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Abstract : A numerical study of natural convection flow in porous square cavities
with discrete heat sources is studied in this paper. Two cases depending on varying
the positions of discrete heat sources on the walls are considered. For case 1, two
heat sources are located at the lower portion on the side walls while they are located
at the upper for case 2. Both of case 1 and case 2, there is one heat source located
at the center portion on the bottom wall and the top wall is adiabatic. The study
is performed for different Darcy numbers, (Da = 10−4 − 10−2) while Rayleigh
number (Ra = 105) and Prandtl number (Pr = 0.72) are kept constant. FlexPDE
6.14 student version is used to solve the governing equations which is based on
the finite element method. The results are displayed in the terms of isotherms,
streamlines and heatlines. It is found that the temperature distribution is more
distributed in the cavities. The strength of convection is stronger as seen from
the greater magnitudes of streamfunctions. Thermal mixing is intensified which is
shown by the formation of heatlines cells.
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Notations

Da Darcy number x, y distance along x and y
g acceleration due to coordinates (m)

gravity (ms−2) X,Y dimensionless distance
K permeability of porous along x and y coordinates

medium (m2) Greek symbols
L size of the square cavity (m) α thermal diffusivity (m2s−1)
p pressure (Pa) β volume expansion
P dimensionless pressure coefficient (K−1)
Pr Prandtl number γ penalty parameter
Ra Rayleigh number θ dimensionless temperature
T temperature (K) ν kinematic viscosity (m2s−1)
Th temperature of discrete ρ density (kgm−3)

heat sources (K) Ψ streamfunction
Tc temperature of cold Π heatfunction

portions of the cavity (K) Subscripts
u, v x and y components of c cold wall

velocity (ms−1) h hot wall
U, V x and y components of

dimensionless velocity

1 Introduction

Analysis of natural convection flow filled with a porous media has received at-
tention in the past year. This interest is due to a number of technical applications,
such as separation processes in chemical industries, fluid flow in geothermal reser-
voirs, dispersion of chemical contaminants through water saturated soil, migration
of moisture in grain storage system, crude oil production, solidification of casting,
etc.

Natural convection in discretely heated porous enclosures has been studied
extensively. El-Khatib and Prasad [1] studied the effects of stratification on ther-
mal convection in horizontal porous layers with a localized heat source on bottom
surface and linearly varying temperature on vertical walls. Robillard [2] investi-
gated multiple steady states in a confined porous medium with localized heating
from below whereas an upper surface is cool and the other surfaces is adiabatic.
Free and mixed convection in horizontal porous layers heated from below by mul-
tiple, isothermal, discrete heat source for different Rayleigh and Peclet numbers
have been carried out by Lai et al. [3, 4]. Further, Heindel et al. [5] reported
experimental and numerical studies on natural convection heat transfer from the
fin arrys of discrete heat sources filled with a porous medium. Saeid and Pop [6]
studied the natural convection in a porous square enclosure with isothermal dis-
crete heater on one of the vertical walls and the other vertical wall is kept constant
temperature, while the horizontal walls are adiabatic. Zhao et al. [7] reported a
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numerical study on double-diffusive convective flow of a binary mixture in a porous
enclosure subject to localized heating and salting from one side. Recently, Sankar
et al. [8] studied the natural convection flows in a vertical annulus filled with a
fluid-saturated porous medium.

This study is the problem on two-dimensional natural convection inside porous
square enclosures using finite element method. Two different cases with various
the locations of discrete heat sources on the walls of the cavities are considered.
The objective of the present paper is to investigate the flow field, temperature
distribution and heat flow in the enclosures. Main attention is focused on the
effect of Darcy numbers. The interested parameters are Darcy numbers (10−4 ≤
Da ≤ 10−2), Prandtl number (Pr = 0.72) and Rayleigh number (Ra = 105).

2 Simulation and mathematical formulation

The physical domains of two cases are depicted in Figure 1. These domains
consist of porous square cavities with discrete isothermal heating, which are dis-
played by thick lines. In all the cases, the heat source is fixed at the center of the
bottom wall. Figure 1(a) shows the heat sources are placed at the lower portions
on the vertical walls and Figure 1(b) shows the heat sources are placed at the
upper portions on the vertical walls. The top wall is insulated. The dimensionless
length of the heat sources on the bottom wall is 0.20 while that on the vertical
walls is 0.40.
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Figure 1: Physical domains of the enclosures for different cases: (a) case 1
and (b) case 2.

All the physical properties are assumed to be constant except the density in
buoyancy term. Change in density due to temperature variation is calculated
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using Boussinesq approximation. Another important assumption is that the local
thermal equilibrium (LTE) is valid [9, 10]. The governing equations for steady two-
dimensional natural convection flow in porous square enclosures using conversation
of mass, momentum and energy can be written as

∂u

∂x
+
∂u

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
− ν

K
u, (2.2)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂x
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
− ν

K
v + gβ(T − Tc), (2.3)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
. (2.4)

The above governing equations are transformed to dimensionless form by using
the following change of variables:

X =
x

L
, Y =

y

L
, U =

uL

α
, V =

vL

α
, θ =

T − Tc
Th − Tc

,

P =
pL2

ρα2
, P r =

ν

α
, Da =

K

L2
, Ra =

gβ(Th − Tc)L
3Pr

ν2
.

 (2.5)

The governing equations (2.1)-(2.4) reduce to the following non-dimensional form:

∂U

∂X
+
∂U

∂Y
= 0, (2.6)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ Pr

(
∂2U

∂X2
+
∂2U

∂Y 2

)
− Pr

Da
U, (2.7)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ Pr

(
∂2V

∂X2
+
∂2V

∂Y 2

)
− Pr

Da
V +RaPrθ, (2.8)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2
+
∂2θ

∂Y 2
. (2.9)

In order to solve the equations (2.7)-(2.8) by eliminating the pressure, we use
the penalty finite element method with a penalty parameter such that [11]

P = −γ
(
∂U

∂X
+
∂V

∂Y

)
. (2.10)

Typical values of γ that yield consistent solutions are 107. Substituting (2.10)
into (2.7) and (2.8), we have

U
∂U

∂X
+ V

∂U

∂Y
= γ

∂

∂X

(
∂U

∂X
+
∂V

∂Y

)
+ Pr

(
∂2U

∂X2
+
∂2U

∂Y 2

)
− Pr

Da
U, (2.11)
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and

U
∂V

∂X
+ V

∂V

∂Y
= γ

∂

∂Y

(
∂U

∂X
+
∂V

∂Y

)
+ Pr

(
∂2V

∂X2
+
∂2V

∂Y 2

)
− Pr

Da
V +RaPrθ. (2.12)

The boundary conditions for velocities with cases 1− 2 are

U(X, 0) = U(X, 1) = U(0, Y ) = U(1, Y ) = 0,

V (X, 0) = V (X, 1) = V (0, Y ) = V (1, Y ) = 0.
(2.13)

The boundary conditions for temperature are

for hot regime : θ = 1,

for cold regime : θ = 0,

for adiabatic top wall :
∂θ

∂Y
= 0.

 (2.14)

2.1 Streamfunction and heatfunction

2.1.1 Streamfunction

The streamfunction (ψ) is used to visualize the convective fluid flow within the
enclosures. The dimensionless streamfunction is defined as U = ∂ψ

∂Y and V = − ∂ψ
∂X

[12]. Therefore the equation (2.6) is changed to (2.15)

∂2ψ

∂X2
+
∂2ψ

∂Y 2
=
∂U

∂Y
− ∂V

∂X
. (2.15)

The boundary condition for streamfunction is

ψ = 0. (2.16)

2.1.2 Heatfunction

The heatfunction (Π) is used to visualize the heat flow within the enclosures.
The dimensionless heatfunction is defined as ∂Π

∂Y = Uθ − ∂θ
∂X and

− ∂Π
∂X = V θ − ∂θ

∂Y [13]. Thus, the equation (2.9) is changed to (2.17)

∂2Π

∂X2
+
∂2Π

∂Y 2
=

∂

∂Y
(Uθ)− ∂

∂X
(V θ). (2.17)
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The boundary conditions for heatfunction are

for hot regime on bottom wall : ∂Π∂Y = π cos(πX),

for hot regime on side walls : ∂Π∂X = −π cos(πY ) or π cos(πY ),

for cold regime on bottom wall : ∂Π∂Y = 0,

for cold regime on side walls : ∂Π∂X = 0,

for adiabatic wall : Π = 0.


(2.18)

3 Results and discussion

The discussions and the numerical results for the problem of natural convec-
tion in porous square enclosures with various sections of discrete heat sources are
presented in this section. The procedure mentioned previously is coded into Flex-
PDE 6.14 student version. The computations are carried out for a wide range
of Darcy numbers (10−4 ≤ Da ≤ 10−2) such that Prandtl number and Rayleigh
number are kept constant at 0.72 and 105, respectively. The flow, temperature
and heat fields are displayed in terms of isotherms streamlines and heatlines.

3.1 Case 1

The schematic diagram for case 1 is shown in Figure 1(a). The heat sources
are placed at the center portion of the bottom wall (0.40 ≤ X ≤ 0.60) and the
lower portion of the vertical walls (0.10 ≤ Y ≤ 0.50). Detailed computations have
been carried out for Darcy numbers, Da = 10−4, 10−3 and 10−2 while Rayleigh
number and Prandtl number are fixed at Ra = 105 and Pr = 0.72, respectively.

At Da = 10−4, isotherms are smooth and they are symmetric near the top
portion of the side walls for θ = 0.10. Values of isotherms at the center core are θ =
0.20− 0.40 and the isotherms disperse near the bottom corner for θ = 0.10− 0.40.
When Da is increased to 10−3, it is noted that isotherm with θ = 0.20 disperses
to the top portion of the vertical walls as seen from Figure 2(b). Isotherms at
θ = 0.30−0.40 are found to be compress along the vertical walls as Da is increased
to 10−2.

At Da = 10−4, the circulation cells of streamlines are weak. It may be noted
that the multiple circulations are formed in the cavity and the primary circulation
is bi-cellular as seen in Figure 3(a). For Da = 10−3, the flow direction is similar
to the case of Da = 10−4 but the intensity is stronger as shown in Figure 3(b).
In addition, the smallest circulations at the lower portion of the cavity are dis-
appear. The bi-cellular in the primary circulation disappear and the strength of
fluid motion is enhanced with |ψ|max = 5.00 when Da is increased to 10−2.

The heatlines illustrated in Figure 4(a) are wavy and they are dispersed near
the lower of side walls due to the locations of discrete heat sources for Da = 10−4.
As Da is incresed to = 10−3, the less heatlines are remain dispersed near the low
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portion of the side walls. The heatlines presented in Figure 4(c) show that the
multiple circulations are occurred in the enclosure with Da = 10−2.
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Figure 2: Isotherms for case 1 with Ra = 105, Pr = 0.72 and (a)Da = 10−4

(b) Da = 10−3 and (c) Da = 10−2.
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Figure 3: Streamlines for case 1 with Ra = 105, Pr = 0.72 and (a) Da =
10−4 (b) Da = 10−3 and (c) Da = 10−2.
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Figure 4: Heatlines for case 1 with Ra = 105, Pr = 0.72 and (a) Da = 10−4

(b) Da = 10−3 and (c) Da = 10−2.
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3.2 Case 2

The schematic diagram for case 2 is shown in Figure 1(b). The heat sources
are placed at the center portion of the bottom wall (0.40 ≤ X ≤ 0.60) and the
lower portion of the side walls (0.10 ≤ Y ≤ 0.50). Detailed computations have
been carried out for various Da = 10−4 − 10−2 with Ra = 105 and Pr = 0.72.

At Da = 10−4, values of isotherms at the center core are θ = 0.40− 0.50 and
the isotherms with θ = 0.10−0.30 distribute near the bottom corner. Furthermore,
the isotherm moves to the top portion of the cavity for θ = 0.60 and moves down
to the bottom corner for θ = 0.40 as Da is increased to 10−3. For Da = 10−2,
value of isotherm with θ = 0.40 moves to the center core of the cavity as seen in
Figure 5(c).

At Da = 10−4, the multiple circulations are formed in the cavity as seen in
Figure 6(a). The maximum value of the primary circulation |ψ|max = 0.12. When
Da is increased to 10−3, primary circulations in the lower part of the enclosure
are stronger than secondary circulations at the upper part which can be seen from
the maximum value of the primary circulations |ψ|max = 0.90, whereas |ψ|max =
0.60 for the secondary circulations. As Da is increased to 10−2, the eye of the
primary circulations moves upwards to the upper part of the cavity in Figure 6(c).
Moreover, the intensity of fluid motion is stronger with |ψ|max = 3.00.

The heatlines emanate from hot surface to cold surface of the vertical walls at
Da = 10−4. Complex circulations of heatlines are occured in the enclosure and
heatlines are wavy near the upper portion of the vertical walls as seen from Figure
7(b) when Da is increased to 10−3. For Da = 10−2, the multiple circulations of
heatlines are formed in the enclosure and the strength of heat flow is stronger than
previous cases with |Π|max = 1.50.
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Figure 5: Isotherms for case 2 with Ra = 105, Pr = 0.72 and (a)Da = 10−4

(b) Da = 10−3 and (c) Da = 10−2.
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Figure 6: Streamlines for case 2 with Ra = 105, Pr = 0.72 and (a) Da =
10−4 (b) Da = 10−3 and (c) Da = 10−2.
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Figure 7: Heatlines for case 2 with Ra = 105, Pr = 0.72 and (a) Da = 10−4

(b) Da = 10−3 and (c) Da = 10−2.
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4 Conclutions

Natural convection flow within porous square enclosures is summarized in this
section. Two cases are studied by considering various positions of discrete heat
sources on the walls. The longer heat sources are placed at the lower portion of the
side walls for case 1, while they are placed at the upper portion of the side walls
for case 2. The smaller heat source is fixed at the center of the bottom wall for
all cases. The parameters for this study are Darcy number (10−4 ≤ Da ≤ 10−2),
Rayleigh number (Ra = 105) and Prandtl number (Pr = 0.72). The aim of this
paper is to examine the effect of varying Da.

From the study results, it is found that the temperature distribution is more
distributed in the enclosures when the value of Ra and Pr is kept constant and the
values of Da are increased. For flow field, the multiple circulations appear in the
cavities and the intensity of fluid flow is stronger as seen from the greater magni-
tudes of streamfunctions. Thermal mixing in cavities is evaluated by heatlines. In
case 1, the heatlines distribute near the lower portion of vertical walls at low Da.
For higher Da, the heatlines still distribute near the lower portion of vertical walls
and the multiple cells observable. In addition, thermal mixing is intensified which
is shown by the formation of heatlines cells. In case 2, the heatlines distribute near
the upper portion of vertical walls with low Da. For higher Da, the multiple cells
occur in the cavities and thermal mixing is also enhanced due to heat distribution
on the walls.
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