Thai Journal of Mathematics Volume 12 (2014) Number 1 : 175-183
http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Semi-Complementary Graphs

S. V. Siva Rama Raju ${ }^{\dagger, 1}$ and I. H. Nagaraja Rao ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Mathematics, M. V. G. R. College of Engineering
Vizianagaram, India
e-mail : shivram2006@yahoo.co.in
\ddagger Department of Mathematics, G. V. P. College for P. G. Courses
Visakhapatnam, India
e-mail : ihnrao@yahoo.com

Abstract

In communication networks, a secret message is being sent by means of adjacency matrix associated with a simple graph G. As it is easily traceable instead of adjacency, non adjacency matrix (that is associated with the complementary graph G^{c}) is being preferred. Now, we introduce another type of graph called as semi-complementary graph $G^{s c}$ of G. This is a spanning subgraph of G^{c} and hence more secrecy can be achieved by using this in defence problems.

Already semi complete graphs have been introduced ($[1,2]$) and it is observed that for such graphs $G^{s c}=G^{c}$. Semi complete graphs are playing a vital role in sharing a secret code in parts, by two individuals, instead of one. Thus these are useful in bank transactions.

Keywords : semi complete graph; dominating set; vertex cover; restrained dominating set.
2010 Mathematics Subject Classification : 05C69.

1 Introduction

In transportation problems the concept of complementary graphs is very much useful in providing a substitute network (hidden) between the sources and destinations in connecting each source/destination to all the sources/destinations that are not adjacent to the former so that the system remains connected at times of

[^0]need. We have introduced the concept semi-complementary graphs which serves the above mentioned purpose in a more efficient way (minimizes the cost).

2 Preliminaries

A set D of vertices in a graph $G=(V, E)$ is said to be a dominating set of G if and only if every vertex in $V-D$ is adjacent to some vertex in D [3]. A set D of vertices in a graph $G=(V, E)$ is said to be a restrained dominating set if and only if it is a dominating set of G and further every vertex in $V-D$ is adjacent to some other vertex in $V-D[3]$. A set S of vertices in a graph $G=(V, E)$ is said to be an independent set of G if and only if no two vertices in S are adjacent G [4]. The number of vertices in a maximum independent set of G is called the independence number of G and is denoted by $\alpha(G)$ [4]. A set S of vertices in a graph $G=(V, E)$ is said to be a vertex cover of G if and only if for each edge $u v$ in G, either $u \in S$ or $v \in S$ [4]. A set S of vertices in a graph $G=(V, E)$ is said to be a neighbourhood cover of G if and only if $G=\bigcup_{v \in S}<N[v]>$, where $N[v]=\{u \in V(G) / u v \in E(G)\} \bigcup\{v\}[5]$. The girth of a graph G is defined as the length of the shortest cycle in G. A graph G is said to be semi complete if and only if it is simple and for any two vertices u, v of G there is a vertex w of G such that w is adjacent to both u and $v($ in $G)$ (i.e, $\{u, w, v\}$ is a path in $G)[1,2]$.

All graphs considered in this paper are simple, finite, undirected and connected. For standard terminology and notation we refer Bondy and Murthy [4].

3 Main Results

Now, we introduce a new type of graph.

Definition 3.1. Let G be a graph with vertex set $V(=V(G))$. Then the graph whose vertex set is V and the edge set being $\{u v: u, v \in V, u v \notin G$ and there is a w in V such that $<u w v>$ is a path in $G\}$ is called the semi-complementary graph of G and is denoted by $G^{s c}$.

Note. By definition, there is no interest with empty graph, complete graph K_{n}, multi graph and disconnected graph with regard to this concept. Hence, throughout this work, by a graph we mean a simple, connected graph with atleast three vertices and is not complete.

Given below are the examples of some graphs and their corresponding semicomplementary graphs.
G:

Observations:

(i) It is taken, for convenience, G to be connected; but $G^{s c}$ need not be connected(in view of the above examples).
(ii) $G^{s c}$ is clearly a spanning subgraph of $G^{c} \Rightarrow$ If G is a finite graph then $\left|E\left(G^{c}\right)\right| \geq\left|E\left(G^{s c}\right)\right|$.
We know that $\left(G^{c}\right)^{c}=G$ but,
(iii) $\left(G^{s c}\right)^{s c}$ need not be G even if $G^{s c}$ is connected, in view of the following:

(iv) If G is finite, then $\left|E\left(G^{s c}\right)\right|=\mid\left\{\{u, v\}: u, v \in V\right.$ and $\left.d_{G}(u, v)=2\right\} \mid(\Rightarrow$ u and v are nonadjacent in G).
(v) If $G=K_{n}$, then $G^{s c}$ is a null graph.
(vi) If G is a star graph with $n(\geq 3)$ vertices then $G^{s c}=K_{1} \bigcup K_{n-1}$.
(vii) If $G=P_{n}(n \geq 3)$, then

$$
\begin{aligned}
G^{s c} & =P_{\frac{n}{2}} \bigcup P_{\frac{n}{2}} \text { if } n \text { is even, } \\
& =P_{\frac{n+1}{2}} \bigcup P_{\frac{n-1}{2}} \text { if } n \text { is odd. }
\end{aligned}
$$

(If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are the vertices of G then the first $P_{\frac{n}{2}}$ is formed by $\left\{v_{1}, v_{3}, \ldots, v_{n-1}\right\}$ and the second $P_{\frac{n}{2}}$ is formed by the vertices $\left\{v_{2}, v_{4}, \ldots, v_{n}\right\}$ (when n is even); $P_{\frac{n+1}{2}}$ is formed by $\left\{v_{1}, v_{3}, \ldots, v_{n}\right\}$ and $P_{\frac{n-1}{2}}$ is formed by $\left\{v_{2}, v_{4}, \ldots, v_{n-1}\right\}$ (when n is odd)).
Thus $P_{n}{ }^{s c}$ is disconnected.
(viii) If $G=C_{n}(n \geq 4)$, then

$$
\begin{aligned}
G^{s c} & =C_{\frac{n}{2}} \bigcup C_{\frac{n}{2}} \text { if } n \text { is even, } \\
& =C_{n} \text { if } n \text { is odd. }
\end{aligned}
$$

(The first $C_{\frac{n}{2}}$ is formed by $\left\{v_{1}, v_{3}, \ldots, v_{n-1}, v_{1}\right\}$ and the second $C_{\frac{n}{2}}$ is formed by $\left\{v_{2}, v_{4}, \ldots, v_{n}, v_{2}\right\}$, when n is even; C_{n} is formed by $\left\{v_{1}, v_{3}, \ldots, v_{n}, v_{2}, \ldots\right.$, $\left.v_{n-1}, v_{1}\right\}$, when n is odd).
Thus $C_{2 n+1}{ }^{s c}$ is isomorphic to $C_{2 n+1}$ when $n \geq 2$ and is connected, Eulerian and Hamiltonian.
(ix) $G^{s c}$ is Eulerian if and only if $\forall u \in V,\left|\left\{v \in V / d_{G}(u, v)=2\right\}\right|$ is even.
(x) G is a connected graph with vertex set V and $S \subseteq V$. Then S is an independent set of G and $G^{s c}$ if and only if $d_{G}(u, v) \geq 3$ for every $u, v \in$ $S\left(u, v\right.$ are adjacent in $G \Leftrightarrow d_{G}(u, v)=1$ and u, v are adjacent in $G^{s c} \Leftrightarrow$ $\left.d_{G}(u, v)=2\right)$.

Theorem 3.2. If G is a connected bipartite graph, then $G^{s c}$ is disconnected and is a union of two components.

Proof. Let G be a connected, bipartite graph with bipartition X, Y. Since G is connected any vertex of X is connected to any vertex of Y and vice-versa. Also the distance between them is always an odd integer. So by definition, in $G^{s c}$ no vertex of X is connected to a vertex of Y and vice-versa. Further between any two vertices of X or that of Y the distance is always an even integer. Hence there is a path between the vertices of X and similarly the vertices of Y in $G^{s c}$. Thus $G^{s c}$ is disconnected and has components formed by the corresponding graph in X and that of in Y.

Remark 3.3. The converse of the above Theorem is false in view of the following example:

Here $G^{s c}$ has exactly two components, G is connected but not bipartite (G contains an odd cycle).

Corollary 3.4. If $G=K_{m, n}(m+n \geq 3)$ then $G^{s c}=K_{m} \bigcup K_{n}(I f\{X, Y\}$ is the bipartition of $K_{m, n}$ then any two vertices in X or that of Y are adjacent in $\left.G^{\text {sc }}\right)$.

Corollary 3.5. If G is a tree (with atleast three vertices), then $G^{s c}$ is disconnected and is a union of two components (since G is bipartite).

Theorem 3.6. G be a connected graph with vertex set V. Then $G^{c}=G^{s c}$ if and only if the distance between any pair of non adjacent vertices is 2.

Proof. Let G be a connected graph. Since $G, G^{s c}$ have the same vertex set, $G^{c}=$ $G^{s c}$ is equivalent to, $u v \in G^{c} \Leftrightarrow u v \in G^{s c}$. This is same as, u and v are not adjacent in $G \Leftrightarrow d_{G}(u, v)=2$.

Corollary 3.7. G is a semi complete graph. Then $G^{s c}=G^{c}$.
Proof. Since G is a semi complete graph the distance between any pair of nonadjacent vertices is two, then by the above theorem the proof follows. (observe that, if two vertices are adjacent in G, then also there must be a path of length 2 in G as it is a semi complete graph).

Observation: $G^{s c}=G^{c}$ for $G=C_{4}$, but $G=C_{4}$ is not semi complete. Hence the converse fails.

Theorem 3.8. G be a connected graph. Then $G \subseteq\left(G^{s c}\right)^{s c}$ if and only if for each $u v$ in G there is w in V such that $d_{G}(u, w)=d_{G}(w, v)=2$.

Proof. Assume that $G \subseteq\left(G^{s c}\right)^{s c}$. Let $u v \in E(G)$
$\Rightarrow u v \in E\left(\left(G^{s c}\right)^{s c}\right)$
$\Rightarrow d_{G^{s c}}(u, v)=2$
\Rightarrow there is w in $V(G)$ such that $u w, w v$ are in $E\left(G^{s c}\right)$
$\Rightarrow d_{G}(u, w)=d_{G}(w, v)=2$.
Conversely assume that $u v \in E(G)$. Then by our assumption
there is w in V such that $d_{G}(u, w)=d_{G}(w, v)=2$
$\Rightarrow u w, w v \in E\left(G^{s c}\right)$ and further $u v \notin E\left(G^{s c}\right)$
$\Rightarrow d_{G^{s c}}(u, v)=2$
$\Rightarrow u v \in E\left(\left(G^{s c}\right)^{s c}\right)$.
Thus $E(G) \subseteq E\left(\left(G^{s c}\right)^{s c}\right)$.
Hence the result.
Now, we prove a necessary and sufficient condition for a connected graph G to have a connected $G^{s c}$

Theorem 3.9. G is a connected graph with vertex set V. Then $G^{\text {sc }}$ is connected if and only if for any pair of distinct vertices u, v of G with $d_{G}(u, v) \neq 2$ there is a sequence $\left\{w_{s}: s=1,2, \ldots, n_{0}\right\}\left(n_{0}\right.$ being a positive integer) of distinct vertices in V and paths $P_{s}\left(w_{s-1} \rightarrow w_{s}\right)(s=1,2, \ldots, m+1)$ with the convention $w_{0}=u$ and $w_{m+1}=v$ in G of even length each such that no pair of vertices at consecutive odd places in any of the paths P_{s} are adjacent in G.

Proof. Let G be a connected graph with vertex set V. Suppose $G^{s c}$ is connected. Let $u, v \in V$ with $u \neq v$ and $d_{G}(u, v) \neq 2 \Rightarrow u v \notin E\left(G^{s c}\right)$. Since $G^{s c}$ is connected there is a $u-v$ path, say $\left\{u=u_{0}, u_{1}, \ldots, u_{n}=v\right\}(n \geq 2)$ in $G^{s c}$. By the definition of $G^{s c}$, for each $j \in\{1,2, \ldots, n\}$, there is an $x_{j} \in V$ such that $\left\{u_{j-1}, x_{j}, u_{j}\right\}$ is a path in G. Now follows that $W=\left\{u_{0}, x_{1}, u_{1}, \ldots, u_{n-1}, x_{n}, u_{n}=v\right\}$ is a $u-v$ walk in G. If this is a path then taking $w_{1}=u_{j}$ for any $j \in\{1,2, \ldots, n-1\}$, we get two paths $P_{1}\left(u=w_{0} \rightarrow w_{1}\right)$ and $P_{2}\left(w_{1} \rightarrow w_{2}=v\right)$ in G of the required property, since the length of any $u_{j-1}-u_{j}$ path in G is even for $j \in\{1,2, \ldots, n\}$ and u_{j-1} and u_{j} are not adjacent in G since they are adjacent in $G^{s c}$. Otherwise there is a subsequence $\left\{x_{j_{s}} ; s=1,2, \ldots, m\right\}$ of $\left\{x_{j} ; j=1,2, \ldots, n\right\}$ such that each $x_{j_{s}}$ is a vertex in the sub walk $u_{0}-u_{j_{s-1}}(s=1,2, \ldots, m)$. Taking $w_{s}=u_{j_{s-1}}$, we get the required paths with the specified property.

This proves the necessary part.
Conversely, assume that the specified condition of the theorem holds. Let $u, v \in V$ be such that $d_{G}(u, v)=2$. Now follows that $u v \in E\left(G^{s c}\right)$. Thus u and v are connected in $G^{s c}$. Otherwise, by hypothesis from the condition follows that $W=\bigcup_{s=1}^{m+1} P_{s}$ is a $u-v$ walk in G such that any pair of vertices in consecutive odd places in W are nonadjacent in G and hence adjacent in $G^{s c}$. So they give rise to a $u-v$ walk in $G^{s c}$ and hence a $u-v$ path in $G^{s c}$. Thus $G^{s c}$ is connected. This completes the proof of the theorem.

Corollary 3.10. In the characterization Theorem $G^{s c}$ is "connected" is replaced by "a tree" and "sequence" is replaced by "a unique sequence", then the corresponding result holds.

Proof. Necessary part is obvious since a tree is connected. In the sufficiency part the condition implies that between any pair of vertices there is a unique path and hence follows that it is a tree.

Corollary 3.11. In the characterization Theorem G is "connected" is replaced by "semi complete" and " $d_{G}(u, v) \neq 2$ " is replaced by $u v \in E(G)\left(\Rightarrow d_{G}(u, v)=1\right)$ then the corresponding result holds.

Corollary 3.12. G is a connected graph with vertex set V and girth of G is greater than 3. Then $G^{s c}$ is connected if and only if for any pair of distinct vertices u, v of G with $d_{G}(u, v) \neq 2$ there is a sequence $\left\{w_{s}: s=1,2, \ldots, n_{0}\right\}\left(n_{0}\right.$ being a positive integer) of distinct vertices in V and paths $P_{s}\left(w_{s-1} \rightarrow w_{s}\right)(s=1,2, \ldots, m+1)$ with the convention $w_{0}=u$ and $w_{m+1}=v$ in G of even length in G.

Proof. Since girth of G is greater than 3 , there cannot be any cycles of length 3 in G. Hence the proof follows from the Characterization Theorem.

Now we give an elegant sufficient condition for the graph $G^{s c}$ of the connected graph G to be connected.

Theorem 3.13. G is a connected graph with vertex set V such that for each pair of distinct vertices u, v in G there is a $u-v$ path P of even length, in G, further the subgraph induced by the vertices of P is acyclic. Then $G^{s c}$ is connected.

Proof. Under the given hypothesis let P be the $u-v$ path of even length say $P=$ $\left\{u=u_{0}, u_{1}, \ldots, u_{2 n}=v\right\}$ (n being a positive integer) with the specified property; Now it follows that no u_{j} is adjacent with $u_{i}(0 \leq i<j)$ for $i, j \in\{0,1,2, \ldots, 2 n\}$. Thus in this path any two vertices at consecutive odd places are adjacent in $G^{s c}$. This gives rise to the $u-v$ path $\left\{u_{0}, u_{2}, \ldots, u_{2 n}=v\right\}$ in $G^{s c}$. Thus $G^{s c}$ is connected.

Observation: The converse of the above Theorem is false in view of the following: Counter Example: Consider the graph given under:

Between the vertices v_{1} and v_{2} there is only one path of even length (4) namely $\left\{v_{1}, v_{7}, v_{6}, v_{3}, v_{2}\right\}$. The subgraph induced by the vertices of this path is

It contains three cycles namely $\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}, v_{1}\right\},\left\{v_{1}, v_{2}, v_{6}, v_{7}, v_{1}\right\}$ and $\left\{v_{2}, v_{3}\right.$, $\left.v_{6}, v_{2}\right\}$. So it is not acyclic. But the graph $G^{s c}$ is connected.

Theorem 3.14. G is a connected graph such that $G^{\text {sc }}$ is connected; then G is cyclic.

Proof. Under the given hypothesis, let $e=u v \in E(G)$. Now u, v are the vertices of G and hence $G^{s c}$. Since $G^{s c}$ is connected there is a shortest $u-v$ path in $G^{s c}$. This induces a path P in G. Now $P \bigcup\{e\}$ is a cycle in G. Thus G is cyclic.

Remark 3.15. The converse of the above Theorem is false in view of the following:
Counter Example: Consider the connected cyclic graph given under:

$G^{s c}$ is a union of two isomorphic components and so disconnected (observe that G is bipartite).

Theorem 3.16. G and $G^{s c}$ are connected with vertex set V. Then $\alpha(G) \geq 2$.
Proof. Under the given hypothesis, if $\alpha(G)=1$ there is a $v_{0} \in V$ such that v_{0} is adjacent with all other vertices of V. So $d_{G}\left(v, v_{0}\right)=1$ for all $v \in V-\left\{v_{0}\right\}$. Hence v_{0} is not adjacent with all other vertices of V in $G^{s c}$. So v_{0} is an isolated vertex of G. Hence $G^{s c}$ is disconnected. This is a contradiction. Hence $\alpha(G) \geq 2$.

Observation: The converse of the above theorem is false in view of $P_{8} . \alpha\left(P_{8}\right)=$ $4 \geq 2$. Clearly $\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ and $\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$ are maximum independent sets in P_{8} but $P_{8}{ }^{s c}$ is not connected.

Proposition 3.17. G be a connected graph with vertex set V and $D \subset V$. Then D is a dominating set for $G^{s c}$ if and only if for each $v \in V-D$ there is $u \in D \ni$ $d_{G}(u, v)=2$.

Proof. D is a dominating set for $G^{s c} \Leftrightarrow$ for $v \in V-D$ there is a $u \in D$ such that $u v \in E\left(G^{s c}\right) \Leftrightarrow d_{G}(u, v)=2$.

Proposition 3.18. If D is a dominating set for $G, G^{\text {sc }}$, then $|D| \geq 2$.
Proof. If $|D|=1$, then D is not a dominating set for $G^{s c}$, which is a contradiction to the hypothesis. Hence $|D| \geq 2$.

Proposition 3.19. G be a connected graph with vertex set V and $D \subset V$. If D is an independent dominating set for $G, G^{s c}$, then D is a restrained dominating set for G.

Proof. Suppose that the hypothesis holds. Let $u \in V-D$. Since D is a dominating set for $G^{s c}$ there is $v \in D$ such that $d_{G}(u, v)=2 \Rightarrow \exists w \in V(G) \ni\{u, w, v\}$ is a path in $G \Rightarrow u w \in E(G)$ and $w \in V-D$. Since D is a dominating set for G, there is an $x \in D \ni x u \in E(G)$. Hence D is a restrained dominating set for G.

Proposition 3.20. G be a connected graph with vertex set V. Then $S \subset V$ is a vertex cover for $G, G^{s c}$ if and only if for any $u, v \in V(G) \ni d_{G}(u, v) \leq 2 \Rightarrow$ either $u \in S$ (or) $v \in S$.

Proof. Suppose that the hypothesis holds. Assume that S is a vertex cover for G, $G^{s c}$. Let $u, v \in V \ni d_{G}(u, v) \leq 2$.

If $d_{G}(u, v)=1 \Rightarrow u v \in E(G) \Rightarrow u \in S$ (or) $v \in S$ (by the nature of S).
If $d_{G}(u, v)=2 \Rightarrow u v \in E\left(G^{s c}\right) \Rightarrow u \in S$ (or) $v \in S$ (by the nature of S).
Assume that the stated condition holds. Now, $u v \in E(G) \Rightarrow d_{G}(u, v)=1 \leq$ $2 \Rightarrow u \in S(o r) v \in S \Rightarrow S$ is a vertex cover for G.

Let $u v \in E\left(G^{s c}\right) \Rightarrow d_{G}(u, v)=2 \Rightarrow u \in S(o r) v \in S \Rightarrow S$ is a vertex cover for $G^{s c}$. Hence the proof.

Proposition 3.21. G be a connected graph. Then $S \subset V$ is a neighbourhood cover for $G^{s c}$ if and only if for u, v in $V-S$ with $d_{G}(u, v)=2$ there is w in S such that $d_{G}(u, w)=d_{G}(w, v)=2$.

Proof. Suppose that the hypothesis holds. Assume that S is a neighbourhood cover for $G^{s c}$. Let u, v be two vertices in $V-S$ such that $d_{G}(u, v)=2$. This implies $u v \in E\left(G^{s c}\right)$. Since S is a neighbourhood cover for $G^{s c}$ there is w in S such that $u v$ is in $\left\langle N_{G^{s c}}[w]\right\rangle$. Hence $d_{G}(u, w)=d_{G}(w, v)=2$.

Assume that that the stated condition holds. Let $e=u v$ be an edge in $E\left(G^{s c}\right)\left(d_{G}(u, v)=2\right)$. Then by our assumption there is $w \in S$ such $d_{G}(u, w)=$ $d_{G}(w, v)=2$. Hence $u w, w v$ are in $E\left(G^{s c}\right)$. This implies $u v$ is in $\left\langle N_{G^{s c}}[w]\right\rangle$. Therefore S is a neighbourhood cover for $G^{s c}$.

Acknowledgement : Thanks are due to the referee for his valuable suggestions.

References

[1] I.H. Naga Raja Rao, S.V. Siva Rama Raju, On semi complete graphs, International Journal of Computational Cognition 7 (2009) 50-54.
[2] I.H. Naga Raja Rao, S.V. Siva Rama Raju, Semi complete graphs - II, International Journal of Computational Cognition 8 (2010) 60-65.
[3] T.W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Dominations in Graphs, Marcel Dekker, Inc., New York, 1998.
[4] J.A. Bondy, U.S.R. Murthy, Graph Theory with Applications, The Macmillan Press Ltd, 1976.
[5] E. Sampathkumar, P.S. Neeralagi, The neighbourhood number of a graph, Indian J. Pure Appl. Math. 16 (1985) 126-132.
(Received 29 March 2012)
(Accepted 30 October 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2014 by the Mathematical Association of Thailand. All rights reserved.

