Thai Journal of Mathematics Volume 12 (2014) Number 1 : 155-165
http://thaijmath.in.cmu.ac.th

Vector-Valued FK-Spaces Defined by a Modulus Function and an Infinite Matrix ${ }^{1}$

Murat Candan
Department of Mathematics
Inonu Universty, Malatya 44280, Turkey
e-mail : murat.candan@inonu.edu.tr

Abstract

The present paper is devoted to studying on the sequence space $\lambda\left(A, X_{k}, r, f, s\right)$ defined by a modulus function f and an infinite matrix A and constructed its $F K$-structure under some conditions. Finally, we exposed some inclusion relations among the variations of the space. The vector-valued sequence space $\lambda\left(A, X_{k}, r, f, s\right)$ as a paranormed space which is a most general form of the space investigated in [1].

Keywords : vector-valued $F K$-spaces; paranormed spaces; sequence spaces; modulus function.
2010 Mathematics Subject Classification : 46A45; 40A05; 40D25; 40H05.

1 Introduction

A sequence $\left(b_{n}\right)_{n=0}^{\infty}$ in a linear metric space X is called Schauder basis if, for every $x \in X$, there exists a unique sequence $\left(\lambda_{n}\right)_{n=0}^{\infty}$ of scalars such that $x=\sum_{n=0}^{\infty} \lambda_{n} b_{n}$.

By w we denote the space of all real or complex-valued sequences $x=\left(x_{k}\right)_{k=0}^{\infty}$. Any vector subspace of w is called a sequence space. As usual, we write c_{0}, c and l_{∞} denote the sets of sequences that are convergent to zero, convergent and bounded, respectively. Also by l_{1} and l_{p}; we denote the spaces of absolutely and p-absolutely convergent series, respectively; where $1<p<\infty$. We write e and

[^0]```
Copyright (c) 2014 by the Mathematical Association of Thailand. All rights reserved.
```

$e^{(n)}(n=0,1, \ldots)$ for the sequences with $e_{k}=1(k=0,1, \ldots)$ and $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0(k \neq n)$. If $x \in w$ then $x^{[m]}=\sum_{k=0}^{m} x_{k} e^{(k)}$ denotes the $m$-section of $x$.

A sequence space $\lambda$ with a linear topology is called a $K$-space provided each of the maps $P_{i}: \lambda \rightarrow \mathbb{C}$ defined by $P_{i}(x)=x_{i}$ is continuous for all $i \in \mathbb{N}$; where $\mathbb{C}$ and $\mathbb{N}$ denote the complex field and the set of all natural numbers, respectively. Let $\lambda$ be a $K$-space. Then, $\lambda$ is called $F K$-space provided $\lambda$ is a complete linear metric space. An $F K$-space whose topology is normable is called a $B K$-space (see Choudhary and Nanda [2], pp. 272-273).

Let $\left(X_{k}, q_{k}\right)$ be an infinite sequence of seminormed spaces. Then we may construct the most general sequence spaces $s\left(X_{k}\right)$ such that $x=\left(x_{k}\right) \in s\left(X_{k}\right)$ iff $x_{k} \in X_{k}$ for each $k \in \mathbb{N}$. Taking $X_{k}=\mathbb{C}$ for each $k \in \mathbb{N}$, we get $w$, the space of all complex-valued sequences. This case is called scalar-valued case. Easily check that $s\left(X_{k}\right)$ is a linear space (over $\mathbb{C}$ ) under the natural coordinatewise operations.

Now, let us establish a semimetrizable topology on $s\left(X_{k}\right)$ using by seminorm topologies of the sequence $\left(X_{k}, q_{k}\right)$. Define functions $g_{k}: s\left(X_{k}\right) \rightarrow \mathbb{R}, g_{k}(x)=$ $q_{k}\left(x_{k}\right)$, then each $g_{k}$ is a seminorm on $s\left(X_{k}\right)$. But there exists a topology on $s\left(X_{k}\right)$ such that it is larger than that of $g_{k}$ for each $k \in \mathbb{N}[3]$. This is a paranorm topology, say $g$, and is obtained from Frechet combination of the sequence $\left(g_{k}\right)$ by

$$
g(x)=\sum_{n=0}^{\infty} \frac{g_{n}(x)}{2^{n}\left[1+g_{n}(x)\right]}=\sum_{n=0}^{\infty} \frac{q_{n}\left(x_{k}\right)}{2^{n}\left[1+q_{n}\left(x_{k}\right)\right]} .
$$

Also, $d(x, y)=g(x-y)$ is the invariant semimetric giving this topology, and for a sequence $\left(x^{n}\right) \subset s\left(X_{k}\right), g\left(x^{n}\right) \rightarrow 0$ iff $g_{k}\left(x^{n}\right)=q_{k}\left(x_{k}^{n}\right) \rightarrow 0$ in $X_{k}$ for each $k$. So, $s\left(X_{k}\right)$ is a product space, i.e., $s\left(X_{k}\right)=\prod X_{k}$, and $g$ is the weakest topology such that the projections

$$
P_{k}: s\left(X_{k}\right) \rightarrow X_{k} ; P_{k}(x)=x_{k}, \quad k=1,2, \ldots
$$

are continuous. Totality of $g$ and completeness of $s\left(X_{k}\right)$ with this paranorm depends on the sequence $\left(X_{k}, q_{k}\right)$. Therefore proving the following assertion is not hard: $\left(s\left(X_{k}\right), g\right)$ be a Frechet space if and only if each $\left(X_{k}, q_{k}\right)$ is a Banach space.

From above discussion, it is natural to define $F K$ structure on $s\left(X_{k}\right)$ as in scalar-valued case. Remember that $F K$-spaces corresponding $H=w[3]$. More generally, we say here an $F K$-spaces, we must assume that each $X_{k}$ is a Banach space. $l_{\infty}\left(X_{k}\right), c_{0}(X)$ is a $B K$-space with the norm $\|x\|_{p}=\left(\sum\left\|x_{k}\right\|^{p}\right)^{\frac{1}{p}}, p \geq 1$ where the norm of $X_{k}$ denoted by only a symbol $\|\cdot\|$ for each $k$. Moreover, if $\cap X_{k} \neq \phi$ then we can define $c\left(X_{k}\right)$ by $x \in c\left(X_{k}\right)$ iff there exists an $l \in \cap X_{k}$ such that $\left\|x_{k}-l\right\| \rightarrow 0$. An $F K$-space $E$ is called to have $A K$-property, or is called an $A K$-space if for each $x^{[n]} \rightarrow x$ in $E$ where $x^{[n]}=\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots\right)$, the $n^{\text {th }}$ section of $x$. In addition if $E$ is a $B K$-space then is called an $A K-B K$ space.

The scalar-valued sequence space $\lambda$ is called normal or solid if $y \in \lambda$ whenever $\left|y_{i}\right| \leq\left|x_{i}\right|$, for some $x \in \lambda$. Also $\lambda$ is called a sequence algebra if it is closed under the multiplication defined by $x y=\left(x_{i} y_{i}\right), i \geq 1$. Should $\lambda$ is both normal and sequence algebra then it is called a nornal sequence algebra. For example, $c$
is a sequence algebra but not normal. $w, l_{\infty}, c_{0}$ and $l_{p}(0<p<\infty)$ are normal sequence algebras [4].

A linear topological space $X$ over the real field $\mathbb{R}$ is said to be a paranormed space if there is a subadditive function $g: X \rightarrow \mathbb{R}$ such that $g(\theta)=0, g(x)=$ $g(-x)$, and scalar multiplication is continuous, i.e., $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $g\left(x_{n}-x\right) \rightarrow$ 0 imply $g\left(\alpha_{n} x_{n}-\alpha x\right) \rightarrow 0$ for all $\alpha$ 's in $\mathbb{R}$ and all $x$ 's in $X$, where $\theta$ is the zero vector in the linear space $X$. Assume here and after that $\left(r_{k}\right)$ be a bounded sequence of strictly positive real numbers. Then, the linear space $l(r)$ was defined by Maddox [5] (see also Simons [6] and Nakano [7]) as follows:

$$
l(r)=\left\{x=\left(x_{k}\right) \in w: \sum_{k}\left|x_{k}\right|^{r_{k}}<\infty\right\}
$$

which is a complete space paranormed by

$$
g(x)=\left(\sum_{k}\left|x_{k}\right|^{r_{k}}\right)^{\frac{1}{M}}
$$

where $M=\max \left(1, \sup r_{k}\right)$.
A paranorm $p$ on a normal sequence space $\lambda$ is said to be absolutely monotone whenever $p(x) \leq p(y)$ for $x, y \in \lambda$ with $\left|x_{i}\right| \leq\left|y_{i}\right|$ for each $i$ [4]. The norm $\|x\|=\sup \left|x_{k}\right|$ which makes the $l_{\infty}, c, c_{0}$ into a $B K$-space is absolutely monotone, also so is the norm $\|x\|=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}$ on $l_{p}, p \geq 1$.

Now, we shall contruct a vector-valued sequence space (subspace of $s\left(X_{k}\right)$ ) using a modulus function, an infinite matrix and normal sequence algebra $\lambda$. Notation of modulus function introduced by Nakano [8] in 1953 and used to solve some structural problems of the scalar FK-spaces theory. For example, the question; "is there an FK-space in which the sequence of coordinate vectors is bounded", exposed by A. Wilansky, was solved by W. H. Ruckle with negative answer [9]. The Problem was solved by consructing a class of scalar FK-spaces $L(f)$ where $f$ is a modulus function. $L(f)$, in fact, is a generalization of the spaces $l_{p}(0<p \leq 1)$. Another extension of $l_{p},(p>0)$ spaces with respect to a positive real sequence $r=\left(r_{k}\right)$ was given by Simons [6]. We shall introduce and generalize vector-valued FK-spaces with this respects. For the definition of modulus function and some related results we refer the reader to [9]. In recent years, many authors have made many studies, using modulus function [1, 10-14].

Some definitions and conventions are made in this section will be given in the next sections.

## 2 The Sequence Spaces $\lambda\left(A, X_{k}, r, f, s\right)$

Let $A=\left(a_{m k}\right)$ be a nonnegative matrix, $\lambda$ be a scalar, normal $A K-B K$ sequence algebra with absolutely monotone norm $\|\cdot\|_{\lambda}$ and $f$ be a modulus function. Also, suppose that $r=\left(r_{k}\right)$ be a bounded sequence of positive real numbers
and $s \geq 0$. Then, let us define

$$
\lambda\left(A, X_{k}, r, f, s\right)=\left\{x=\left(x_{k}\right) \in s\left(X_{k}\right):\left(a_{m k} k^{-s}\left[\left(f \circ q_{k}\right)\left(x_{k}\right)\right]^{r_{k}}\right) \in \lambda\right\}
$$

where each $X_{k}$ is a seminormed space.
It is a verification to show that $\lambda\left(A, X_{k}, r, f, s\right)$ is a linear space over $\mathbb{C}$ under the coordinatewise operations.

Remark 2.1. The argument $s$, that is, the factor $k^{-s}$, was used by Bulut and Cakar [15], to generalize the Maddox sequence spaces $l(r)$ where $r=\left(r_{k}\right)$ be defined above. It performs an extension mission. For example, the space

$$
l(p, s)=\left\{x \in w: \sum_{k=1}^{\infty} k^{-s}\left|x_{k}\right|^{r_{k}}<\infty\right\}
$$

contains $l(r)$ as a subspace for $s>0$, and it is coincide with $l(r)$ only for $s=0$. In a problem, if we need an FK-space containing $\lambda\left(X_{k}, r, f\right)$ as a subspace, then the space $\lambda\left(A, X_{k}, r, f, s\right)$ for $s>0$ provides a quick example meeting the requirement (we show that below $\lambda\left(A, X_{k}, r, f, s\right)$ is an $F K$-space whenever each $X_{k}$ is a Banach space).

Now let us give two lemmas to put a paranorm topology on $\lambda\left(A, X_{k}, r, f, s\right)$.
Lemma 2.2. Let $\left(X_{k}, q_{k}\right)$ be an infinite sequence of seminormed spaces, $A=$ $\left(a_{m k}\right)$ be a nonnegative matrix and $\lambda$ be a normal $A K-B K$ space with absolutely monotone norm $\|\cdot\|_{\lambda}$. Suppose $r=\left(r_{k}\right)$ is a bounded sequence of positive real numbers. Then the mappings

$$
\tilde{x}_{n}:[0, \infty) \rightarrow[0, \infty) ; \tilde{x}_{n}(u)=\left\|\sum_{k=1}^{n} a_{m k} k^{-s}\left[f\left(u q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda}
$$

defined by means of an $x=\left(x_{k}\right) \in \lambda\left(A, X_{k}, r, f, s\right)$, a positive integer $n$ and for each $m$, are continuous, where ( $e_{k}$ ) denotes the unit basis of $\lambda$.

Proof. Since the norm function is continuous it is sufficient to show that the mappings defined by

$$
h_{k}:[0, \infty) \rightarrow \lambda, \quad h_{k}(u)=\left[a_{m k} k^{-s}\left[f\left(u q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right]
$$

,for each $m$, are continuous. Let $u_{i} \rightarrow 0(i \rightarrow \infty)$, then

$$
h_{k}\left(u_{i}\right) \rightarrow(0,0, \ldots) \quad(i \rightarrow \infty)
$$

for each $k$. Hence, each $g_{k}$ is sequential continuous (it is equivalent to continuity here).

Lemma 2.3. Let $\lambda$ be a normal sequence algebra and $\|\cdot\|_{\lambda}$ be an absolutely monotone seminorm on $\lambda$. Then for every $u=\left(u_{n}\right), v=\left(v_{n}\right) \in \lambda$ and $p \geq 1$,

$$
\left\|(u+v)^{p}\right\|_{\lambda}^{\frac{1}{p}} \leq\left\|u^{p}\right\|_{\lambda}^{\frac{1}{p}}+\left\|v^{p}\right\|_{\lambda}^{\frac{1}{p}}
$$

where $(u+v)^{p}=\left(\left(u_{n}+v_{n}\right)^{p}\right)[16]$.
Theorem 2.1. Define

$$
g(x)=\left\|a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}}\right\|_{\lambda}^{\frac{1}{M}}
$$

where $M=\max (1, H), H=\sup r_{n}$. Then $g$ is a paranorm on $\lambda\left(A, X_{k}, r, f, s\right)$.
Proof. It is obvious that $g(\theta)=0$ and $g(-x)=g(x)$. From the absolute monotonicity of $\|\cdot\|_{\lambda}$, properties of $f$ and Lemma 2.3 that

$$
\begin{aligned}
g(x+y) & =\left\|\left(a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}+y_{k}\right)\right)\right]^{r_{k}}\right)\right\|_{\lambda}^{\frac{1}{M}} \\
& \leq\left\|\left(\left(a_{m k} k^{\frac{-s}{M}}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{\frac{r_{k}}{M}}+a_{m k} k^{\frac{-s}{M}}\left[f\left(q_{k}\left(y_{k}\right)\right)\right]^{\frac{r_{k}}{M}}\right)^{M}\right)\right\|_{\lambda}^{\frac{1}{M}} \\
& \leq\left\|\left(a_{m k} k^{\frac{-s}{M}}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}}\right)\right\|_{\lambda}^{\frac{1}{M}}+\left\|\left(a_{m k} k^{\frac{-s}{M}}\left[f\left(q_{k}\left(y_{k}\right)\right)\right]^{r_{k}}\right)\right\|_{\lambda}^{\frac{1}{M}} \\
& =g(x)+g(y)
\end{aligned}
$$

for $x, y \in \lambda\left(A, X_{k}, r, f, s\right)$. For the continuity of scalar multiplication suppose that $\left(\mu^{n}\right)$ is a sequence of scalars such that $\left|\mu^{n}-\mu\right| \rightarrow 0$ and $g\left(x^{n}-x\right) \rightarrow 0$ for an arbitrary sequence $\left(x^{n}\right) \subset \lambda\left(A, X_{k}, r, f, s\right)$. We shall show that

$$
g\left(\mu^{n} x^{n}-\mu x\right) \rightarrow 0 \quad(n \rightarrow \infty)
$$

Say $\tau_{n}=\left|\mu^{n}-\mu\right|$ then

$$
\begin{aligned}
g\left(\mu^{n} x^{n}-\mu x\right) & =\left\|\left(a_{m k} k^{-s}\left[f\left(q_{k}\left(\mu^{n} x_{k}^{n}-\mu x_{k}\right)\right)\right]^{r_{k}}\right)\right\|_{\lambda}^{\frac{1}{M}} \\
& \leq\left\|\left(\left\{a_{m k}^{\frac{1}{M}} k^{-\frac{s}{M}}[A(k, n)]^{\frac{r_{k}}{M}}+a_{m k}^{\frac{1}{M}} k^{-\frac{s}{M}}[B(k, n)]^{\frac{r_{k}}{M}}\right\}^{M}\right)\right\|_{\lambda}^{\frac{1}{M}},
\end{aligned}
$$

where $A(k, n)=R f\left(q\left(x_{k}^{n}-x_{k}\right)\right), B(k, n)=f\left(\tau_{n} q\left(x_{k}\right)\right)$ and $R=1+$ $\max \left\{1, \sup \left|\mu^{n}\right|\right\}$. Again by Lemma 2.3,

$$
\begin{aligned}
g\left(\mu^{n} x^{n}-\mu x\right) & \leq R^{\frac{H}{M}}\left\|\left(a_{m k} k^{-s}\left[\frac{A(k, n)}{R}\right]^{r_{k}}\right)\right\|_{\lambda}^{\frac{1}{M}}+\left\|\left(a_{m k} k^{-s}[B(k, n)]^{r_{k}}\right)\right\|_{\lambda}^{\frac{1}{M}} \\
& =R^{\frac{H}{M}} g\left(x^{n}-x\right)+\left\|\left(a_{m k} k^{-s}[B(k, n)]^{r_{k}}\right)\right\|_{\lambda}^{\frac{1}{M}} .
\end{aligned}
$$

Because of $g\left(x^{n}-x\right) \rightarrow 0$ we must only show that

$$
\left\|\left(a_{m k} k^{-s}[B(k, n)]^{r_{k}}\right)\right\|_{\lambda}^{\frac{1}{N_{X}}} \rightarrow 0 \quad(n \rightarrow \infty)
$$

There exist a positive integer $n_{0}$ such that $0 \leq \tau_{n} \leq 1$ for $n \geq n_{0}$. Write

$$
\begin{aligned}
&\left\|\left(a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}}\right)-\sum_{k=1}^{t} a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda} \\
&=\left\|\sum_{k=t+1}^{\infty} a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda} \\
& \rightarrow 0(t \rightarrow \infty)
\end{aligned}
$$

since $\lambda$ is an $A K$-space, where $\left(e_{k}\right)$ is the unit vector basis of $\lambda$. Hence, for every $\epsilon>0$, there exist a positive integer $t_{0}$ such that

$$
\left\|\sum_{k=t_{0}+1}^{\infty} a_{n k} k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda}^{\frac{1}{M}}<\frac{\varepsilon}{2} .
$$

For $n \geq n_{0}$, since $\tau_{n} q\left(x_{k}\right) \leq q\left(x_{k}\right)$, we get

$$
a_{m k} k^{-s}\left[f\left(\tau_{n} q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} \leq a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}}
$$

for each $k$. This implies

$$
\left\|\sum_{k=t_{0}+1}^{\infty} a_{m k} k^{-s}\left[f\left(\tau_{n} q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda}^{\frac{1}{M}} \leq\left\|\sum_{k=t_{0}+1}^{\infty} a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda}^{\frac{1}{M}}<\frac{\varepsilon}{2} .
$$

Now, from Lemma 2.2, the function

$$
\tilde{x}_{t_{0}}(u)=\left\|\sum_{k=1}^{t_{0}} a_{m k} k^{-s}\left[f\left(u q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda}
$$

is continuous. Hence, there exists a $\delta(0<\delta<1)$ such that

$$
\tilde{x}_{t_{0}}(u) \leq\left(\frac{\varepsilon}{2}\right)^{M}
$$

for $0<u<\delta$. Also we can find a number $\Delta$ such that $\tau_{n}<\delta$ for $n>\Delta$. So, for $n>\Delta$, we have

$$
\left(\tilde{x}_{t_{0}}\left(\tau_{n}\right)\right)^{\frac{1}{M}}=\left\|\sum_{k=1}^{t_{0}} a_{m k} k^{-s}\left[f\left(\tau_{n} q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda}^{\frac{1}{M}}<\frac{\varepsilon}{2}
$$

so eventually,

$$
\begin{aligned}
\left\|\left(a_{m k} k^{-s}\left[f\left(\tau_{n} q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right)\right\|_{\lambda}^{\frac{1}{M}} \leq & \left\|\sum_{k=1}^{t_{0}} a_{m k} k^{-s}\left[f\left(\tau_{n} q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda}^{\frac{1}{M}} \\
& +\left\|\sum_{k=t_{0}+1}^{\infty} a_{m k} k^{-s}\left[f\left(\tau_{n} q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda}^{\frac{1}{M}} \\
< & \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
= & \varepsilon .
\end{aligned}
$$

This shows that $\left\|\left(a_{m k} k^{-s}[B(k, n)]^{r_{k}}\right)\right\|_{\lambda}^{\frac{1}{M}} \rightarrow 0 \quad(n \rightarrow \infty)$.
Lemma 2.4. If $a_{k}, b_{k} \in \mathbb{C}$ and $0<p_{k} \leq \sup p_{k}=H$ for each $k$, we have (see Maddox [17, p.346])

$$
\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right)
$$

where $D=\max \left(1,2^{H-1}\right)$.
Theorem 2.2. If each $\left(X_{k}, q_{k}\right)$ is complete then so is $\lambda\left(A, X_{k}, r, f, s\right)$ with the paranorm $g$.

Proof. Let $\left(x^{i}\right)$ be a Cauchy sequence in $\lambda\left(A, X_{k}, r, f, s\right)$. Therefore

$$
g\left(x^{i}-x^{j}\right)=\left\|\left(a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right)\right]^{r_{k}}\right)\right\|_{\lambda}^{\frac{1}{M}} \rightarrow 0 \quad(i, j \rightarrow \infty),
$$

also, since $\lambda$ is an $F K$-space, for each $k$

$$
a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right)\right]^{r_{k}} \rightarrow 0 \quad(i, j \rightarrow \infty)
$$

and so $q_{k}\left(x_{k}^{i}-x_{k}^{j}\right) \rightarrow 0(i, j \rightarrow \infty)$ from the continuity of $f$. Because of the completeness of each $X_{k}$, there exists an $x_{k} \in X_{k}$ such that $q_{k}\left(x_{k}^{i}-x\right) \rightarrow 0 \quad(i \rightarrow \infty)$ for each $k$. Construct the sequence $x=\left(x_{k}\right)$ with these points and define sequences $\left(a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}\right)\right)\right]^{r_{k}}\right)_{i=1}^{\infty}, k=1,2, \ldots$. Then $a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}\right)\right)\right]^{r_{k}}$ $\rightarrow 0(i \rightarrow \infty)$ for each $k$. Now we can determine a sequence $\mu_{k} \in c_{0}\left(0<\mu_{i}^{k} \leq 1\right)$ for each $k$, such that

$$
a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}\right)\right)\right]^{r_{k}} \leq \mu_{i}^{k} a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}\right)\right)\right]^{r_{k}} .
$$

On the other hand,

$$
\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} \leq D\left\{\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}\right)\right)\right]^{r_{k}}+\left[f\left(q_{k}\left(x_{k}^{i}\right)\right)\right]^{r_{k}}\right\}
$$

where $D=\max \left(1,2^{H-1}\right) ; H=\sup r_{k}$. From (1) we have

$$
\begin{aligned}
a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} & \leq D\left(1+\mu_{i}^{k}\right) k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}\right)\right)\right]^{r_{k}} \\
& \leq 2 D a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}\right)\right)\right]^{r_{k}} .
\end{aligned}
$$

So we get $x \in \lambda\left(A, X_{k}, r, f, s\right)$ from the normality of $\lambda$. Now, for each $\varepsilon>0$ there exist $i_{0}(\varepsilon)$ such that

$$
\left[g\left(x^{i}-x^{j}\right)\right]^{M}<\varepsilon^{M} \text { for } i, j>i_{0} .
$$

Also,

$$
\begin{aligned}
\left\|\sum_{k=1}^{t_{0}} a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda} & \leq\left\|\sum_{k=1}^{\infty} a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda} \\
& =\left[g\left(x^{i}-x^{j}\right)\right]^{M} .
\end{aligned}
$$

Letting $j \rightarrow \infty$ we have
$\left\|\sum_{k=1}^{t_{0}} a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}^{j}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda} \rightarrow\left\|\sum_{k=1}^{t_{0}} a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda}<\varepsilon^{M}$
for $i>i_{0}$. Since $\left(e_{k}\right)$ is a Schauder basis for $\lambda$

$$
\left\|\sum_{k=1}^{t_{0}} a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda} \rightarrow\left\|\left(a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{i}-x_{k}\right)\right)\right]^{r_{k}}\right)\right\|_{\lambda}<\varepsilon^{M}
$$

as $j_{0} \rightarrow \infty$. Then we get $g\left(x^{i}-x\right)<\varepsilon$ for $i>i_{0}$ so $g\left(x^{i}-x\right) \rightarrow 0(i \rightarrow \infty)$.
Theorem 2.3. $\lambda\left(A, X_{k}, r, f, s\right)$ is an $F K$-space iff each $X_{k}$ is a Banach space. Moreover it has AK-property in this case since $\lambda$ has.

Proof. The condition is necessary and sufficient to the Frechet structure. Only we shall prove that, the projections

$$
P_{k}: \lambda\left(A, X_{k}, r, f, s\right) \rightarrow X_{k} ; P_{k}(x)=x_{k}
$$

are continuous under this condition. Let $\left(x^{n}\right) \subset \lambda\left(A, X_{k}, r, f, s\right)$ is a sequence such that $g\left(x^{n}\right)=\left\|\left(a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{n}\right)\right)\right]^{r_{k}}\right)\right\| \rightarrow 0$. Then

$$
a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}^{n}\right)\right)\right]^{r_{k}} \rightarrow 0 \quad(n \rightarrow \infty)
$$

for each $k$, since $\lambda$ is an $F K$-space. This implies

$$
q_{k}\left(x_{k}^{n}\right)=q_{k}\left(P_{k}\left(x^{n}\right)\right) \rightarrow 0(n \rightarrow \infty)
$$

for each $k$. This shows that each $P_{k}$ is sequential continuous at 0 , so is continuous. Also

$$
\begin{aligned}
g\left(x-x^{(n)}\right) & =g\left(0,0, \ldots, 0, x_{n+1}, x_{n+2}, \ldots\right) \\
& =\left\|\sum_{k=n+1}^{\infty} a_{m k} k^{-s}\left[f\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} e_{k}\right\|_{\lambda} \\
& \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

since $\lambda$ is an $A K$-space. Hence $\lambda\left(A, X_{k}, r, f, s\right)$ is an $A K$-space.
We obtain some sequence space in literature with some special choosing. For example, taking $\left(X_{k}, q_{k}\right)$ as Banach spaces, $r_{k}=1$ for each $k, a_{m k}=1$ for all $m, k$ and $s=0$, we get the space $F\left(E_{k}, f\right)$ investigated in [18]. Moreover taking $E_{k}=\mathbb{C}$ for each $k$ and $a_{m k}=1$ for all $m, k$, in $F\left(E_{k}, f\right)$ we obtain the space $L(f)$ [9], and also can be reached the space $l\left(p_{v}\right)$ in ([6]) with the selections $a_{m k}=1$ for all $m, k, f(x)=x, \lambda=l_{1}, X_{k}=\mathbb{C}$ for each $k$ and $s=0$.

Lemma 2.5. Let $f_{1}, f_{2}$ are modulus function and $0<\delta<1$. If $f_{1}(t)>\delta$ for $t \in[0, \infty)$ then

$$
\left(f_{2} \circ f_{1}\right)(t) \leq \frac{2 f_{2}(1)}{\delta} f_{1}(t)
$$

[17].
Theorem 2.4. Let $f_{1}, f_{2}$ are modulus function and $s, s_{1}, s_{2}>0$. Then
i) $\lim \sup \frac{f_{1}(t)}{f_{2}(t)}<\infty$ implies $\lambda\left(A, X_{k}, r, f_{2}, s\right) \subset \lambda\left(A, X_{k}, r, f_{1}, s\right)$,
ii) $\lambda\left(A, X_{k}, r, f_{1}, s\right) \subset \lambda\left(A, X_{k}, r, f_{2}, s\right) \subseteq \lambda\left(A, X_{k}, r, f_{1}+f_{2}, s\right)$,
iii) If the matrix $A=\left(a_{m k}\right)$ is a regular matrix and $\lambda$ includes the sequence $\left(k^{-s}\right)$, then $\lambda\left(A, X_{k}, r, f_{1}, s\right) \subseteq \lambda\left(A, X_{k}, r, f_{1} \circ f_{2}, s\right)$,
iv) $s_{1} \leq s_{2}$ implies $\lambda\left(A, X_{k}, r, f_{1}, s_{1}\right) \subseteq \lambda\left(A, X_{k}, r, f_{1}, s_{2}\right)$.

Proof. i) Since there exist a $K>0$ such that $f_{1}(t) \leq f_{2}(t)$ by the hypothesis, we can write that

$$
a_{m k} k^{-s}\left[f_{1}\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} \leq K^{H} a_{m k} k^{-s}\left[f_{2}\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} .
$$

This proves the assertion from the normality of $\lambda$.
ii) The relation follows from the inequality

$$
\begin{aligned}
a_{m k} k^{-s}\left[\left(f_{1}+f_{2}\right)\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} & =a_{m k} k^{-s}\left[f_{1}\left(q_{k}\left(x_{k}\right)\right)+f_{2}\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} \\
& \leq D a_{m k} k^{-s}\left\{\left[f_{1}\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}}+\left[f_{2}\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}}\right\}
\end{aligned}
$$

where $C=\max \left(1,2^{H-1}\right)$.
iii) Let $0<\delta<1$, and define the sets $N_{1}=\left\{k \in \mathbb{N}: f_{1}\left(q_{k}\left(x_{k}\right)\right) \leq \delta\right\}$ and $N_{2}=\left\{k \in \mathbb{N}: f_{1}\left(q_{k}\left(x_{k}\right)\right)>\delta\right\}$. It follows from Lemma 2.5 that

$$
\left(f_{2} \circ f_{1}\right)\left(q_{k}\left(x_{k}\right)\right) \leq \frac{2 f_{2}(1)}{\delta} f_{1}\left(q_{k}\left(x_{k}\right)\right)
$$

when $k \in N_{2}$. If $k \in N_{1}$ then

$$
\left(f_{2} \circ f_{1}\right)\left(q_{k}\left(x_{k}\right)\right) \leq f_{2}(\delta),
$$

and so

$$
k^{-s}\left[\left(f_{2} \circ f_{1}\right)\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} \leq \varepsilon_{1} k^{-s}
$$

for $x \in \lambda\left(A, X_{k}, r, f_{1}, s\right)$, where $\varepsilon_{1}=\max \left\{\left[f_{2}(\delta)\right]^{\inf r_{k}},\left[f_{2}(\delta)\right]^{\text {sup } r_{k}}\right\}$. On the other hand

$$
\begin{aligned}
a_{m k} k^{-s}\left[\left(f_{2} \circ f_{1}\right)\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} & \leq a_{m k} k^{-s}\left[\frac{2 f_{2}(1)}{\delta} f_{1}\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} \\
& \leq \varepsilon_{2} a_{m k} k^{-s}\left[f_{1}\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}}
\end{aligned}
$$

for $k \in N_{2}$. Where $\varepsilon_{2}=\max \left\{\left[\frac{2 f_{2}(1)}{\delta}\right]^{\inf r_{k}},\left[\frac{2 f_{2}(1)}{\delta}\right]^{\sup r_{k}}\right\}$. Now, say $\varepsilon=\max \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ and we get

$$
a_{m k} k^{-s}\left[\left(f_{2} \circ f_{1}\right)\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} \leq \varepsilon\left(a_{m k} k^{-s}+a_{m k} k^{-s}\left[f_{1}\left(q_{k}\left(x_{k}\right)\right)\right]_{k}^{r_{k}}\right) .
$$

Then $\left(a_{m k} k^{-s}+a_{m k} k^{-s}\left[f_{1}\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}}\right) \in \lambda$ since $\lambda$ includes the sequence $\left(k^{-s}\right)$. Therefore

$$
a_{m k} k^{-s}\left[\left(f_{2} \circ f_{1}\right)\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} \leq a_{m k} k^{-s}+a_{m k} k^{-s}\left[f_{1}\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}}
$$

for $k \in N_{1} \cup N_{2}=\mathbb{N}$. This implies $x \in \lambda\left(A, X_{k}, r, f_{1} \circ f_{2}, s\right)$ from normality.
iv) This follows from the inequality

$$
a_{m k} k^{-s_{2}}\left[f_{1}\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}} \leq a_{m k} k^{-s_{1}}\left[f_{1}\left(q_{k}\left(x_{k}\right)\right)\right]^{r_{k}}
$$

for $s_{1} \leq s_{2}$.

## References

[1] Y. Yılmaz, İ. Solak, Vector-Valued FK-Spaces Defined by a Modulus Function, Demonstr. Math. 38 (3) (2005) 633-640.
[2] B. Chouldhary, S. Nanda, Functional Analysis with Applications, John Wiley \& Sons Inc., New Delhi, 1989.
[3] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw Hill Inc., New York, 1978.
[4] P.K. Kamthan, M. Gupta, Sequence Spaces and Series, Marcel Dekker, Inc., New York and Basel, 1981.
[5] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford 18 (1) (1967) 345-355.
[6] S. Simons, The sequence spaces $l\left(p_{v}\right)$ and $m\left(p_{v}\right)$, Proc. London Math. Soc. 15 (1965) 422-436.
[7] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951) 508512.
[8] H. Nakano, Concave modulars, J. Math. Soc. Japan 5 (1953) 29-49.
[9] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973) 973-978.
[10] Y. Altm, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29 (2) (2009) 427-434.
[11] Y. Altın, H. Altınok, R. Çolak, On some seminormed sequence spaces by a modulus function, Kragujevac J. Math. 29 (2006) 121-132.
[12] H. Altinok, M. Et, Y. Altın, Strongly almost summable difference sequences, Vietnam J. Math. 34 (3) (2006) 331-339.
[13] M. Candan, Some new sequence spaces defined by a modulus function and infinite matrix in a seminormed space, J. Math. Anal. 3 (2) (2012) 1-9.
[14] M. Işık, Generalized vector-valued sequence spaces defined by modulus functions, J. Inequal. Appl., Volume 2010 (2010), Art. ID 457892, 7 pages.
[15] E. Bulut, Ö. Çakar, The sequence space $l(p, s)$ and related matrix tranformations, Commun. Fac. Sci. Univ. Ankara, Ser. A1, Math. Stat. 28 (1979) 33-44.
[16] Y. Yılmaz, M.K. Özdemir, İ. Solak, A Generalization of Hölder and Minkowski Inequalities, J. Inequal. Pure and Appl. Math. 7 (5) (2006) Art. 193.
[17] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos Soc. 100 (1986) 161-166.
[18] D. Ghosh, P.D. Srivastava, On some vector valued sequence spaces defined using a modulus function, Indian J. Pure Appl. Math. 30 (8) (1999) 819-829.
(Received 19 March 2012)
(Accepted 9 November 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th


[^0]:    ${ }^{1}$ The main results of this paper were partially presented at the International Conference on Applied Analysis and Algebra (ICAAA2) to be held on 20-24 June, 2012 in İstanbul, Turkey at the Yildiz Technical University.

