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Abstract : In the past decades, modal analysis has become a major technology
in the quest for determining, improving and optimizing dynamic characteristics
of engineering structures. Not only has it been recognized in mechanical and
aeronautical engineering, but modal analysis has also been discovered in profound
applications for civil and building structures, biomedical problems, space struc-
tures, acoustical instruments, transportation and nuclear problems, (for more in-
formation, see [1]). Shortly, modals analysis relies on mathematics to establish
theoretical models for a dynamic system and to analyze data in various forms.
Since modals are used in different branches of engineering in order to contribute
to modals analysis, we have constructed some sequence spaces of modals and in-
troduced the null, convergent and bounded sequence spaces of interval numbers
which are denoted c0(gI), c(gI) and ℓ∞(gI), respectively, consisting of all se-
quences ũ = (ũk) such that (ũk) is a sequence of modals. Also, we have given
some new definitions and theorems about sequence spaces of the modals. Thus,
we have contributed to the modal analysis.
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1 Introduction and Preliminaries

Interval arithmetic was first suggested by Dwyer [2] in 1951. Development of
interval arithmetic as a formal system and evidence of its value as a computational
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device was provided by Moore [3, 4] in 1959 and 1962. Furthermore, Moore and
others [2, 5–7] have developed applications to differential equations.

Recently Chiao [8] introduced sequence of interval numbers and Şengönül and
Eryılmaz [9] defined not only usual convergence of sequences of interval num-
bers but also showed that these spaces are complete metric spaces, [9]. We take
courage from them and we defined bounded, convergent and null sequences spaces
of modals.

Let’s denote the set of all real valued closed intervals by I, the set of all positive
integers by N and the set of all real numbers by R, through all the text. Any
elements of I is called interval number and it is denoted by x̂, [8]. Let x and x be
first and last points of x̂ interval number, respectively. Since x̂ − x̂ ̸= [0, 0] = 0̂,
−x̂ is not an additive inverse for x̂ in the I. Thus the algebraic structure of
(I,+) is a semigroup with respect to addition. This is very big deficiency because
of so many reasons. In interval analysis, as you will recall, an interval number
is defined by x̂ = {x ∈ R : x ≤ x ≤ x, }. Therefore, when x > x, the x̂ is
not interval number. But in modal analysis, a modal is no longer restricted to
the ordered bound condition of x ≤ x. That is [x, x] is also a valid interval. A
modal x̃ = {[x, x] : x, x ∈ R} is defined by a pair of real numbers x, x. Let’s
denote the set of all modals by gI. Let us suppose that x̃, ỹ ∈ gI. Then algebraic
operations between x̃ and ỹ are defined in the Kaucher arithmetic, [10]. For a
modal x̃ = [x, x], dual operator is defined as dualx̃ = [x, x]. Thus, if x̃ ∈ gI then
x̃ − dualx̃ = [0, 0] = 0̃ and dualx̃ ∈ gI. If we consider above algebraic properties
then we see that the couple (gI,+) is a group and the triple (gI,+, ·) is a ring,
[11]. Let us suppose that x̃ ∈ gI then x̃ is called symmetric modal if x = −x or
vice versa.

The set of all modals gI is a metric space defined by the metric

d(x̃1, x̃2) = max{|x1 − x2|, |x̄1 − x̄2|}. (1.1)

If x̃, ỹ ∈ gI and x ≤ x, y ≤ y then the set gI is reduced ordinary set of interval
numbers which is complete metric space with the metric d defined in (1.1), [3].
Moreover it is known that the set gI is a complete metric space with the metric
d. If we take x̃1 = [a, a] and x̃2 = [b, b], we obtain the usual metric of R with
d(x̃1, x̃2) = |a− b|, where a, b ∈ R.

Let’s define transformation f from N to gI by k → f(k) = x̃, x̃ = (x̃k).
Then, (x̃k) is called sequence of modals. The x̃k is called kth term of the sequence
of modals. Let us denote the set of all sequences of modals by w(gI).

For two sequences of modals (x̃k) and (ỹk), the addition, scalar product
and multiplication are defined as follows x̃k + ỹk = [xk + y

k
, xk + yk];αx̃k =

[αxk, αxk], α ∈ R; (x̃k)(ỹk) = [xkyk, xkyk], respectively.
The set w(gI) is a vector space since the vector space rules are clearly provided.

The zero element of w(gI) is the sequence θ̃ = (θ̃k) = ([0, 0]) all terms of which
are zero interval. If (x̃k) ∈ w(gI) then inverse of (x̃k), according to addition, is
dual(x̃k).
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Definition 1.1. Let λ(gI) ⊂ w(gI). A modal norm is a function ||.|| : λ(gI) → R
such that (1) ||x̃||λ(gI) = 0 ⇔ x̃ = θ̃, (2) ||αx̃||λ(gI) = |α|||x̃||λ(gI), (3) ||x̃ +
ỹ||λ(gI) ≤ ||x̃||λ(gI)+ ||ỹ||λ(gI). So the pair (λ(gI), ||.||λ(gI)) is called normed space.

If a normed space λ(gI) contains a sequence (ẽn) of modals with the property
that for every ũ ∈ λ(gI) there is a unique sequence of scalars (tn) such that
limn ||ũ− (t̃1ẽ1 + · · ·+ t̃nẽn)||λ(gI) → 0̃ then (ẽn) is called a Schauder modal basis

for λ(gI). The series
∑∞

k=0 t̃kẽk which has the sum ũ is then called the expansion
of ũ with respect to (ẽn), and we write ũ =

∑∞
k=1 t̃kẽk.

Let λ(gI) and µ(gI) be linear spaces of modals. Then a function Ã : λ(gI) →
µ(gI) is called a linear transformation if and only if, for all ũ1, ũ2 ∈ λ(gI) and all
t̃1, t̃2 ∈ gI, Ã(t̃1ũ1 + t̃2ũ2) = t̃1Ãũ1 + t̃2Ãũ2.

A linear transformation Ã : λ(gI) → µ(gI) is called bounded if and only if

there exists a constant M such that, for all ũ ∈ λ(gI),
∥∥∥Ã(ũ)∥∥∥

µ(gI)
≤M ∥ũ∥λ(gI).

Proposition 1.2. If (ũk), (ṽk), (r̃k) are sequences of symmetric modal then the
following equality holds:

(ũk){(ṽk)− (r̃k)} = (ũk)(ṽk)− (ũk)(r̃k). (1.2)

Definition 1.3. A sequence ũ = (ũk) of modals is said to be convergent to the
modal ũ0 if for each ε > 0 there exists a positive integer n0 such that d(ũk, ũ0) < ε
for all k ≥ n0, and we denote it by writing limk ũk = ũ0.

Thus, limk→∞ ũk = ũ0 ⇔ limk→∞ uk = u0 and limk→∞ uk = u0.

Definition 1.4. A sequence of modals, ũ = (ũk) ∈ w(gI), is said to be modal
fundamental sequence if for every ε > 0 there exists k0 ∈ N such that d(ũn, ũk) < ε
whenever n, k > k0.

Definition 1.5. Let λ(gI) be a linear space over gI and µ(gI) ⊂ λ(gI). Then
µ(gI) is called

1. Convex ⇔ ∀ζ̃ = [ζ, ζ] ⊂ [0, 1] : ζ̃λ(gI) + (1̃− ζ̃)λ(gI) ⊂ λ(gI), 1̃ = [1, 1],

2. Balanced ⇔ ∀ζ̃ ∈ gI : |ζ̃| = max{|ζ|, |ζ|} ≤ 1̃ ⇒ ζ̃µ(gI) ⊂ µ(gI)

3. Absolutely convex ⇔ ∀ζ̃, ψ̃ ∈ gI : |ζ̃|+ |ψ̃| = max{|ζ|, |ζ|}+max{|ψ|, |ψ|} ≤
1̃ ⇒ ζ̃µ(gI) + ψ̃µ(gI) ⊂ µ(gI),

4. Absorbing ⇔ ∀ũ ∈ µ(gI) ∃ρ > 0 ∀ζ̃ ∈ gI : |ζ̃| = max{|ζ|, |ζ|} ≥ ρ ⇒ ũ ∈
ζ̃µ(gI).

In Section 2, we compute Schauder interval basis of these spaces and we show
that these sets are Banach spaces. Also null, convergent and bounded sequence
spaces of modals which are denoted by c0(gI), c(gI) and ℓ∞(gI) respectively are
defined in Section 2. Furthermore in this section some interesting theorems and
definitions are given about the sequence spaces of c0(gI), c(gI) and ℓ∞(gI).
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In Section 3 we define the α−, β− and γ− duals of the spaces c0(gI), c(gI)
and ℓ∞(gI). In this section we give and prove some important theorems about
α−, β− and γ− duals of the spaces c0(gI), c(gI) and ℓ∞(gI). Finally, in the
last section, we characterize some matrix transformations on sequence spaces of
modals c0(gI), c(gI) and ℓ∞(gI).

2 Some Sequence Spaces of the Modals

In this section we define null, convergent, bounded, convergent series, bounded
series and p−absolute convergent series of sequences spaces of the symmetric
modals which are denoted c0(gI), c(gI), ℓ∞(gI), cs(gI), bs(gI) and ℓp(gI) re-
spectively, that is

c0(gI) = {ũ = (ũk) ∈ w(gI) : lim
k
d(ũk, 0̃) = 0, where 0̃ = [0, 0]}, (2.1)

c(gI) = {ũ = (ũk) ∈ w(gI) : lim
k
d(ũk, ũ0) = 0, ũ0 ∈ gI}, (2.2)

ℓ∞(gI) = {ũ = (ũk) ∈ w(gI) : sup
k
d(ũk, 0̃) <∞}, (2.3)

cs(gI) = {ũ = (ũk) ∈ w(gI) : lim
n
{d(

n∑
k=0

ũk, ũ0)} = 0̃}, (2.4)

bs(gI) = {ũ = (ũk) ∈ w(gI) : sup
n
{d(

n∑
k=0

ũk, 0̃)} <∞}, (2.5)

ℓp(gI) = {ũ = (ũk) ∈ w(gI) :

(∑
k

(d(ũk, 0̃))
p

) 1
p

<∞, p ≥ 1}. (2.6)

Clearly we see that the spaces c0(gI), c(gI), ℓ∞(gI), cs(gI), bs(gI) and ℓp(gI)
are subvector spaces in accordance with scalar product and addition on w(gI).
Besides, for all (x̃k), (ỹk) ∈ c0(gI) (or c(gI), ℓ∞(gI)) the function d̃ defined by

d̃(ũk, ṽk) = sup
k

max{|uk − vk|, |uk − vk|} (2.7)

which satisfies the metric axioms.
Thus, (c0(gI), d̃) (or (c(gI), d̃) and (ℓ∞(gI), d̃)) is a metric space.
Let us suppose that ṽ ∈ w(gI), ṽ = ([vk, vk]) and vk = vk. Then, the sequence

ṽ = (ṽk) is reduced sequence of real numbers. In this case, the sets c0(gI), c(gI)
and ℓ∞(gI) are reduced the classical sequence spaces (i.e., null, convergent and
bounded sequences of the real or complex numbers). We shall denote ℓ∞, c and
c0 for the classical spaces of all bounded, convergent and null sequences of real
numbers, respectively.

Let suppose that λ(gI) = {c0(gI), c(gI), ℓ∞(gI)}. Also the metric d̃ satisfies
following properties: For all ũ = (ũk), ṽ = (ṽk), r̃ = (r̃k) ∈ λ(gI) and for all α ∈ R,
(1) d̃(ũ+ r̃, ṽ + r̃) = d̃(ũ, ṽ), (2) d̃(αũ, αṽ) = |α|d̃(ũ, ṽ).
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Thus, we have

d̃(ũ, 0̃) = sup
k

max{|uk|, |uk|} = ||u||λ(gI). (2.8)

Based on the above explanations and definitions, we give following theorem :

Theorem 2.1. The sets c0(gI), c(gI) and ℓ∞(gI) are Banach spaces with the
norm defined by in (2.8).

Proof. We only give the proof for ℓ∞(gI). It is easy to see that norm conditions
are provided easily.

Let (x̃n) = (x̃nk ) = (x̃n0 , x̃
n
1 , x̃

n
2 , . . .) ∈ ℓ∞(gI) for each n and (x̃n) be a funda-

mental sequence. Then, for every ε > 0 there exist a k0 ∈ N such that ||x̃n−x̃m|| <
ε whenever n,m ≥ k0. Hence, we have |xnk − xmk | < ε and |xnk − xmk | < ε. This
means that (xn) and (xn) are Cauchy sequences in R. Since R is a Banach space,
(xn) and (xn) are convergent i.e, (x̃nk ) is convergent.

Now, let limn→∞ x̃nk = x̃k for each k ∈ N. Since d̃(x̃n, x̃m) < ε for all n,m ≥
k0, limm→∞ d̃(x̃nk , x̃

m
k ) = d̃(x̃nk , limm→∞ x̃mk ) = d̃(x̃nk , x̃k) < ε. This implies that

x̃n → x̃, (n → ∞) for all n ≥ k0 in ℓ∞(gI). On the other hand, since d̃(x̃k, x̃
n
k −

x̃nk ) = supk max{|xk−(xnk−xnk )|, |xk−(xnk−xnk )|} ≤ supk max{|xk−xnk |+|xnk |, |xk−
xnk |+ |xnk |} ≤ supk max{|xk−xnk |, |xk−xnk |}+supk max{|xk|, |xk|} this shows that
x̃ ∈ ℓ∞(gI).

Definition 2.2. Let λ(gI) is a sequence space of the modals. Then λ(gI) is called
solid if ṽ ∈ λ(gI) whenever ||ṽk||λ(gI) ≤ ||ũk||λ(gI), (k ∈ N) for some ũ ∈ λ(gI).

Theorem 2.3. The sets c0(gI) and c(gI)which are sequence spaces of modals are
solid.

Proof. We consider only c0(gI). Now, let ||ṽk||λ(gI) ≤ ||ũk||λ(gI), for all (k ∈ N)

and for some ũ ∈ c0(gI). Then we have, d̃(ṽk, 0̃) ≤ d̃(ũk, 0̃), that is {|vk − 0|, |vk −
0|} ≤ {|uk − 0|, |uk − 0|}. Thus we obtain vk ≤ uk and vk ≤ uk i.e., ṽ ≤ ũ. It is
clear that ṽ ∈ c0(gI). Therefore c0(gI) is solid.

Theorem 2.4. The inclusion w ⊂ w(gI) holds, where w denotes the space of all
real or complex valued sequences.

Proof. The proof is clear since every element of w is a degenerate modal sequence.

Also, the inclusions ℓ∞ ⊂ ℓ∞(gI), c ⊂ c(gI) and c0 ⊂ c0(gI) holds.

Theorem 2.5. The inclusion c0(gI) ⊂ c(gI) holds.

Proof. If we take any x̃ ∈ c0(gI) then we see that x̃ ∈ c(gI) since d̃(x̃k, 0̃) =
supk max{|xk − 0|, |xk − 0|} < ε. Furthermore, the convergent sequence of the
modals ỹ = ([1, 1 + 1

n ]) ∈ c(gI) but ỹ /∈ c0(gI) since limn yn = 1 and limn yn =
1.
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Theorem 2.6. The space c0(gI) which is the set of symmetric modals is convex
and balanced.

Proof. Let suppose that ζ̃ = [ζ, ζ] ⊂ [0, 1] and ũ = (ũk) an arbitrary element of

c0(gI). Then limk d̃(ζ̃ũk + (1̃− ζ̃)ũk, 0̃) = limk max{|ζuk + (1− ζ)uk|, |ζuk + (1−
ζ)uk|} = limk max{|uk|, |uk|}, which says to us ζ̃ũk + (1̃− ζ̃)ũk ∈ c0(gI).

For the second part of the proof, let us suppose that |ζ̃| ≤ 1̃ and ũ ∈ c0(gI).
(i) If−1̃ ≤ ζ̃ < 0̃ then limk d̃(ζ̃ũk, 0̃) = limk d̃(ζ̃[uk, uk], 0̃) ≤M limk d̃([uk, uk], 0̃)

which it says to us ζ̃ũ ∈ c0(gI), where M = max{| − ζ|, | − ζ|}.
(ii) If ζ̃ = 0̃ then there is no need to prove.
(iii) If 0̃ < ζ̃ ≤ 1̃ the proof is similar to the (i). Thus c0(gI) is balanced.

Theorem 2.7. The sequences (ẽ0, ẽ1, ẽ2, . . . , ẽk, . . .) and (ẽ, ẽ0, ẽ1, ẽ2, . . . , ẽk, . . .)
are Schauder modal bases for c0(gI) and c(gI), respectively, where

ẽk = (0̃, 0̃, . . . , [ 1, 1︸︷︷︸
kth case

], 0̃, . . .).

Proof. Let ũ = (ũk) ∈ c0(gI). Therefore for every ϵ > 0 there exists n ∈ N such
that for k ≥ n, ||ũ||c0(gI) = supk d̃(ũk, 0̃) < ϵ. Now we should show the following
statement.

lim
n

∥∥∥∥∥ũk −
n∑

k=0

ẽkũk

∥∥∥∥∥
c0(gI)

= 0̃.

From here we can write next steps;∥∥∥∥∥ũk −
n∑

k=0

ẽkũk

∥∥∥∥∥
c0(gI)

= ||([x0, x0], [x1, x1], . . . , [xn, xn], [xn+1, xn+1], . . .)

− {([x0, x0], [x1, x1], . . . , [xn, xn], 0̃, 0̃, . . .)}||c0(gI)
= ||(0̃, 0̃, . . . , [xn+1, xn+1], [xn+2, xn+2], . . .)||c0(gI)
= sup

k≥n+1
max{|uk|, |uk|} → 0̃, (n→ ∞),

so we have

ũk =
∑
k

ũkẽk. (2.9)

Let us show uniqueness of the representation given by (2.9) for ũk ∈ c0(gI).
Suppose that there exists a representation ũk =

∑
k ṽkẽk. Then, for n → ∞, we

have∥∥∥∥∥
n∑

k=0

(ṽk − ũk)ẽk

∥∥∥∥∥
c0(gI)

= d̃((ṽk − ũk), 0̃) = sup
k≥n+1

max{|(vk − uk)− 0|, |(vk − uk)− 0|} → 0̃.
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This shows that for k ≥ n+ 1, |vk − uk| → 0 and |vk − uk| → 0. Therefore we
have, vk = uk and vk = uk, i.e., ṽ = ũ.

3 α−, β− and γ− Duals of Sequence Spaces of the
Modals

In this section, we have stated and proved the theorems determining the α−,
β− and γ− duals of the spaces c(gI), c0(gI), ℓ∞(gI). For the sequence spaces
λ(gI) and µ(gI), we define the set S(λ(gI), µ(gI)) by

S(λ(gI), µ(gI)) = {(ṽk) ∈ w(gI) : (ũkṽk) ∈ µ(gI) for all (ũk) ∈ λ(gI)} . (3.1)

With the notation of (3.1), the α−, β− and γ−duals of a sequence space λ(gI),
which are respectively denoted by λα(gI), λβ(gI) and λγ(gI) are defined by with
λα(gI) = S(λ(gI), ℓ1(gI)), λ

β(gI) = S(λ(gI), cs(gI)) and λγ(gI) = S(λ(gI), bs(gI)).

Theorem 3.1. The β− dual of sequence spaces c0(gI), c(gI) and ℓ∞(gI) are the
set ℓ1(gI).

Proof. Since the proofs are similar, we will give the proof only for the space c0(gI).
Let us suppose that ũ = (ũk) ∈ c0(gI) and ã = (ãk) ∈ w(gI). Then we can write

lim
n
d(

n∑
k=0

[ak, ak][uk, uk], 0̃) = lim
n
d(

n∑
k=0

[akuk, akuk], 0̃)

= lim
n

max{|
n∑

k=0

akuk|, |
n∑

k=0

akuk|}

≤M lim
n

max{
n∑

k=0

|ak|,
n∑

k=0

|ak|} =M lim
n
d(

n∑
k=0

ãk, 0̃)

=Md(
∑
k

ãk, 0̃),

where M = max{M1,M2}, M1 = supk |uk| and M2 = supk |uk|. From here, we
see that to get (ãkũk) ∈ cs(gI), (ãk) should be in ∈ ℓ1(gI).

Using similar techniques, we can calculate the α− and γ− duals of the sequence
spaces c0(gI), c(gI) and ℓ∞(gI) which are identical to the set ℓ1(gI).

4 Matrix Transformations on Sequence Spaces of
Modals

Let λ(gI) and µ(gI) be two sequence spaces of generalized intervals and Ã =
(ãnk) be an infinite matrix of generalized intervals and ũ = (ũk) ∈ λ(gI), where
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n, k ∈ N = {0, 1, 2, . . .}. Then, we can say that Ã defines a matrix mapping
from λ(gI) to µ(gI), and we denote it by writing Ã : λ(gI) → µ(gI), if for every

sequence ũ = (ũk) ∈ λ(gI) the sequence Ãũ =
{
(Ãũ)n

}
, the Ã-transform of ũ, is

in µ(gI), where

Ãn(ũ) =
∑
k

ãnkũk =
∑
k

[ank, ank][uk, uk] =
∑
k

[ankuk, ankuk], (4.1)

and ank, uk, ank, uk ∈ gI. For simplicity in notation, here and in what follows, the
summation without limit runs from 0 to ∞. By (λ(gI) : µ(gI)), we denote the
class of matrices Ã such that Ã : λ(gI) → µ(gI). Thus, Ã ∈ (λ(gI) : µ(gI)) if
and only if the series on the right side of (4.1) converges for each n ∈ N and every

ũ ∈ λ(gI), we have Ãũ =
{
(Ãũ)n

}
n∈N

∈ µ(gI) for all ũ ∈ λ(gI).

In this section, we will seek answers, when does Ã ∈ (ℓ∞(gI) : ℓ∞(gI)) and
Ã ∈ (c0(gI) : c0(gI))? Firstly, for second the question, the necessary and sufficient
condition is given by the following theorem:

Theorem 4.1. Let, for all fix k ∈ N, limn ãnk = 0̃ and suppose that M =
supn

∑
k d̃(ãnk, 0̃) < ∞. Then Ã defines a bounded linear operator from c0(gI) to

c0(gI).

Proof. Firstly, we will show that Ã defines a bounded linear operator from c0(gI)
to c0(gI). Let us suppose that ũ ∈ c0(gI). If ũ = θ̃ = (0̃, 0̃, . . . , 0̃, . . .) then
Ãũ =

∑
k d̃(ãnkũk, 0̃) = θ̃ which there is no need to prove. Now, let us suppose

that ũ ̸= θ̃. Under conditions of the hypothesis, that is, since ũ ∈ c0(gI) and∑
k d̃(ãnk, 0̃) < ∞, for all n ∈ N the series Ãn(ũ) =

∑
k[ankuk, ankuk] in ℓ1(gI).

On the other hand, since ∥ũ∥c0(gI) = supk max{|uk|, |uk|} we can write ∥ũ∥c0(gI) ≥
{|uk|, |uk|}. Accordingly,

∥∥∥Ãn(ũ)
∥∥∥
c0(gI)

=

∥∥∥∥∥∑
k

ãnkũk

∥∥∥∥∥
c0(gI)

=

∥∥∥∥∥∥
N∑

k=1

ãnkũk +
∑

k≥N+1

ãnkũk

∥∥∥∥∥∥
c0(gI)

≤
N∑

k=1

∥ãnkũk∥c0(gI) +
∑

k≥N+1

∥ãnkũk∥c0(gI)

≤
N∑

k=1

∥ãnk∥c0(gI) ∥ũk∥c0(gI) +M ∥ũk>N∥c0(gI) .

Since ũ ∈ c0(gI), we take k > N so large that ∥ũk>N∥c0(gI) <
ϵ
M and from

limn ãnk = 0̃ ( k fixed) we take n so large that
∑N

k=1 ∥ãnk∥c0(gI) ≤ ϵ
2∥ũk∥c0(gI)

.

Hence, we have shown that Ãũ ∈ c0(gI). Finally, we will show that Ã is bounded:

||Ãũ||c0(gI) = supn d̃(
∑

k ãnkũk, 0̃) ≤M ||ũ||c0(gI),
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that is Ã is bounded. Now let us suppose that ũ, ṽ ∈ c0(gI) and ρ be an element
of gI. Ã(ρũ+ ṽ) =

∑
k[ank(ρuk + uk), ank(ρuk + vk)] = [ρ, ρ]

∑
k[ankuk, ankuk] +∑

k[ankvk, ankvk] = ρÃũ+ Ãṽ.

The above-mentioned theorem shows that a certain type of matrix of gI’s
defines a linear operator on c0(gI) into itself.

Example 4.1. Now let us show that there exists a matrix Ã = ([ank, ank]) which
satisfies the condition of Theorem 4.3. Define a matrix Ã = ([ank, ank]) by

ãnk =

{
[− 1

n+1 ,
1

n+1 ], 0 ≤ k ≤ n

0̃, otherwise.

The matrix Ã = ([ank, ank]) satisfies to the condition supn
∑

k d̃(ãnk, 0̃) = [1, 1] <
∞.

Theorem 4.2. Let Ã be any bounded linear transformation from c0(gI) to c0(gI).
Then Ã determines a matrix (ãnk) of modals such that

(Ãũ)n =
∑
k

ãnkũk (4.2)

for every ũ ∈ c0(gI).

Proof. Since (ẽk) is a basis in c0(gI), every ũ ∈ c0(gI) may be written as ũ =∑
k ũkẽk, where ẽk = (0̃, 0̃, . . . , [ 1, 1︸︷︷︸

kth case

], 0̃, . . .). Linearity and continuity of Ã

yield

Ãũ =
∑
k

ũkÃẽk. (4.3)

Since Ãẽk = (ã0k, ã
1
k, ã

2
k, . . .) ∈ c0(gI), (k ∈ N) from (4.3) we can write Ãũ =∑

k ũkãnk. That is (4.2) holds.

Theorem 4.3. Ã = ([ank, ank]) ∈ (ℓ∞(gI) : ℓ∞(gI)) if and only if

||Ã||ℓ∞(gI) = d̃(Ãũ, 0̃) = sup
n

∑
k

d̃(ãnk, 0̃) <∞. (4.4)

Proof. Let us suppose that (4.4) holds and ũ ∈ ℓ∞(gI). Then,∥∥∥Ãũ∥∥∥
ℓ∞(gI)

= sup
n
d̃(
∑
k

ãnkũk, 0̃) ≤ sup
n

∑
k

d̃(ãnk, 0̃)d̃(ũk, 0̃) ≤M ∥ũ∥ℓ∞(gI)

<∞,

that is Ãũ ∈ ℓ∞(gI).
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Conversely, let us suppose that Ã = ([ank, ank]) ∈ (ℓ∞(gI) : ℓ∞(gI)) and
ũ ∈ ℓ∞(gI). Then, since Ãũ ∈ ℓ∞(gI) exists, the series

∑
k[ank, ank][uk, uk]

converges for each fixed n ∈ N. And hence Ã ∈ ℓβ∞(gI). This holds for the
sequence (ũk) = ([−1, 1]) ∈ ℓ∞(gI). Then, we can write∥∥∥Ãũ∥∥∥

ℓ∞(gI)
= supn d̃(

∑
k ãnkũk, 0̃) ≤ supn

∑
k d̃(ãnk, 0̃)d̃(ũk, 0̃)} <∞

which means that (4.4) holds.
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