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Abstract : In communication networks, a secret message is being sent by means
of adjacency matrix associated with a simple graph G. As it is easily traceable
instead of adjacency, non adjacency matrix(that is associated with the comple-
mentary graph G¢) is being preferred. Now, we introduce another type of graph
called as semi-complementary graph G*¢ of G. This is a spanning subgraph of G°¢
and hence more secrecy can be achieved by using this in defence problems.

Already semi complete graphs have been introduced ([1, 2]) and it is observed
that for such graphs G*¢ = G°. Semi complete graphs are playing a vital role in
sharing a secret code in parts, by two individuals, instead of one. Thus these are
useful in bank transactions.
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1 Introduction

In transportation problems the concept of complementary graphs is very much
useful in providing a substitute network (hidden) between the sources and desti-
nations in connecting each source/destination to all the sources/destinations that
are not adjacent to the former so that the system remains connected at times of
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need. We have introduced the concept semi-complementary graphs which serves
the above mentioned purpose in a more efficient way (minimizes the cost).

2 Preliminaries

A set D of vertices in a graph G = (V| F) is said to be a dominating set of G
if and only if every vertex in V — D is adjacent to some vertex in D [3]. A set D
of vertices in a graph G = (V, E) is said to be a restrained dominating set if and
only if it is a dominating set of G and further every vertex in V' — D is adjacent
to some other vertex in V' — D [3]. A set S of vertices in a graph G = (V, E) is
said to be an independent set of G if and only if no two vertices in S are adjacent
G [4]. The number of vertices in a maximum independent set of G is called the
independence number of G and is denoted by a(G) [4]. A set S of vertices in a
graph G = (V, E) is said to be a vertex cover of G if and only if for each edge
uv in G, either u € S or v € S [4]. A set S of vertices in a graph G = (V, E) is
said to be a neighbourhood cover of G if and only if G = |J,.4 < N[v] >, where
N] ={u e V(G)/uv € E(G)} U{v} [5]. The girth of a graph G is defined as the
length of the shortest cycle in G. A graph G is said to be semi complete if and
only if it is simple and for any two vertices u, v of G there is a vertex w of G such
that w is adjacent to both v and v(in G) (i.e, {u,w,v} is a path in G) [1, 2].

All graphs considered in this paper are simple, finite, undirected and con-
nected. For standard terminology and notation we refer Bondy and Murthy [4].

3 Main Results

Now, we introduce a new type of graph.

Definition 3.1. Let G be a graph with vertex set V(= V(G)). Then the graph
whose vertex set is V and the edge set being {uv : u,v € V,uv ¢ G and there is a w
in'V such that < uwv > is a path in G} is called the semi-complementary graph
of G and is denoted by G*¢.

Note. By definition, there is no interest with empty graph, complete graph K,
multi graph and disconnected graph with regard to this concept. Hence, through-
out this work, by a graph we mean a simple, connected graph with atleast three
vertices and is not complete.

Given below are the examples of some graphs and their corresponding semi-
complementary graphs.
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(i) It is taken, for convenience, G to be connected; but G*¢ need not be con-
nected(in view of the above examples).

(ii) G*¢ is clearly a spanning subgraph of G¢ = If G is a finite graph then

|E(G)| = |E(G*)].

We know that (G¢)¢ = G but,

(iii) (G*°)*c need not be G even if G*¢ is connected, in view of the following:
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(iv) If G is finite, then |E(G®*°)| = [{{u,v} :
u and v are nonadjacent in G).
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u,v € V and dg(u,v) = 2}|(=
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(v) If G = K, then G*° is a null graph.
(vi) If G is a star graph with n(> 3) vertices then G*¢ = K; |J K,,—1.
(vii) If G = P,(n > 3), then
G* = Pn U P if nis even,
= P% UP% if n is odd.

(If {v1,v2,...,v,} are the vertices of G then the first P» is formed by

{v1,v3,...,0,—1} and the second Pz is formed by the vertices {vs, v4, ..., v}
. . 2 .

(when n is even); P is formed by {v1,v3,...,0,} and Py is formed by

{v2,v4,...,0n—1} (when n is odd)).

Thus P,,°¢ is disconnected.

(viii) If G = Cyp(n > 4), then

G*=Can U Cyz if n is even,
=C, if n is odd.

(The first C'n is formed by {v1,v3,...,05_1,v1} and the second C'n is formed
by {va,v4, ..., Un,v2}, when n is even; C,, is formed by {v1, vs, ..., Vs, V2, ...,
Un—1,01}, when n is odd).

Thus Coy,,+1°¢ is isomorphic to Ca,+1 when n > 2 and is connected, Eulerian
and Hamiltonian.

(ix) G*¢is Eulerian if and only if Vu € V| [{v € V/dg(u,v) = 2}| is even.

(x) G is a connected graph with vertex set V and S C V. Then S is an
independent set of G and G*¢ if and only if dg(u,v) > 3 for every u,v €
S(u,v are adjacent in G < dg(u,v) = 1 and u,v are adjacent in G*¢ &
da(u,v) =2).

Theorem 3.2. If G is a connected bipartite graph, then G*¢ is disconnected and
s a union of two components.

Proof. Let G be a connected, bipartite graph with bipartition X,Y. Since G is
connected any vertex of X is connected to any vertex of Y and vice-versa. Also
the distance between them is always an odd integer. So by definition, in G*¢ no
vertex of X is connected to a vertex of Y and vice-versa. Further between any
two vertices of X or that of Y the distance is always an even integer. Hence there
is a path between the vertices of X and similarly the vertices of Y in G®¢. Thus
G*¢ is disconnected and has components formed by the corresponding graph in X
and that of in Y. O

Remark 3.3. The converse of the above Theorem is false in view of the following
example:
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V1 v7 V6

V4

V2 v3 Vg5

Here G*¢ has exactly two components, G is connected but not bipartite (G contains
an odd cycle).

Corollary 3.4. If G = Ky, ,(m +n > 3) then G*° = K,,, | K, (If {X,Y} is the
bipartition of K, n then any two vertices in X or that of Y are adjacent in G*°).

Corollary 3.5. If G is a tree (with atleast three vertices), then G*¢ is disconnected
and is a union of two components (since G is bipartite).

Theorem 3.6. G be a connected graph with vertex set V.. Then G¢ = G*¢ if and
only if the distance between any pair of non adjacent vertices is 2.

Proof. Let G be a connected graph. Since G, G*¢ have the same vertex set, G¢ =
G*¢ is equivalent to, uwv € G¢ < wv € G%¢. This is same as, v and v are not
adjacent in G < dg(u,v) = 2. O

Corollary 3.7. G is a semi complete graph. Then G*¢ = G°.

Proof. Since G is a semi complete graph the distance between any pair of nonad-
jacent vertices is two, then by the above theorem the proof follows. (observe that,
if two vertices are adjacent in G, then also there must be a path of length 2 in G
as it is a semi complete graph). O

Observation: G*¢ = G¢ for G = Cy, but G = Cjy is not semi complete. Hence
the converse fails.

Theorem 3.8. G be a connected graph . Then G C (G*¢)*¢ if and only if for each
wv in G there is w in 'V such that dg(u,w) = dg(w,v) = 2.

Proof. Assume that G C (G*¢)*°. Let uwv € E(G)
= uv € E((G*°)*°)
= dgse(u,v) =2
= there is w in V(G) such that vw, wv are in E(G*°)
= dg(u,w) = dg(w,v) = 2.
Conversely assume that uv € E(G). Then by our assumption
there is w in V such that dg(u, w) = dg(w,v) =2
= uw,wv € E(G*°) and further uwv ¢ E(G*°)
= dGsC (’U,, ’U) =2
= uv € E((G*°)%°).
Thus E(G) C E((G*9)*°).
Hence the result.
Now, we prove a necessary and sufficient condition for a connected graph G
to have a connected G*¢ O
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Theorem 3.9. G is a connected graph with vertex set V.. Then G*¢ is connected
if and only if for any pair of distinct vertices u,v of G with dg(u,v) # 2 there is
a sequence {ws : s =1,2,...,m0}(no being a positive integer)of distinct vertices in
V' and paths Ps(ws—1 — ws)(s =1,2,...,m + 1) with the convention wy = u and
W41 = v in G of even length each such that no pair of vertices at consecutive odd
places in any of the paths Ps are adjacent in G.

Proof. Let G be a connected graph with vertex set V. Suppose G*¢ is connected.
Let u,v € V with u # v and dg(u,v) # 2 = uv ¢ E(G*°). Since G*¢ is connected
there is a u—wv path, say {u = ug, u1,...,u, = v}(n > 2) in G*¢. By the definition
of G*¢, for each j € {1,2,...,n}, there is an z; € V such that {u;_1,z;,u;} is a
path in G. Now follows that W = {ug, z1,u1,...,Un_1, Ty, Uy = v} is a u—v walk
in G. If this is a path then taking w; = u; for any j € {1,2,...,n — 1}, we get
two paths Pj(u = wg — wy) and Pa(w; — we = v) in G of the required property,
since the length of any w;_1 —u; path in G is even for j € {1,2,...,n} and u;_,
and u; are not adjacent in G since they are adjacent in G*°¢. Otherwise there is a
subsequence {z; ;s = 1,2,...,m} of {x;;j = 1,2,...,n} such that each z;_ is a
vertex in the sub walk ug —u;, ,(s =1,2,...,m). Taking ws, = u,;, ,, we get the
required paths with the specified property.

This proves the necessary part.

Conversely, assume that the specified condition of the theorem holds. Let
u,v € V be such that dg(u,v) = 2. Now follows that uwv € E(G*°). Thus u and
v are connected in G*¢. Otherwise, by hypothesis from the condition follows that
W = UT:ll P is a u — v walk in G such that any pair of vertices in consecutive
odd places in W are nonadjacent in G and hence adjacent in G*¢. So they give
rise to a u — v walk in G°¢ and hence a u — v path in G*¢. Thus G*¢ is connected.
This completes the proof of the theorem. O

Corollary 3.10. In the characterization Theorem G*¢ is “connected” is replaced
by “a tree” and “sequence” is replaced by “a unique sequence”, then the corre-
sponding result holds.

Proof. Necessary part is obvious since a tree is connected. In the sufficiency part
the condition implies that between any pair of vertices there is a unique path and
hence follows that it is a tree. O

Corollary 3.11. In the characterization Theorem G is “connected” is replaced by
“semi complete” and “dg(u,v) # 27 is replaced by wv € E(G)(= dg(u,v) = 1)
then the corresponding result holds.

Corollary 3.12. G is a connected graph with vertex set V' and girth of G is greater
than 3. Then G*¢ is connected if and only if for any pair of distinct vertices u,v of
G with dg(u,v) # 2 there is a sequence {ws : s =1,2,...,no}(ng being a positive
integer)of distinct vertices in V' and paths Ps(ws—1 — ws)(s = 1,2,...,m + 1)
with the convention wy = u and wy11 = v in G of even length in G.
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Proof. Since girth of G is greater than 3, there cannot be any cycles of length 3
in G. Hence the proof follows from the Characterization Theorem. O

Now we give an elegant sufficient condition for the graph G*¢ of the connected
graph G to be connected.

Theorem 3.13. G is a connected graph with vertex set V' such that for each pair
of distinct vertices u,v in G there is a uw — v path P of even length, in G, further
the subgraph induced by the vertices of P is acyclic. Then G*¢ is connected.

Proof. Under the given hypothesis let P be the u — v path of even length say P =
{u = ug,u1,...,us, = v}(n being a positive integer)with the specified property;
Now it follows that no u; is adjacent with u;(0 < ¢ < j) for ¢,j € {0,1,2,...,2n}.
Thus in this path any two vertices at consecutive odd places are adjacent in G*¢.
This gives rise to the u — v path {ug,ug,...,u, = v} in G*¢. Thus G*¢ is
connected. O

Observation: The converse of the above Theorem is false in view of the following;:
Counter Example: Consider the graph given under:

V7 Ve

V5

v3

\Z!

\% Vo

Between the vertices v; and v there is only one path of even length (4) namely
{v1,v7,v6,v3,v2}. The subgraph induced by the vertices of this path is

4 Vg

V3

\%1 v2

It contains three cycles namely {v1, ve, vs, vg, v7,v1}, {v1, V2, Vg, v7,v1 } and {vg, vs,
vg, V2 }. So it is not acyclic. But the graph G*¢ is connected.

Theorem 3.14. G is a connected graph such that G°¢ is connected; then G is
cyclic.

Proof. Under the given hypothesis, let e = uwv € E(G). Now u, v are the vertices
of G and hence G*°. Since G*¢ is connected there is a shortest u — v path in G*°.
This induces a path P in G. Now P|J{e} is a cycle in G. Thus G is cyclic. O
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Remark 3.15. The converse of the above Theorem is false in view of the following:

Counter Example: Consider the connected cyclic graph given under:

V1, V8

V3 Vg

G*¢ is a union of two isomorphic components and so disconnected (observe that
G is bipartite).

Theorem 3.16. G and G*¢ are connected with vertex set V.. Then a(G) > 2.

Proof. Under the given hypothesis, if a(G) = 1 there is a vg € V such that v is
adjacent with all other vertices of V. So dg(v,v9) =1 for all v € V —{vg}. Hence
vp is not adjacent with all other vertices of V' in G*¢. So vy is an isolated vertex
of G. Hence G*¢ is disconnected. This is a contradiction. Hence a(G) > 2. O

Observation: The converse of the above theorem is false in view of Py. a(Ps) =
4 > 2. Clearly {v1,vs,vs,v7} and {v2, vy, v6,v8} are maximum independent sets
in Pg but P3®¢ is not connected.

Proposition 3.17. G be a connected graph with vertex set V- and D C V. Then
D is a dominating set for G*°¢ if and only if for each v € V — D there isu € D >
dg(u,v) = 2.

Proof. D is a dominating set for G°¢ & for v € V — D there is a u € D such that
w € B(G*®) & dg(u,v) = 2. O

Proposition 3.18. If D is a dominating set for G,G*¢, then |D| > 2.

Proof. If |D| = 1,then D is not a dominating set for G*¢,which is a contradiction
to the hypothesis. Hence |D| > 2. O

Proposition 3.19. G be a connected graph with vertex set V- and D C V. If D is
an independent dominating set for G,G*¢, then D is a restrained dominating set

for G.

Proof. Suppose that the hypothesis holds. Let v € V—D. Since D is a dominating
set for G*¢ there is v € D such that dg(u,v) =2 = Jw € V(G) 3 {u,w,v} is a
path in G = ww € E(G) and w € V — D. Since D is a dominating set for G, there
isanz € D 3 zu € E(G). Hence D is a restrained dominating set for G. O

Proposition 3.20. G be a connected graph with vertex set' V. Then S CV is a
vertex cover for G,G*¢ if and only if for any u,v € V(G) 3 dg(u,v) < 2 = either
ueS (or)ves.
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Proof. Suppose that the hypothesis holds. Assume that S is a vertex cover for G,
G*¢. Let u,v € V 3 dg(u,v) < 2.

If dg(u,v) =1 = uv € E(G) = u € S (or) v € S (by the nature of S).

If dg(u,v) =2 = uv € E(G*°) = u € S (or) v € S (by the nature of S).

Assume that the stated condition holds. Now, uv € E(G) = dg(u,v) =1 <
2=uec S (or)ve S =5 isa vertex cover for G.

Let wv € E(G*¢) = dg(u,v) =2 =u € S (or) v € S = S is a vertex cover
for G%¢. Hence the proof. O

Proposition 3.21. G be a connected graph. Then S C V is a neighbourhood
cover for G*¢ if and only if for u,v in V — S with dg(u,v) = 2 there is w in S
such that dg(u,w) = dg(w,v) = 2.

Proof. Suppose that the hypothesis holds. Assume that S is a neighbourhood
cover for G*¢. Let u,v be two vertices in V — S such that dg(u,v) = 2. This
implies uv € E(G*°). Since S is a neighbourhood cover for G*¢ there is w in S
such that wv is in < Ngsc[w] >. Hence dg(u, w) = dg(w,v) = 2.

Assume that that the stated condition holds. Let e = wv be an edge in
E(G*°) (dg(u,v) = 2). Then by our assumption there is w € S such dg(u,w) =
dg(w,v) = 2. Hence uw,wv are in E(G*). This implies uv is in < Ngse[w] >.
Therefore S is a neighbourhood cover for G*¢. O
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