k
2
n,i[||un − x∗||2 + sn(sn − 2γ)||Dun −Dx∗||2]

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||xn − x∗||2

+ (1− αn)k
2
n,isn(sn − 2γ)||Dun −Dx∗||2

≤ ||xn − x∗||2 + (1− αn)(k
2
n,i − 1)||xn − x∗||2

+ (1− αn)k
2
n,isn(sn − 2γ)||Dun −Dx∗||2

≤ ||xn − x∗||2 + (1− αn)k
2
n,isn(sn − 2γ)||Dun −Dx∗||2 + θn,i.

Thus,

(1− αn)k
2
n,ih(2γ − j)||Dun −Dx∗||2 ≤ ||xn − x∗||2 − ||yn,i − x∗||2 + θn,i

≤ ||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||) + θn,i.

So,

||Dun −Dx∗||2 ≤ 1

(1− αn)k2n,ih(2γ − j)
||yn,i − xn||(||xn − x∗||+ ||yn,i − x∗||)

+
1

(1− αn)k2n,ih(2γ − j)
θn,i, i = 1, 2, . . . .
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Since 0 < h ≤ sn ≤ j < 2γ, condition (iii) and ||yn,i − xn|| → 0 as n → ∞, we
have that limn→∞ ||Dun −Dx∗|| = 0. Using inequality (2.2), we obtain

||wn − x∗||2 ≤ ||JM,λ(un − snDun)− JM,λ(x
∗ − snDx

∗)||2

≤ ⟨(un − snDun)− (x∗ − snDx
∗), wn − x∗⟩

=
1

2

[
||(un − snDun)− (x∗ − snDx

∗)||2 + ||wn − x∗||2

− ||(un − snDun)− (x∗ − snDx
∗)− (wn − x∗)||2

]
≤ 1

2

[
||un − x∗||2

+ ||wn − x∗||2 − ||(un − snDun)− (x∗ − snDx
∗)− (wn − x∗)||2

]
=

1

2

[
||xn − x∗||2 + ||wn − x∗||2 − ||wn − un||2

+ 2sn⟨un − wn, Dun −Dx∗⟩ − s2n||Dun −Dx∗||2
]
.

Thus,

||wn − x∗||2 ≤ ||xn − x∗||2 − ||wn − un||2 + 2sn||wn − un||||Dun −Dx∗||.

Using this last inequality, we obtain from the recursion formula (3.1) that

||yn,i − x∗||2 ≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||Tn

i wn − x∗||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i||wn − x∗||2

≤ αn||xn − x∗||2 + (1− αn)k
2
n,i

[
||xn − x∗||2 − ||wn − un||2

+ 2sn||wn − un||||Dun −Dx∗||
]

= ||xn − x∗||2 + (1− αn)(k
2
n,i − 1)||xn − x∗||2

− (1− αn)k
2
n,i||wn − un||2

+ 2sn(1− αn)||wn − un||||Dun −Dx∗||
≤ ||xn − x∗||2 − (1− αn)k

2
n,i||wn − un||2

+ 2sn(1− αn)||wn − un||||Dun −Dx∗||+ θn,i, i = 1, 2, . . . .

This implies that for each i = 1, 2, . . . ,

(1− αn)k
2
n,i||wn − un||2 ≤ ||xn − x∗||2 − ||yn,i − x∗||2

+ 2sn(1− αn)||wn − un||||Dun −Dx∗||+ θn,i.

||wn − un||2 ≤ 1

(1− αn)k2n,i
||yn,i − xn||

(
||xn − x∗||+ ||yn,i − x∗||

)
+

1

(1− αn)k2n,i
θn,i +

2j

k2n,i
||wn − un||||Dun −Dx∗||.
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Since for each i = 1, 2, . . . , limn→∞ αn = 0, ||yn,i − xn|| → 0 as n → ∞ and
||Dun−Dx∗|| → 0 as n→ ∞, we have limn→∞ ||wn−un|| = 0. Hence ||wn−xn|| =
||wn − un + un − xn|| ≤ ||wn − un||+ ||un − xn|| → as n→ ∞. Also

||wn+1 − wn|| = ||wn+1 − xn + xn − wn|| ≤ ||wn+1 − xn||+ ||xn − wn||
≤ ||wn+1 − xn+1||+ ||xn+1 − xn||+ ||xn − wn||.

Thus limn→∞ ||wn+1−wn|| = 0. Now ||wn−Tn
i wn|| ≤ ||xn−Tn

i wn||+ ||wn−xn||.
Therefore limn→∞ ||wn − Tn

i wn|| = 0, for each i = 1, 2, . . . .

||wn+1 − Tiwn+1|| ≤ ||wn+1 − Tn+1
i wn+1||+ ||Tn+1

i wn+1 − Tn+1
i wn||

+ ||Tn+1
i wn − Tiwn+1||

≤ ||wn+1 − Tn+1
i wn+1||+ kn+1,i||wn − wn+1||

+ k1,i||Tn
i wn − wn+1||

≤ ||wn+1 − Tn+1
i wn+1||+

(
kn+1,i + k1,i

)
||wn − wn+1||

+ k1,i||Tn
i wn − wn||.

Thus limn→∞ ||wn − Tiwn|| = 0, i = 1, 2, . . . , completing the proof.

Theorem 3.5. Let K be a nonempty, closed and convex subset of a real Hilbert
space H. For each m = 1, 2, let Fm be a bi-function from K × K → R sat-
isfying (A1) − (A4), φm : K → R ∪ {+∞} be a proper lower semicontinuous
and convex function with assumption (B1) or (B2), A be an α-inverse-strongly
monotone mapping of K into H, B be a β-inverse-strongly monotone mapping
of K into H and for each i = 1, 2, . . . , let Ti : K → K be an asymptotically
nonexpansive mapping such that ∩∞

i=1F (Ti) ̸= ∅. Let D be a γ-inverse-strongly
monotone mapping of K into H. Suppose F := ∩∞

i=1F (Ti) ∩GMEP (F1, A, φ1) ∩
GMEP (F2, B, φ2)∩I(D,M) ̸= ∅ and bounded . Let {zn}∞n=1, {un}∞n=1, {wn}∞n=1,
{yn,i}∞n=1 (i = 1, 2, . . .) and {xn}∞n=0 be as defined in Lemma 3.2, then {xn} con-
verges strongly to PFx0.

Proof. Observe that in the proof of Lemma 3.3, we obtained that lim ||xm−xn|| →
0 as m,n → ∞. That is {xn} is a Cauchy sequence. Therefore xn → z, n → ∞
for some z ∈ K. Since limn→∞ ||wn − xn|| = 0 and limn→∞ ||xn − z|| = 0, we
have that limn→∞ ||wn − z|| = 0. Using the fact that limn→∞ ||wn − z|| = 0 and
limn→∞ ||wn − Tiwn|| = 0, i = 1, 2, . . . , we have that z ∈ ∩∞

i=1F (Ti).

We show that z ∈ I(D,M). Since {wn}∞n=0 is bounded, there exists a subse-
quence {wnj}∞j=1 of {wn}∞n=0 that converges weakly to z. From the fact that D is

a 1
γ− Lipschitz continuous mapping and D(D) = H, we obtain from Lemma 2.5

thatM+D is maximal monotone. Let (v, g) ∈ G(M+A), that is, g−Av ∈M(v).
Since wnj = JM,sn(I − snD)unj , we get (I − snD)unj ∈ (I + snM)wnj , that is,
1
sn
(unj − snDunj − wnj ) ∈ M(wnj ). Using the maximal monotonicity of M +D,
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we obtain ⟨
v − wnj , g −Dv +

1

sn
(unj − snDunj − wnj )

⟩
≥ 0,

⟨
v − wnj , g

⟩
≥

⟨
v − wnj , Dv +

1

sn
(unj − snDunj − wnj )

⟩

=
⟨
v − wnj , Dv −Dwnj +Dwnj −Dunj +

1

sn
(unj − wnj )

⟩

≥ 0 +
⟨
v − wnj , Dwnj −Dunj

⟩
+
⟨
v − wnj ,

1

sn
(unj − wnj )

⟩
.

It follows from the fact that limj→∞ ||wnj −unj || = 0, limj→∞ ||Dwnj −Dunj || = 0
and limj→∞ wnj = z (since limj→∞ ||wnj − xnj || = 0, and limj→∞ xnj = z) that
limj→∞⟨v − wnj , g⟩ = ⟨v − z, g⟩ ≥ 0. Using the maximal monotonicity of M +D,
we obtain θ ∈ (M +D)(z) and this implies that z ∈ I(D,M).

Further, we show that z ∈ GMEP (F1, A, φ1). Since zn := T
(F1,φ1)
rn (xn −

rnAxn), n ≥ 1, we have for any y ∈ K that

F1(zn, y) + φ1(y)− φ1(zn) + ⟨Axn, y − zn⟩+
1

rn
⟨y − zn, zn − xn⟩ ≥ 0.

Moreover, replacing n by nj in the last inequality and using (A2), we obtain

φ1(y)− φ1(znj ) + ⟨Axnj , y − znj ⟩+
1

rnj

⟨y − znj , znj − xnj ⟩ ≥ F1(y, znj ).

Let zt := ty+(1− t)z for all t ∈ (0, 1] and y ∈ K. This implies that zt ∈ K. Then,
we have

⟨zt − znj , Azt⟩ ≥ φ1(znj )− φ1(zt) + ⟨zt − znj , Azt⟩ − ⟨zt − znj , Axnj ⟩

−
⟨
zt − znj ,

znj − xnj

rnj

⟩
+ F1(zt, znj )

= φ1(znj )− φ1(zt) + ⟨zt − znj , Azt −Aznj ⟩

+ ⟨zt − znj , Aznj −Axnj ⟩ −
⟨
zt − znj ,

znj − xnj

rnj

⟩
+ F1(zt, znj ).

Since ||xnj − znj || → 0, j → ∞, we obtain ||Axnj −Aznj || → 0, j → ∞. Further-
more, by the monotonicity of A, we obtain ⟨zt − znj , Azt − Aznj ⟩ ≥ 0. Then, by
(A4) we obtain (noting that znj → z)

⟨zt − z,Azt⟩ ≥ φ1(z)− φ1(zt) + F1(zt, z), j → ∞. (3.10)
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Using (A1), (A4) and (3.10) we also obtain

0 = F1(zt, zt) + φ1(zt)− φ1(zt)

≤ tF1(zt, y) + (1− t)F1(zt, z) + tφ1(y) + (1− t)φ1(z)− φ1(zt)

≤ t[F1(zt, y) + φ1(y)− φ1(zt)] + (1− t)⟨zt − z,Azt⟩
= t[F1(zt, y) + φ1(y)− φ1(zt)] + (1− t)t⟨y − z,Azt⟩

and hence
0 ≤ F1(zt, y) + φ1(y)− φ1(zt) + (1− t)⟨y − z,Azt⟩.

Letting t→ 0, we have, for each y ∈ K,

0 ≤ F1(z, y) + φ1(y)− φ1(z) + ⟨y − z,Az⟩. (3.11)

This implies that z ∈ GMEP (F1, A, φ1). By using similar arguments, we can
show that z ∈ GMEP (F2, B, φ2). Therefore, z ∈ ∩∞

i=1F (Ti)∩GMEP (F1, A, φ1)∩
GMEP (F2, B, φ2) ∩ I(D,M).

Noting that xn = PCnx0, we have by inequality (2.3) that

⟨x0 − xn, y − xn⟩ ≤ 0,

for all y ∈ Cn. Since F ⊂ Cn and by the continuity of inner product, we obtain
from the above inequality that

⟨x0 − z, y − z⟩ ≤ 0,

for all y ∈ F . By inequality (2.3) again, we conclude that z = PFx0. This
completes the proof.

Corollary 3.6. Let K be a nonempty closed and convex subset of a real Hilbert
space H. For each m = 1, 2, let Fm be a bi-function from K × K → R sat-
isfying (A1) − (A4), φm : K → R ∪ {+∞} be a proper lower semicontinuous
and convex function with assumption (B1) or (B2), A be an α-inverse-strongly
monotone mapping of K into H, B be a β-inverse-strongly monotone mapping
of K into H and let T : K → K be an asymptotically nonexpansive mapping.
Let D be a γ-inverse-strongly monotone mapping of K into H. Suppose F :=
F (T )∩GMEP (F1, A, φ1)∩GMEP (F2, B, φ2)∩V I(K,D) ̸= ∅ and bounded. Let
{zn}∞n=1, {un}∞n=1, {wn}∞n=1, {yn}∞n=1 and {xn}∞n=0 be generated by x0 ∈ K, C1 =
K, x1 = PC1x0

zn = T
(F1,φ1)
rn (xn − rnAxn)

un = T
(F2,φ2)
λn

(zn − λnBzn)
wn = PK(un − snDun)
yn = αnx0 + (1− αn)T

nwn

Cn+1 = {z ∈ Cn : ||yn − z||2 ≤ ||xn − z||2 − αn(1− αn)||xn − Tnyn||2 + θn}
xn+1 = PCn+1x0, n ≥ 1,

(3.12)
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where θn = (1 − αn)(k
2
n,i − 1)(supx∗∈F {||xn − x∗||2}). Assume that {αn}∞n=1 ⊂

(0, 1), {rn}∞n=1 ⊂ [0, 2α] and {λn}∞n=1 ⊂ [0, 2β] satisfy (i) 0 < a ≤ rn ≤ b < 2α,
(ii) 0 < c ≤ λn ≤ f < 2β, (iii) limn→∞ αn = 0, (iv) 0 < h ≤ sn ≤ j < 2γ.
Then, {xn}∞n=0 converges strongly to PFx0.

4 Applications

We study here, the problem of finding a minimizer of a continuously Fréchet
differentiable convex functional in a Hilbert space.

Theorem 4.1. For each m = 1, 2, let Fm be a bi-function from H × H → R
satisfying (A1) − (A4), φm : H → R ∪ {+∞} be a proper lower semicontinuous
and convex function with assumption (B1) or (B2), A be an α-inverse-strongly
monotone mapping of H into itself, B be a β-inverse-strongly monotone mapping
of H into itself and for each i = 1, 2, . . ., let Ti : H → H be asymptotically
nonexpansive mappings such that ∩∞

i=1F (Ti) ̸= ∅. Suppose f is a functional on H
which satisfies the following conditions:

1. f is a continuously Fréchet differentiable convex functional on H and ∇f
is 1

γ -Lipschitz continuous,

2. (∇f)−10 = {z ∈ H : f(z) = miny∈H f(y)} ̸= ∅.

Suppose F := ∩∞
i=1F (Ti)∩GMEP (F1, A, φ1)∩GMEP (F2, B, φ2)∩ (∇f)−1(0) ̸=

∅ and bounded. Let {zn}∞n=1, {un}∞n=1, {wn}∞n=1, {yn,i}∞n=1 (i = 1, 2, . . .) and
{xn}∞n=0 be generated by x0 ∈ K, C1,i = K, C1 = ∩∞

i=1C1,i, x1 = PC1x0

zn = T
(F1,φ1)
rn (xn − rnAxn)

un = T
(F2,φ2)
λn

(zn − λnBzn)
wn = (un − sn∇fun)
yn,i = αnxn + (1− αn)T

n
i wn

Cn+1,i = {z ∈ Cn,i : ||yn,i − z||2 ≤ ||xn − z||2
−αn(1− αn)||xn − Tn

i yn,i||2 + θn,i}
Cn+1 = ∩∞

i=1Cn+1,i

xn+1 = PCn+1x0, n ≥ 1,

(4.1)

where θn,i = (1 − αn)(k
2
n,i − 1)(supx∗∈F {||xn − x∗||2}), i = 1, 2, . . . . Assume that

{αn}∞n=1 ⊂ (0, 1) (i = 1, 2, . . .), {rn}∞n=1 ⊂ [0, 2α] and {λn}∞n=1 ⊂ [0, 2β] satisfy
(i) 0 < a ≤ rn ≤ b < 2α, (ii) 0 < c ≤ λn ≤ f < 2β, (iii) limn→∞ αn = 0,
(iv) 0 < h ≤ sn ≤ j < 2γ.
Then, {xn}∞n=0 converges strongly to PFx0.

Proof. We know from condition (1) and Lemma 2.2 that ∇f is an γ-inverse-
strongly monotone operator from H into H. Using Theorem 3.5 we have the
desired conclusion.
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We now study a kind of multi-objective optimization problem with nonempty set
of solutions:  minh1(x)

minh2(x)
x ∈ K

(4.2)

where K is a nonempty closed convex subset of a real Hilbert space H and hi :
K → R, i = 1, 2 is a convex and a lower semicontinuous functional. Let us denote
the set of solutions to (4.2) by Ω and assume that Ω ̸= ∅.

We shall denote the set of solutions of the following two optimization problems
by Ω1 and Ω2 respectively. {

min
x∈K

h1(x)

and {
min
x∈K

h2(x).

Clearly, if we find a solution x ∈ Ω1 ∩ Ω2, then one must have x ∈ Ω.

Now, for each i = 1, 2, let Fi : K ×K → R be defined by Fi(x, y) := hi(y) −
hi(x). We consider now the following equilibrium problem: find x ∈ K such that

Fi(x, y) ≥ 0, i = 1, 2, (4.3)

for all y ∈ K. It is obvious that Fi satisfies conditions (A1)− (A4) and EP (Fi) =
Ωi, i = 1, 2, where EP (Fi) is the set of solutions to (4.3). By Theorem 3.5, we
have the following.

Theorem 4.2. Let K be a nonempty closed and convex subset of a real Hilbert
space H. For each i = 1, 2, let hi be a lower semicontinuous and convex function
such that Ω1 ∩Ω2 ̸= ∅. Let {zn}∞n=1, {un}∞n=1, {yn}∞n=1 and {xn}∞n=0 be generated
by x0 ∈ K, C1 = K, x1 = PC1x0

h1(y)− h1(zn) +
1
rn
⟨y − zn, zn − xn⟩ ≥ 0, ∀y ∈ K,

h(y)− h(un) +
1
λn

⟨y − un, un − zn⟩ ≥ 0, ∀y ∈ K,

yn = αnx0 + (1− αn)un
Cn+1,i = {z ∈ Cn,i : ||yn,i − z||2 ≤ ||xn − z||2

−αn(1− αn)||xn − Tn
i yn,i||2 + θn,i}

xn+1 = PCn+1x0, n ≥ 1,

where θn,i = (1 − αn)(k
2
n,i − 1(supx∗∈F {||xn − x∗||2}), i = 1, 2, . . . . Assume that

{αn}∞n=1 ⊂ (0, 1), {rn}∞n=1 ⊂ (0,∞) and {λn}∞n=1 ⊂ (0,∞) satisfy
(i) lim infn→∞ rn > 0, (ii) lim infn→∞ λn > 0, (iii) limn→∞ αn = 0.
Then, {xn}∞n=0 converges strongly to PΩ1∩Ω2x0.
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Remark 4.3. Our results in this paper extend many important recent results, in
particular, the results of [18, 28] were extended from the class of non expansive
mappings to a more general class of asymptotically nonexpansive mappings. Also,
there is no boundedness assumption on the domain of the operator.

Prototypes. The prototypes of our iteration parameters are:
αn := 1

n , n ≥ 1; rn := α( n
n+2 );λn := β( n

n+1 ), n ≥ 1; and sn := γ( n
n+1 ) n ≥ 1,

a = α
4 ; c =

β
4 ; h = γ

4 , b = α, f = β, j = γ.

Acknowledgement : The author would like to thank the anonymous referee(s)
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