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Abstract : In communication networks, a secret message is being sent by means
of adjacency matrix associated with a simple graph G. As it is easily traceable
instead of adjacency, non adjacency matrix(that is associated with the comple-
mentary graph Gc) is being preferred. Now, we introduce another type of graph
called as semi-complementary graph Gsc of G. This is a spanning subgraph of Gc

and hence more secrecy can be achieved by using this in defence problems.
Already semi complete graphs have been introduced ([1, 2]) and it is observed

that for such graphs Gsc = Gc. Semi complete graphs are playing a vital role in
sharing a secret code in parts, by two individuals, instead of one. Thus these are
useful in bank transactions.
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1 Introduction

In transportation problems the concept of complementary graphs is very much
useful in providing a substitute network (hidden) between the sources and desti-
nations in connecting each source/destination to all the sources/destinations that
are not adjacent to the former so that the system remains connected at times of
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need. We have introduced the concept semi-complementary graphs which serves
the above mentioned purpose in a more efficient way (minimizes the cost).

2 Preliminaries

A set D of vertices in a graph G = (V,E) is said to be a dominating set of G
if and only if every vertex in V −D is adjacent to some vertex in D [3]. A set D
of vertices in a graph G = (V,E) is said to be a restrained dominating set if and
only if it is a dominating set of G and further every vertex in V −D is adjacent
to some other vertex in V − D [3]. A set S of vertices in a graph G = (V,E) is
said to be an independent set of G if and only if no two vertices in S are adjacent
G [4]. The number of vertices in a maximum independent set of G is called the
independence number of G and is denoted by α(G) [4]. A set S of vertices in a
graph G = (V,E) is said to be a vertex cover of G if and only if for each edge
uv in G, either u ∈ S or v ∈ S [4]. A set S of vertices in a graph G = (V,E) is
said to be a neighbourhood cover of G if and only if G =

∪
v∈S < N [v] >, where

N [v] = {u ∈ V (G)/uv ∈ E(G)}
∪
{v} [5]. The girth of a graph G is defined as the

length of the shortest cycle in G. A graph G is said to be semi complete if and
only if it is simple and for any two vertices u, v of G there is a vertex w of G such
that w is adjacent to both u and v(in G) (i.e, {u,w, v} is a path in G) [1, 2].

All graphs considered in this paper are simple, finite, undirected and con-
nected. For standard terminology and notation we refer Bondy and Murthy [4].

3 Main Results

Now, we introduce a new type of graph.

Definition 3.1. Let G be a graph with vertex set V (= V (G)). Then the graph
whose vertex set is V and the edge set being {uv : u, v ∈ V, uv /∈ G and there is a w
in V such that < uwv > is a path in G} is called the semi-complementary graph
of G and is denoted by Gsc.

Note. By definition, there is no interest with empty graph, complete graph Kn,
multi graph and disconnected graph with regard to this concept. Hence, through-
out this work, by a graph we mean a simple, connected graph with atleast three
vertices and is not complete.

Given below are the examples of some graphs and their corresponding semi-
complementary graphs.
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(connected)
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G: Gsc:

(disconnected)

Observations:

(i) It is taken, for convenience, G to be connected; but Gsc need not be con-
nected(in view of the above examples).

(ii) Gsc is clearly a spanning subgraph of Gc ⇒ If G is a finite graph then
|E(Gc)| ≥ |E(Gsc)|.
We know that (Gc)c = G but,

(iii) (Gsc)sc need not be G even if Gsc is connected, in view of the following:

v1

v2 v3

v4

v5

v6v7

G:

v1

v2

v3

v4

v5

v6v7

(Gsc)
sc

:

(iv) If G is finite, then |E(Gsc)| = |{{u, v} : u, v ∈ V and dG(u, v) = 2}|(⇒
u and v are nonadjacent in G).
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(v) If G = Kn, then Gsc is a null graph.

(vi) If G is a star graph with n(≥ 3) vertices then Gsc = K1

∪
Kn−1.

(vii) If G = Pn(n ≥ 3), then

Gsc = Pn
2

∪
Pn

2
if n is even,

= Pn+1
2

∪
Pn−1

2
if n is odd.

(If {v1, v2, . . . , vn} are the vertices of G then the first Pn
2

is formed by
{v1, v3, . . . , vn−1} and the second Pn

2
is formed by the vertices {v2, v4, . . . , vn}

(when n is even); Pn+1
2

is formed by {v1, v3, . . . , vn} and Pn−1
2

is formed by

{v2, v4, . . . , vn−1} (when n is odd)).

Thus Pn
sc is disconnected.

(viii) If G = Cn(n ≥ 4), then

Gsc = Cn
2

∪
Cn

2
if n is even,

= Cn if n is odd.

(The first Cn
2
is formed by {v1, v3, . . . , vn−1, v1} and the second Cn

2
is formed

by {v2, v4, . . . , vn, v2}, when n is even; Cn is formed by {v1, v3, . . . , vn, v2, . . . ,
vn−1, v1}, when n is odd).

Thus C2n+1
sc is isomorphic to C2n+1 when n ≥ 2 and is connected, Eulerian

and Hamiltonian.

(ix) Gsc is Eulerian if and only if ∀u ∈ V, |{v ∈ V/dG(u, v) = 2}| is even.

(x) G is a connected graph with vertex set V and S ⊆ V . Then S is an
independent set of G and Gsc if and only if dG(u, v) ≥ 3 for every u, v ∈
S(u, v are adjacent in G ⇔ dG(u, v) = 1 and u, v are adjacent in Gsc ⇔
dG(u, v) = 2).

Theorem 3.2. If G is a connected bipartite graph, then Gsc is disconnected and
is a union of two components.

Proof. Let G be a connected, bipartite graph with bipartition X,Y . Since G is
connected any vertex of X is connected to any vertex of Y and vice-versa. Also
the distance between them is always an odd integer. So by definition, in Gsc no
vertex of X is connected to a vertex of Y and vice-versa. Further between any
two vertices of X or that of Y the distance is always an even integer. Hence there
is a path between the vertices of X and similarly the vertices of Y in Gsc. Thus
Gsc is disconnected and has components formed by the corresponding graph in X
and that of in Y .

Remark 3.3. The converse of the above Theorem is false in view of the following
example:
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G:

Here Gsc has exactly two components, G is connected but not bipartite (G contains
an odd cycle).

Corollary 3.4. If G = Km,n(m + n ≥ 3) then Gsc = Km

∪
Kn(If {X,Y } is the

bipartition of Km,n then any two vertices in X or that of Y are adjacent in Gsc).

Corollary 3.5. If G is a tree (with atleast three vertices), then Gsc is disconnected
and is a union of two components (since G is bipartite).

Theorem 3.6. G be a connected graph with vertex set V . Then Gc = Gsc if and
only if the distance between any pair of non adjacent vertices is 2.

Proof. Let G be a connected graph. Since G,Gsc have the same vertex set, Gc =
Gsc is equivalent to, uv ∈ Gc ⇔ uv ∈ Gsc. This is same as, u and v are not
adjacent in G ⇔ dG(u, v) = 2.

Corollary 3.7. G is a semi complete graph. Then Gsc = Gc.

Proof. Since G is a semi complete graph the distance between any pair of nonad-
jacent vertices is two, then by the above theorem the proof follows. (observe that,
if two vertices are adjacent in G, then also there must be a path of length 2 in G
as it is a semi complete graph).

Observation: Gsc = Gc for G = C4, but G = C4 is not semi complete. Hence
the converse fails.

Theorem 3.8. G be a connected graph . Then G ⊆ (Gsc)sc if and only if for each
uv in G there is w in V such that dG(u,w) = dG(w, v) = 2.

Proof. Assume that G ⊆ (Gsc)sc. Let uv ∈ E(G)
⇒ uv ∈ E((Gsc)sc)
⇒ dGsc(u, v) = 2
⇒ there is w in V (G) such that uw,wv are in E(Gsc)
⇒ dG(u,w) = dG(w, v) = 2.
Conversely assume that uv ∈ E(G). Then by our assumption
there is w in V such that dG(u,w) = dG(w, v) = 2
⇒ uw,wv ∈ E(Gsc) and further uv /∈ E(Gsc)
⇒ dGsc(u, v) = 2
⇒ uv ∈ E((Gsc)sc).
Thus E(G) ⊆ E((Gsc)sc).
Hence the result.

Now, we prove a necessary and sufficient condition for a connected graph G
to have a connected Gsc
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Theorem 3.9. G is a connected graph with vertex set V . Then Gsc is connected
if and only if for any pair of distinct vertices u, v of G with dG(u, v) ̸= 2 there is
a sequence {ws : s = 1, 2, . . . , n0}(n0 being a positive integer)of distinct vertices in
V and paths Ps(ws−1 → ws)(s = 1, 2, . . . ,m+ 1) with the convention w0 = u and
wm+1 = v in G of even length each such that no pair of vertices at consecutive odd
places in any of the paths Ps are adjacent in G.

Proof. Let G be a connected graph with vertex set V . Suppose Gsc is connected.
Let u, v ∈ V with u ̸= v and dG(u, v) ̸= 2 ⇒ uv /∈ E(Gsc). Since Gsc is connected
there is a u−v path, say {u = u0, u1, . . . , un = v}(n ≥ 2) in Gsc. By the definition
of Gsc, for each j ∈ {1, 2, . . . , n}, there is an xj ∈ V such that {uj−1, xj , uj} is a
path in G. Now follows that W = {u0, x1, u1, . . . , un−1, xn, un = v} is a u−v walk
in G. If this is a path then taking w1 = uj for any j ∈ {1, 2, . . . , n − 1}, we get
two paths P1(u = w0 → w1) and P2(w1 → w2 = v) in G of the required property,
since the length of any uj−1 − uj path in G is even for j ∈ {1, 2, . . . , n} and uj−1

and uj are not adjacent in G since they are adjacent in Gsc. Otherwise there is a
subsequence {xjs; s = 1, 2, . . . ,m} of {xj ; j = 1, 2, . . . , n} such that each xjs is a
vertex in the sub walk u0 − ujs−1(s = 1, 2, . . . ,m). Taking ws = ujs−1 , we get the
required paths with the specified property.

This proves the necessary part.
Conversely, assume that the specified condition of the theorem holds. Let

u, v ∈ V be such that dG(u, v) = 2. Now follows that uv ∈ E(Gsc). Thus u and
v are connected in Gsc. Otherwise, by hypothesis from the condition follows that
W =

∪m+1
s=1 Ps is a u − v walk in G such that any pair of vertices in consecutive

odd places in W are nonadjacent in G and hence adjacent in Gsc. So they give
rise to a u− v walk in Gsc and hence a u− v path in Gsc. Thus Gsc is connected.
This completes the proof of the theorem.

Corollary 3.10. In the characterization Theorem Gsc is “connected” is replaced
by “a tree” and “sequence” is replaced by “a unique sequence”, then the corre-
sponding result holds.

Proof. Necessary part is obvious since a tree is connected. In the sufficiency part
the condition implies that between any pair of vertices there is a unique path and
hence follows that it is a tree.

Corollary 3.11. In the characterization Theorem G is “connected” is replaced by
“semi complete” and “dG(u, v) ̸= 2” is replaced by uv ∈ E(G)(⇒ dG(u, v) = 1)
then the corresponding result holds.

Corollary 3.12. G is a connected graph with vertex set V and girth of G is greater
than 3. Then Gsc is connected if and only if for any pair of distinct vertices u, v of
G with dG(u, v) ̸= 2 there is a sequence {ws : s = 1, 2, . . . , n0}(n0 being a positive
integer)of distinct vertices in V and paths Ps(ws−1 → ws)(s = 1, 2, . . . ,m + 1)
with the convention w0 = u and wm+1 = v in G of even length in G.
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Proof. Since girth of G is greater than 3, there cannot be any cycles of length 3
in G. Hence the proof follows from the Characterization Theorem.

Now we give an elegant sufficient condition for the graph Gsc of the connected
graph G to be connected.

Theorem 3.13. G is a connected graph with vertex set V such that for each pair
of distinct vertices u, v in G there is a u− v path P of even length, in G, further
the subgraph induced by the vertices of P is acyclic. Then Gsc is connected.

Proof. Under the given hypothesis let P be the u− v path of even length say P =
{u = u0, u1, . . . , u2n = v}(n being a positive integer)with the specified property;
Now it follows that no uj is adjacent with ui(0 ≤ i < j) for i, j ∈ {0, 1, 2, . . . , 2n}.
Thus in this path any two vertices at consecutive odd places are adjacent in Gsc.
This gives rise to the u − v path {u0, u2, . . . , u2n = v} in Gsc. Thus Gsc is
connected.

Observation: The converse of the above Theorem is false in view of the following:
Counter Example: Consider the graph given under:

v1 v2

v3

v4

v5
v6v7

G:

Between the vertices v1 and v2 there is only one path of even length (4) namely
{v1, v7, v6, v3, v2}. The subgraph induced by the vertices of this path is

v1 v2

v3

v6v7

It contains three cycles namely {v1, v2, v3, v6, v7, v1}, {v1, v2, v6, v7, v1} and {v2, v3,
v6, v2}. So it is not acyclic. But the graph Gsc is connected.

Theorem 3.14. G is a connected graph such that Gsc is connected; then G is
cyclic.

Proof. Under the given hypothesis, let e = uv ∈ E(G). Now u, v are the vertices
of G and hence Gsc. Since Gsc is connected there is a shortest u− v path in Gsc.
This induces a path P in G. Now P

∪
{e} is a cycle in G. Thus G is cyclic.
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Remark 3.15. The converse of the above Theorem is false in view of the following:

Counter Example: Consider the connected cyclic graph given under:

v1

v2

v3

v4v5

v6

v7

v8

G
sc

:

Gsc is a union of two isomorphic components and so disconnected (observe that
G is bipartite).

Theorem 3.16. G and Gsc are connected with vertex set V . Then α(G) ≥ 2.

Proof. Under the given hypothesis, if α(G) = 1 there is a v0 ∈ V such that v0 is
adjacent with all other vertices of V . So dG(v, v0) = 1 for all v ∈ V −{v0}. Hence
v0 is not adjacent with all other vertices of V in Gsc. So v0 is an isolated vertex
of G. Hence Gsc is disconnected. This is a contradiction. Hence α(G) ≥ 2.

Observation: The converse of the above theorem is false in view of P8. α(P8) =
4 ≥ 2. Clearly {v1, v3, v5, v7} and {v2, v4, v6, v8} are maximum independent sets
in P8 but P8

sc is not connected.

Proposition 3.17. G be a connected graph with vertex set V and D ⊂ V . Then
D is a dominating set for Gsc if and only if for each v ∈ V −D there is u ∈ D ∋
dG(u, v) = 2.

Proof. D is a dominating set for Gsc ⇔ for v ∈ V −D there is a u ∈ D such that
uv ∈ E(Gsc) ⇔ dG(u, v) = 2.

Proposition 3.18. If D is a dominating set for G,Gsc, then |D| ≥ 2.

Proof. If |D| = 1,then D is not a dominating set for Gsc,which is a contradiction
to the hypothesis. Hence |D| ≥ 2.

Proposition 3.19. G be a connected graph with vertex set V and D ⊂ V . If D is
an independent dominating set for G,Gsc, then D is a restrained dominating set
for G.

Proof. Suppose that the hypothesis holds. Let u ∈ V −D. Since D is a dominating
set for Gsc there is v ∈ D such that dG(u, v) = 2 ⇒ ∃w ∈ V (G) ∋ {u,w, v} is a
path in G ⇒ uw ∈ E(G) and w ∈ V −D. Since D is a dominating set for G, there
is an x ∈ D ∋ xu ∈ E(G). Hence D is a restrained dominating set for G.

Proposition 3.20. G be a connected graph with vertex set V . Then S ⊂ V is a
vertex cover for G,Gsc if and only if for any u, v ∈ V (G) ∋ dG(u, v) ≤ 2 ⇒ either
u ∈ S (or) v ∈ S.
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Proof. Suppose that the hypothesis holds. Assume that S is a vertex cover for G,
Gsc. Let u, v ∈ V ∋ dG(u, v) ≤ 2.

If dG(u, v) = 1 ⇒ uv ∈ E(G) ⇒ u ∈ S (or) v ∈ S (by the nature of S).
If dG(u, v) = 2 ⇒ uv ∈ E(Gsc) ⇒ u ∈ S (or) v ∈ S (by the nature of S).
Assume that the stated condition holds. Now, uv ∈ E(G) ⇒ dG(u, v) = 1 ≤

2 ⇒ u ∈ S (or) v ∈ S ⇒ S is a vertex cover for G.
Let uv ∈ E(Gsc) ⇒ dG(u, v) = 2 ⇒ u ∈ S (or) v ∈ S ⇒ S is a vertex cover

for Gsc. Hence the proof.

Proposition 3.21. G be a connected graph. Then S ⊂ V is a neighbourhood
cover for Gsc if and only if for u, v in V − S with dG(u, v) = 2 there is w in S
such that dG(u,w) = dG(w, v) = 2.

Proof. Suppose that the hypothesis holds. Assume that S is a neighbourhood
cover for Gsc. Let u, v be two vertices in V − S such that dG(u, v) = 2. This
implies uv ∈ E(Gsc). Since S is a neighbourhood cover for Gsc there is w in S
such that uv is in < NGsc [w] >. Hence dG(u,w) = dG(w, v) = 2.

Assume that that the stated condition holds. Let e = uv be an edge in
E(Gsc) (dG(u, v) = 2). Then by our assumption there is w ∈ S such dG(u,w) =
dG(w, v) = 2. Hence uw,wv are in E(Gsc). This implies uv is in < NGsc [w] >.
Therefore S is a neighbourhood cover for Gsc.
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