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1 Introduction

Let E be a nonempty subset of a metric space X. We shall denote by 2E the
family of nonempty subsets of E, by CB(E) the family of nonempty closed and
bounded subsets of E, by K(E) the family of nonempty compact subsets of E,
and by KC(E) the family of nonempty compact convex subsets of E. Let H be
the Hausdorff distance on CB(E), that is,

H(A,B) := max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
, A,B ∈ CB(E).
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where d(a,B) := inf{∥a − b∥ : b ∈ B} is the distance from a point a to a subset
B. Let t be a mapping of E into E and T a multivalued mapping of E into 2E .
The set of fixed points of t and T will be denoted by Fix(t) := {x ∈ E : tx = x}
and Fix(T ) := {x ∈ E : x ∈ Tx} respectively. A nonempty subset C of E is said
to be t-invariant if t(C) ⊂ C. C is said to be T -invariant if Tx ∩ C ̸= ∅ for all
x ∈ C. t and T is said to commute if for each x ∈ E, t(Tx) ⊂ T (tx). A sequence
{xn} in E is called an approximate fixed point sequence (afps for short) for T if
limn→∞ d(xn, Txn) = 0.

Definition 1.1. A multivalued mapping T : E → 2E is said to satisfy

(i) condition (E) if there exists µ ≥ 1 such that for each x, y ∈ E,

λd(x, Ty) ≤ µd(x, Tx) + d(x, y);

(ii) condition (Cλ) if there exists λ ∈ (0, 1) such that for each x, y ∈ E,

λd(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ d(x, y).

Recall that I −T is strongly demiclosed if for every sequence {xn} in E which
converges to x ∈ E and such that limn→∞ d(xn, Txn) = 0, we have x ∈ Tx.
Notice that if T satifies condition (E) then I − T is strongly demiclosed (see [1,
Proposition 2.10]).

Recently, Akkasriworn et al. [2] defined a condition on single-valued mapping
which is weaker than quasi-nonexpansiveness and asymptotically nonexpansiveness
and proved the existence of common fixed points in uniformly convex Banach
spaces.

Definition 1.2 ([2, Definition 1.1]). A mapping t on a set E is said to satisfy
condition (K) if

(i) Fix(t) is nonempty closed and convex;

(ii) for each x ∈ Fix(t) and any closed convex t-invariant subset C of E, the
nearest point of x ∈ C must be contained in Fix(t).

Theorem 1.3 ([2, Theorem 3.4]). Let E be a nonempty bounded closed convex
subset of a uniformly convex Banach space X. Let t : E → E be a mapping
satisfying condition (K), and let T : E → KC(E) be a multivalued mapping
satisfying conditions (E) and (Cλ) for some λ ∈ (0, 1). If t and T are commute,
then Fix(t) ∩ Fix(T ) ̸= ∅.

Laowang and Panyanak [3] generalized Theorem 1.3 to uniformly convex hy-
perbolic spaces and they also proved that the condition (K) is weaker than asymp-
totically quasi-nonexpansiveness and is weaker than asymptotically pointwise non-
expansiveness.
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Theorem 1.4 ([3, Theorem 12]). Let E be a bounded closed convex subset of a
complete uniformly convex hyperbolic space X and t : E → E a mapping satisfying
condition (K). Suppose that T : E → KC(E) satisfies condition (Cλ) and I − T
is strongly demiclosed. If t and T commute, then Fix(t) ∩ Fix(T ) ̸= ∅.

Garćıa-Falset et al. [4] defined a class of multivalued mappings.

Definition 1.5 ([4, Definition 1]). A mapping T : E → CB(E) satisfies condition
(L) on a set E if

(i) every T -invariant closed convex subset possesses an afps;

(ii) for an afps {xn} for T in E and x ∈ E,

lim sup
n→∞

d(xn, Tx) ≤ lim sup
n→∞

d(xn, x).

In this paper, we show that every total asymptotically nonexpansive mapping
satisfies condition (K) and a multivalued mapping T satisfies condition (L) when
T satisfies condition (Cλ) for some λ ∈ (0, 1) and I − T is strongly demiclosed.
Moreover, we extend Theorem 1.4 to uniformly convex metric spaces while a class
of single-valued mappings is no longer finite and a multivalued mapping satisfies
condition (L). Moreover, we obtain a common fixed point theorem for a family of
weakly commuting single-valued mappings and a multivalued mapping satisfying
condition (L).

2 Preliminaries

Let (X, d) be a metric space. A geodesic path from x to y is a mapping
c : [0, l] ⊂ R → X with c(0) = x, c(l) = y and d(c(t), c(t′)) = |t − t′| for every
t, t′ ∈ [0, l]. The image c([0, l]) of c forms a geodesic segment which joins x and
y and is not necessarily unique. We will use [x, y] to denote a geodesic segment
joining x and y. (X, d) is a (uniquely) geodesic space if every two points x, y ∈ X
can be joined by a (unique) geodesic path. A point z ∈ X belongs to the geodesic
segment [x, y] if and only if there exists t ∈ [0, 1] such that d(z, x) = td(x, y) and
d(z, y) = (1−t)d(x, y) and we will write z = (1−t)x+ty. A subset C of a geodesic
space is said to be convex if [x, y] ⊂ C for any x, y ∈ C.

Definition 2.1. A geodesic metric space (X, d) is called uniformly convex if for
any r > 0 and any ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all a, x, y ∈ X
with d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ εr it is the case that

d(m, a) ≤ (1− δ)r,

where m stands for any midpoint of any geodesic segment [x, y]. A mapping
δ : (0,∞) × (0, 2] → (0, 1] providing such a δ = δ(r, ε) for a given r > 0 and
ε ∈ (0, 2] is called a modulus of uniform convexity.
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From the definition, it is clear that uniformly convex metric spaces are uniquely
geodesic. The mapping δ is monotone (resp. lower semi-continuous from the right)
if for every fixed ε it decreases (resp. is lower semi-continuous from the right) with
respect to r (see [5]). Examples of uniformly convex metric spaces are uniformly
convex Banach spaces, CAT(0) spaces and CAT(1) spaces with small diameters
(see [6]).

Throughout this paper, we assume that all uniformly convex metric spaces
have monotone or lower semi-continuous from the right modulus of uniform con-
vexity.

Let X be a metric space and F a family of subset of X. Then, F defines a
convexity structure onX if it contains the closed balls and is stable by intersection.

Remark 2.2. It is noted in [5] that if F stands for the collection of nonempty
closed and convex subsets of a complete uniformly convex metric space, then F is
a nested compact convexity structure, that is, if any decreasing chain (Aα)α∈Γ of
nonempty bounded elements of F has nonempty intersection.

For a bounded sequence {xn} in X and x ∈ X, define

r(x, xn) = lim sup
n→∞

d(x, xn).

The asymptotic radius of {xn} is given by

r({xn}) = inf{r(x, xn) : x ∈ X},

and the asymptotic center of {xn} is the set

A({xn}) = {x ∈ X : r(x, xn) = r({xn}).

In [5], the authors proved that every bounded sequence in a complete uniformly
convex metric space has a unique asymptotic center.

A bounded sequence {xn} is regular if r({xn}) = r({xnk
}) for every subse-

quence {xnk
} of {xn}. Every bounded sequence {xn} in a complete uniformly

convex metric space has a regular subsequence {xnk
} and thus every subsequence

of {xnk
} has the same asymptotic center as {xnk

} (see [7]). The following lemma
can be found in [1].

Lemma 2.3. Let E be a nonempty closed convex subset of a complete uniformly
convex metric space X. Then for each x ∈ X, there exists a unique point x0 in E
such that

d(x, x0) = d(x,E) := inf{d(x, y) : y ∈ E}.

Definition 2.4. A single-valued mapping t : E → E is said to be

(i) quasi-nonexpansive if for Fix(t) ̸= ∅ and for x ∈ E and y ∈ Fix(t),

d(tx, y) ≤ d(x, y);
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(ii) asymptotically nonexpansive if there exists sequence {kn} in [1,∞) with
limn→∞ kn = 1 such that

d(tnx, tny) ≤ knd(x, y) for all x, y ∈ E and n ∈ N;

(iii) asymptotically pointwise nonexpansive if there exists sequence αn : E →
[0,∞) with limn→∞ αn(x) = 1, such that

d(tnx, tny) ≤ αn(x)d(x, y) for all x, y ∈ E and n ∈ N;

(iv) asymptotically quasi-nonexpansive if there exists sequence {kn} in [1,∞)
with limn→∞ kn = 1 such that

d(tnx, p) ≤ knd(x, p) for all x ∈ E, p ∈ Fix(t) and n ∈ N;

(v) generalized asymptotically nonexpansive ([8]) if there exist sequences {kn}
in [1,∞) and {sn} in [0,∞) with limn→∞ kn = 1, limn→∞ sn = 0 such that

d(tnx, tny) ≤ knd(x, y) + sn for all x, y ∈ E and n ∈ N;

(vi) total asymptotically nonexpansive ([9]) if there exist nonnegative real se-

quence {k(1)n } and {k(2)n } with limn→∞ k
(1)
n = limn→∞ k

(2)
n = 0, and strictly

increasing and continuous functions ϕ : R+ → R+ with ϕ(0) = 0 such that

d(tnx, tny) ≤ d(x, y) + k(1)n ϕ(d(x, y)) + k(2)n for all x, y ∈ E and n ∈ N.

Before passing to main results, we briefly recall the notations. Let E be a
nonempty subset of metric space X, C a nonempty subset of E and S a family of
self-mappings of E. The set of common fixed points of S in E will be denoted by
F (S). We denote by ∂EC the relative boundary of C, that is, ∂EC = C ∩ E \ C.
Let t be a mapping of E into E and T a multivalued mapping of E into 2E . t and
T is said to commute weakly if for each x ∈ E, t(∂ETx) ⊂ T (tx). S and T is said
to commute (weakly) if each t ∈ S and T commute (weakly).

3 Main Results

First we will show that every total asymptotically nonexpansive mapping sat-
isfies condition (K).

Proposition 3.1. Let E be a bounded closed convex subset of a complete uniform
metric space X. If t : E → E is a continuous total asymptotically nonexpansive
mapping, then t satisfies condition (K).

Proof. The proof of Fix(t) ̸= ∅ and closed convex follows similar patterns as in [5,
Theorem 3.11], so we omit it. Next, we need to show that for each x ∈ Fix(t) and
any closed convex t-invariant subset C of E, the nearest point of x ∈ C must be
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contained in Fix(t). Now, let x ∈ Fix(t), C be a closed convex t-invariant subset
of E and u ∈ C be such that d(x, u) = d(x,C). We will show that u ∈ Fix(t). If
x ∈ C, then u = x ∈ Fix(t). Suppose that x /∈ C. Since t is total asymptotically
nonexpansiveness, we have

lim sup
n→∞

d(x, tnu) ≤ d(x, u). (3.1)

We will prove that {tnu} is a Cauchy sequence. Suppose not, there exists a sepa-
rated subsequence {tmiu} of tmu, that is, there exists ε > 0 such that d(tmku, tmhu)
≥ ε for every k ̸= h in N.

For the monotone case, let mkh be the midpoint of the segment [tmku, tmhu],
c = diam(E) and ε0 = ε/c. The uniform convexity of the space implies that for
every k and h in N

d(mkh, x) ≤ (1− δ(max{d(tmhu, x), d(tmku, x)}, ε0))max{d(tmhu, x), d(tmku, x)}
≤ (1− δ(c, ε0))max{d(tmhu, x), d(tmku, x)}.

Since u is a nearest point of x in C and (3.1),

d(u, x) ≤ d(mkh, x)

≤ (1− δ(c, ε0))d(u, x),

and so d(u, x) = 0 which contradicts to x /∈ C.
For the lower semicontinuous case, let mkh be the midpoint of the segment

[tmku, tmhu], ε1 = ε/d(u, x) and p ∈ N. Then there exists N ∈ N such that
max{d(tmhu, x), d(tmku, x)} ≤ d(u, x) + p−1 for each h, k ≥ N . By uniform con-
vexity,

d(u, x) ≤ d(mkh, x) ≤ (1− δ(d(u, x) + p−1, ε)(d(u, x) + p−1). (3.2)

Note that if p is large enough,

δ(d(u, x) + p−1, ε) ≥ 1

2
δ(d(u, x) + p−1, ε)

1− δ(d(u, x) + p−1, ε) ≤ 1− 1

2
δ(d(u, x) + p−1, ε)

From (3.2) and taking p to infinity, d(u, x) < d(u, x), which is a contradiction.
Therefore, {tmu} is a Cauchy sequence and its limit, by (3.1), is u. Then, from
the continuity of t, tu = u.

Proposition 3.2. Let E be a bounded closed convex subset of a uniformly convex
metric space X. If T : E → CB(E) satisfies condition (Cλ) and I − T is strongly
demiclosed, then T satisfies condition (L).

Proof. According to [1, Lemma 3.1], if C ⊂ E is closed convex and T -invariant,
we can assure the existence of an afps for T in C. Next, Let {xn} be an afps for
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T in E and x ∈ E. If xn → x, then x ∈ Tx because I − T is strongly demiclosed.
So, for all n ∈ N, d(xn, Tx) = infy∈Tx d(xn, y) ≤ d(xn, x). Otherwise, there exist
N ∈ N and yn ∈ Txn such that for all n ≥ N

λd(xn, Txn) = λd(xn, yn) ≤ d(xn, x).

By condition (Cλ), H(Txn, Tx) ≤ d(xn, x) for all n ≥ N . We know that

d(xn, Tx) ≤ d(xn, Txn) +H(Txn, Tx), for n ≥ N.

Taking upper limits on n we obtain

lim sup
n→∞

d(xn, Tx) ≤ lim sup
n→∞

d(xn, x).

Therefore, T satisfies condition (L).

Theorem 3.3. Let E be a bounded closed convex subset of a complete uniformly
convex metric space X and S = {ti}i∈I a family of commuting mappings satisfying
condition (K) on E. Then F (S) is nonempty closed and convex.

Proof. Since t1 satisfies condition (K), Fix(t1) is nonempty closed and convex.
Suppose that F := ∩k−1

i=1 Fix(ti) is nonempty closed and convex for some 1 < k ≤ n.
For x ∈ F and 1 ≤ i < k, since tk ◦ ti = ti ◦ tk, we have

tkx = tk ◦ tix = ti ◦ tkx,

thus tkx is a fixed point of ti for every i = 1, 2, ..., k − 1, that is, tkx ∈ F . Hence
tk(F ) ⊂ F . Again by condition (K) of tk, tk has a fixed point in F , that is,
∩k
i=1Fix(ti) is nonempty closed and convex. By induction, we obtain ∩n

i=1Fix(ti)
is nonempty closed and convex.

Let Γ = 2I = {β : β ⊂ I}. It is obvious that Γ is downward directed (the
order on Γ is the set inclusion). The above proof implies that for every β ∈ Γ, the
set Fβ = ∩i∈βFix(ti) is nonempty closed and convex. Clearly the family (Fβ)β∈Γ

is decreasing. By using Remark 2.2, F (S) = ∩i∈IFix(ti) is nonempty. It is clear
that it is closed and convex.

As direct consequences of Proposition 3.1 and Theorem 3.3, we obtain the
following corollaries.

Corollary 3.4 ([10, Theorem 3.2]). Let E be a bounded closed convex subset
of a complete CAT(0) space X and {ti}i∈I any family of commuting asymptotic
pointwise nonexpansive mappings on E. Then ∩i∈IFix(ti) is nonempty closed and
convex.

Corollary 3.5 ([8]). Let E be a bounded closed convex subset of a complete
CAT(0) space X and {ti}i∈N a countable infinite family of commuting continu-
ous generalized asymptotically nonexpansive mappings on E. Then ∩∞

i=1Fix(ti) is
nonempty closed and convex.
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Theorem 3.6. Let E be a bounded closed convex subset of a complete uniformly
convex metric space X. If T : E → K(E) satisfies condition (L), then Fix(T ) ̸= ∅.

Proof. By the condition (L), T has an afps in E, say {xn}. By passing through
a subsequence, we may assume that {xn} is regular. Let A({xn}) = {x}. We are
going to show that x is a fixed point of T . By compactness of Tx implies that for
each n we can take zn ∈ Tx for each n such that

d(xn, zn) = d(xn, Tx).

By compactness of Tx, there exists a subsequence {znk
} of {zn} such that limk→∞ znk

= z ∈ Tx. Note that

d(xnk
, z) ≤ d(xnk

, znk
) + d(znk

, z)

= d(xnk
, Tx) + d(znk

, z)

≤ d(xnk
, x) + d(znk

, z).

It follows that lim supk d(xnk
, z) ≤ lim supk d(xnk

, x). Since A({xn}) = {x}, we
have x = z ∈ Tx.

Remark 3.7. Notice that in the above proof, condition (i) of Definition 1.5 can
be replaced by the weaker assumption

(A′) T has an afps in E.

Corollary 3.8 ([1, Theorem 3.2]). Let E be a bounded closed convex subset of a
complete uniformly convex metric space X. If T : E → K(E) satisfies condition
(Cλ) and I − T is strongly demiclosed, then Fix(T ) ̸= ∅.

Next, we will prove our main results which generalize Theorems 1.3 and 1.4.

Theorem 3.9. Let E be a bounded closed convex subset of a complete uniformly
convex metric space X and S a family of commuting mappings satisfying condition
(K) on E. Suppose that T : E → KC(E) satisfies condition (L). If S and T
commute, then F (S) ∩ Fix(T ) ̸= ∅.

Proof. By Theorem 3.3, F (S) is nonempty closed and convex. Since S and T
commute, we can see that for t ∈ S and x ∈ F (S),

t(Tx) ⊂ T (tx) = Tx.

Let u be the nearest point of x in Tx. Since t satisfies condition (K) and Tx
is closed convex t-invariant, u ∈ Fix(t) for every t ∈ S. Hence Tx ∩ F (S) ̸= ∅
for all x ∈ F (S). Define a multivalued mapping U : F (S) → KC(F (S)) by
Ux = Tx∩F (S) for every x ∈ F (S). It is easily seen that d(u,Uv) = d(u, Tv) for
all u, v ∈ F (S). Let us show that U satisfies condition (L). First, let C be a closed
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convex U -invariant subset of F (S). Thus C is also T -invariant which assures that
T has an afps in C, say {xn}. Consider

lim
n→∞

d(xn, Uxn) = lim
n→∞

d(xn, Txn) = 0.

We obtain that U has an afps in C. Next, let {xn} be an afps for T in F (S) and
x ∈ F (S). Since T satisfies condition (L),

lim sup
n→∞

d(xn, Ux) = lim
n→∞

d(xn, Tx) ≤ lim sup
n→∞

d(xn, x).

By Theorem 3.6, we obtain a fixed point in F (S) of U and thus of T and we are
done.

Theorem 3.10. Let E be a bounded closed convex subset of a complete uniformly
convex metric space X and S a family of commuting mappings on E. Suppose
that T : E → KC(E) satisfies condition (L) such that for all t ∈ S

∅ ̸= Tx ∩ F (S) ⊂ Z(t) = {z ∈ E : d(z, tx) ≤ d(z, x)} and

t(∂E(Tx)) ⊂ Tx for all x ∈ F (S).

If F (S) is closed and convex, then F (S) ∩ Fix(T ) ̸= ∅.

Proof. Define a multivalued mapping U : F (S) → KC(F (S)) by Ux = Tx∩F (S)
for every x ∈ F (S). We claim that dist(u,Uv) = dist(u, Tv) for all u, v ∈ F (S).
Let a ∈ Uu and b ∈ Tv such that d(a, b) = d(a, Tv). For t ∈ S, since a ∈
Uu ⊂ Z(t), we have d(a, tb) ≤ d(a, b). By the uniqueness of b as the closest
point to a, b = tb for t ∈ S. Therefore b ∈ Tv ∩ F (S) = Uv. This shows that
dist(u,Uv) = dist(u, Tv). The proof now follows as Theroem 3.9.

Corollary 3.11 ([11, Theorem 8]). Let E be a bounded closed convex subset
of a uniformly convex Banach space X and S a family of commuting quasi-
nonexpansive mappings on E for which F (S) ̸= ∅. Suppose that T : E → KC(E)
is nonexpansive mapping. If S and T commute weakly, then F (S) ∩ Fix(T ) ̸= ∅.

Corollary 3.12 ([1, Theorem 3.4]). Let E be a bounded closed convex subset of
a complete uniformly convex metric space X and t : E → E a quasi-nonexpansive
mapping whose Fix(t) ̸= ∅. Suppose that T : E → KC(E) satisfies condition
(Cλ) and I − T is strongly demiclosed. If t and T commute weakly, then Fix(t)∩
Fix(T ) ̸= ∅.

Remark 3.13. Theorems 3.9 and 3.10 hold if T is a nonself multivalued mapping
and Tx ∩ E ̸= ∅ for each x ∈ X where commuting of S and T is denoted by
t(Tx ∩ E) ⊂ Ttx ∩ E for each x ∈ X and t ∈ S.
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Corollary 3.14 ([12, Theorem 3.3]). Let E be a bounded closed convex subset
of a complete CAT(0) space X, t : E → E a mapping and T : E → KC(X) a
nonexpansive mapping such that Tx ∩ E ̸= ∅ for each x ∈ X. Suppose that t and
T satisfy the condition

∅ ≠ Tx ∩ Fix(t) ⊂ Z(t), t(∂E(Tx) ∩ E) ⊂ Tx ∩ E for all x ∈ Fix(t).

If Fix(t) is closed and convex, then Fix(t) ∩ Fix(T ) ̸= ∅.
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