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Abstract : The present paper is devoted to studying on the sequence space
λ (A,Xk, r, f, s) defined by a modulus function f and an infinite matrix A and
constructed its FK-structure under some conditions. Finally, we exposed some
inclusion relations among the variations of the space. The vector-valued sequence
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space investigated in [1].
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1 Introduction

A sequence (bn)
∞
n=0 in a linear metric space X is called Schauder basis if,

for every x ∈ X, there exists a unique sequence (λn)
∞
n=0 of scalars such that

x =
∑∞

n=0λnbn.
By w we denote the space of all real or complex-valued sequences x = (xk)

∞
k=0.

Any vector subspace of w is called a sequence space. As usual, we write c0, c
and l∞ denote the sets of sequences that are convergent to zero, convergent and
bounded, respectively. Also by l1 and lp; we denote the spaces of absolutely and
p−absolutely convergent series, respectively; where 1 < p < ∞. We write e and

1The main results of this paper were partially presented at the International
Conference on Applied Analysis and Algebra (ICAAA2) to be held on 20-24 June, 2012
in İstanbul, Turkey at the Yildiz Technical University.
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e(n) (n = 0, 1, . . .) for the sequences with ek = 1 (k = 0, 1, . . .) and e
(n)
n = 1 and

e
(n)
k = 0 (k ̸= n) . If x ∈ w then x[m] =

∑m
k=0xke

(k) denotes the m−section of x.
A sequence space λ with a linear topology is called a K−space provided each

of the maps Pi : λ → C defined by Pi (x) = xi is continuous for all i ∈ N; where
C and N denote the complex field and the set of all natural numbers, respectively.
Let λ be a K−space. Then, λ is called FK−space provided λ is a complete linear
metric space. An FK−space whose topology is normable is called a BK−space
(see Choudhary and Nanda [2], pp. 272-273) .

Let (Xk, qk) be an infinite sequence of seminormed spaces. Then we may
construct the most general sequence spaces s (Xk) such that x = (xk) ∈ s (Xk) iff
xk ∈ Xk for each k ∈ N. Taking Xk = C for each k ∈ N, we get w, the space of
all complex-valued sequences. This case is called scalar-valued case. Easily check
that s (Xk) is a linear space (over C) under the natural coordinatewise operations.

Now, let us establish a semimetrizable topology on s (Xk) using by seminorm
topologies of the sequence (Xk, qk). Define functions gk : s (Xk) → R, gk (x) =
qk (xk) , then each gk is a seminorm on s (Xk) . But there exists a topology on
s (Xk) such that it is larger than that of gk for each k ∈ N [3]. This is a paranorm
topology, say g , and is obtained from Frechet combination of the sequence (gk)
by

g (x) =
∞∑

n=0

gn(x)

2n[1 + gn(x)]
=

∞∑
n=0

qn (xk)

2n[1 + qn(xk)]
.

Also, d (x, y) = g (x− y) is the invariant semimetric giving this topology, and for
a sequence (xn) ⊂ s (Xk) , g (x

n) → 0 iff gk (x
n) = qk (x

n
k ) → 0 in Xk for each k.

So, s (Xk) is a product space, i.e., s (Xk) =
∏

Xk, and g is the weakest topology

such that the projections

Pk : s (Xk) → Xk; Pk (x) = xk, k = 1, 2, . . .

are continuous. Totality of g and completeness of s (Xk) with this paranorm
depends on the sequence (Xk, qk) . Therefore proving the following assertion is not
hard: (s (Xk) , g) be a Frechet space if and only if each (Xk, qk) is a Banach space.

From above discussion, it is natural to define FK structure on s (Xk) as in
scalar-valued case. Remember that FK−spaces corresponding H = w [3]. More
generally, we say here an FK−spaces, we must assume that each Xk is a Banach

space. l∞ (Xk) , c0 (X) is a BK−space with the norm ∥x∥p = (
∑

∥xk∥p)
1
p , p ≥ 1

where the norm of Xk denoted by only a symbol ∥·∥ for each k. Moreover, if
∩Xk ̸= ϕ then we can define c (Xk) by x ∈ c (Xk) iff there exists an l ∈ ∩Xk such
that ∥xk − l∥ → 0. An FK−space E is called to have AK−property, or is called
an AK−space if for each x[n] → x in E where x[n] = (x1, x2, . . . , xn, 0, . . .) , the
nth section of x. In addition if E is a BK−space then is called an AK−BK space.

The scalar-valued sequence space λ is called normal or solid if y ∈ λ whenever
|yi| ≤ |xi| , for some x ∈ λ. Also λ is called a sequence algebra if it is closed
under the multiplication defined by xy = (xiyi) , i ≥ 1. Should λ is both normal
and sequence algebra then it is called a nornal sequence algebra. For example, c
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is a sequence algebra but not normal. w, l∞, c0 and lp (0 < p < ∞) are normal
sequence algebras [4].

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function g : X → R such that g (θ) = 0, g (x) =
g (−x) , and scalar multiplication is continuous, i.e., |αn − α| → 0 and g (xn − x) →
0 imply g (αnxn − αx) → 0 for all α’s in R and all x’s in X, where θ is the zero
vector in the linear space X. Assume here and after that (rk) be a bounded se-
quence of strictly positive real numbers. Then, the linear space l (r) was defined
by Maddox [5] (see also Simons [6] and Nakano [7]) as follows:

l (r) =

{
x = (xk) ∈ w :

∑
k

|xk|rk < ∞

}

which is a complete space paranormed by

g (x) =

(∑
k

|xk|rk
) 1

M

where M = max (1, sup rk) .
A paranorm p on a normal sequence space λ is said to be absolutely monotone

whenever p(x) ≤ p(y) for x, y ∈ λ with |xi| ≤ |yi| for each i [4]. The norm
∥x∥ = sup |xk| which makes the l∞, c, c0 into a BK-space is absolutely monotone,

also so is the norm ∥x∥ = (
∑∞

k=1 |xk|p)
1
p on lp, p ≥ 1.

Now, we shall contruct a vector-valued sequence space (subspace of s (Xk))
using a modulus function, an infinite matrix and normal sequence algebra λ.
Notation of modulus function introduced by Nakano [8] in 1953 and used to
solve some structural problems of the scalar FK-spaces theory. For example, the
question; “is there an FK-space in which the sequence of coordinate vectors is
bounded”, exposed by A. Wilansky, was solved by W. H. Ruckle with negative an-
swer [9]. The Problem was solved by consructing a class of scalar FK-spaces L (f)
where f is a modulus function. L (f) , in fact, is a generalization of the spaces
lp (0 < p ≤ 1) . Another extension of lp, (p > 0) spaces with respect to a positive
real sequence r = (rk) was given by Simons [6]. We shall introduce and generalize
vector-valued FK-spaces with this respects. For the definition of modulus function
and some related results we refer the reader to [9]. In recent years, many authors
have made many studies, using modulus function [1, 10–14].

Some definitions and conventions are made in this section will be given in the
next sections.

2 The Sequence Spaces λ(A,Xk, r, f, s)

Let A = (amk) be a nonnegative matrix, λ be a scalar, normal AK − BK
sequence algebra with absolutely monotone norm ∥·∥λ and f be a modulus func-
tion. Also, suppose that r = (rk) be a bounded sequence of positive real numbers
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and s ≥ 0. Then, let us define

λ (A,Xk, r, f, s) =
{
x = (xk) ∈ s (Xk) :

(
amkk

−s [(f ◦ qk) (xk)]
rk
)
∈ λ
}

where each Xk is a seminormed space.

It is a verification to show that λ (A,Xk, r, f, s) is a linear space over C under
the coordinatewise operations.

Remark 2.1. The argument s, that is, the factor k−s ,was used by Bulut and
Çakar [15], to generalize the Maddox sequence spaces l (r) where r = (rk) be defined
above. It performs an extension mission. For example, the space

l (p, s) =

{
x ∈ w :

∞∑
k=1

k−s |xk|rk < ∞

}

contains l (r) as a subspace for s > 0, and it is coincide with l (r) only for s = 0. In
a problem, if we need an FK-space containing λ (Xk, r, f) as a subspace, then the
space λ (A,Xk, r, f, s) for s > 0 provides a quick example meeting the requirement
(we show that below λ (A,Xk, r, f, s) is an FK-space whenever each Xk is a Banach
space).

Now let us give two lemmas to put a paranorm topology on λ (A,Xk, r, f, s) .

Lemma 2.2. Let (Xk, qk) be an infinite sequence of seminormed spaces, A =
(amk) be a nonnegative matrix and λ be a normal AK−BK space with absolutely
monotone norm ∥·∥λ . Suppose r = (rk) is a bounded sequence of positive real
numbers. Then the mappings

x̃n : [0,∞) → [0,∞) ; x̃n (u) =

∥∥∥∥∥
n∑

k=1

amkk
−s [f (uqk (xk))]

rk ek

∥∥∥∥∥
λ

defined by means of an x = (xk) ∈ λ (A,Xk, r, f, s), a positive integer n and for
each m, are continuous, where (ek) denotes the unit basis of λ.

Proof. Since the norm function is continuous it is sufficient to show that the map-
pings defined by

hk : [0,∞) → λ, hk (u) =
[
amkk

−s [f (uqk (xk))]
rk ek

]
,for each m, are continuous. Let ui → 0 (i → ∞) , then

hk (ui) → (0, 0, . . .) (i → ∞)

for each k. Hence, each gk is sequential continuous (it is equivalent to continuity
here).
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Lemma 2.3. Let λ be a normal sequence algebra and ∥·∥λ be an absolutely mono-
tone seminorm on λ. Then for every u = (un) , v = (vn) ∈ λ and p ≥ 1,

∥(u+ v)
p∥

1
p

λ ≤ ∥up∥
1
p

λ + ∥vp∥
1
p

λ ,

where (u+ v)
p
= ((un + vn)

p
)[16].

Theorem 2.1. Define

g (x) =
∥∥amkk

−s [f (qk (xk))]
rk
∥∥ 1

M

λ

where M = max (1, H), H = sup rn. Then g is a paranorm on λ (A,Xk, r, f, s) .

Proof. It is obvious that g (θ) = 0 and g (−x) = g (x) . From the absolute mono-
tonicity of ∥·∥λ, properties of f and Lemma 2.3 that

g (x+ y) =
∥∥(amkk

−s [f (qk (xk + yk))]
rk
)∥∥ 1

M

λ

≤
∥∥∥∥((amkk

−s
M [f (qk (xk))]

rk
M + amkk

−s
M [f (qk (yk))]

rk
M

)M)∥∥∥∥ 1
M

λ

≤
∥∥∥(amkk

−s
M [f (qk (xk))]

rk
)∥∥∥ 1

M

λ
+
∥∥∥(amkk

−s
M [f (qk (yk))]

rk
)∥∥∥ 1

M

λ

= g (x) + g (y)

for x, y ∈ λ (A,Xk, r, f, s) . For the continuity of scalar multiplication suppose that
(µn) is a sequence of scalars such that |µn − µ| → 0 and g (xn − x) → 0 for an
arbitrary sequence (xn) ⊂ λ (A,Xk, r, f, s) . We shall show that

g (µnxn − µx) → 0 (n → ∞) .

Say τn = |µn − µ| then

g (µnxn − µx) =
∥∥(amkk

−s [f (qk (µ
nxn

k − µxk))]
rk
)∥∥ 1

M

λ

≤
∥∥∥∥({a 1

M

mkk
− s

M [A (k, n)]
rk
M + a

1
M

mkk
− s

M [B (k, n)]
rk
M

}M
)∥∥∥∥ 1

M

λ

,

where A (k, n) = Rf (q (xn
k − xk)) , B (k, n) = f (τnq (xk)) and R = 1 +

max {1, sup |µn|}. Again by Lemma 2.3,

g (µnxn − µx) ≤ R
H
M

∥∥∥∥(amkk
−s

[
A (k, n)

R

]rk)∥∥∥∥
1
M

λ

+
∥∥(amkk

−s [B (k, n)]
rk
)∥∥ 1

M

λ

= R
H
M g (xn − x) +

∥∥(amkk
−s [B (k, n)]

rk
)∥∥ 1

M

λ
.

Because of g (xn − x) → 0 we must only show that
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−s [B (k, n)]

rk
)∥∥ 1

M

λ
→ 0 (n → ∞) .

There exist a positive integer n0 such that 0 ≤ τn ≤ 1 for n ≥ n0. Write∥∥∥∥∥(amkk
−s [f (qk (xk))]

rk
)
−

t∑
k=1

amkk
−s [f (qk (xk))]

rk ek

∥∥∥∥∥
λ

=

∥∥∥∥∥
∞∑

k=t+1

amkk
−s [f (qk (xk))]

rk ek

∥∥∥∥∥
λ

→ 0 (t → ∞)

since λ is an AK−space, where (ek) is the unit vector basis of λ. Hence, for every
ϵ > 0, there exist a positive integer t0 such that

∥∥∥∥∥
∞∑

k=t0+1

ankk
−s [f (qk (xk))]

rk ek

∥∥∥∥∥
1
M

λ

<
ε

2
.

For n ≥ n0, since τnq (xk) ≤ q (xk) , we get

amkk
−s [f (τnqk (xk))]

rk ≤ amkk
−s [f (qk (xk))]

rk

for each k. This implies

∥∥∥∥∥
∞∑

k=t0+1

amkk
−s [f (τnqk (xk))]

rk ek

∥∥∥∥∥
1
M

λ

≤

∥∥∥∥∥
∞∑

k=t0+1

amkk
−s [f (qk (xk))]

rk ek

∥∥∥∥∥
1
M

λ

<
ε

2
.

Now, from Lemma 2.2, the function

x̃t0 (u) =

∥∥∥∥∥
t0∑

k=1

amkk
−s [f (uqk (xk))]

rk ek

∥∥∥∥∥
λ

is continuous. Hence, there exists a δ (0 < δ < 1) such that

x̃t0 (u) ≤
(ε
2

)M
,

for 0 < u < δ. Also we can find a number ∆ such that τn < δ for n > ∆. So, for
n > ∆, we have

(x̃t0 (τn))
1
M =

∥∥∥∥∥
t0∑

k=1

amkk
−s [f (τnqk (xk))]

rk ek

∥∥∥∥∥
1
M

λ

<
ε

2
,
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so eventually,

∥∥(amkk
−s [f (τnqk (xk))]

rk ek
)∥∥ 1

M

λ
≤

∥∥∥∥∥
t0∑

k=1

amkk
−s [f (τnqk (xk))]

rk ek

∥∥∥∥∥
1
M

λ

+

∥∥∥∥∥
∞∑

k=t0+1

amkk
−s [f (τnqk (xk))]

rk ek

∥∥∥∥∥
1
M

λ

<
ε

2
+

ε

2
= ε.

This shows that ∥(amkk
−s [B (k, n)]

rk)∥
1
M

λ → 0 (n → ∞) .

Lemma 2.4. If ak, bk ∈ C and 0 < pk ≤ sup pk = H for each k, we have (see
Maddox [17, p.346])

|ak + bk|pk ≤ D(|ak|pk + |bk|pk)

where D = max (1, 2H−1).

Theorem 2.2. If each (Xk, qk) is complete then so is λ (A,Xk, r, f, s) with the
paranorm g.

Proof. Let
(
xi
)
be a Cauchy sequence in λ (A,Xk, r, f, s). Therefore

g
(
xi − xj

)
=
∥∥∥(amkk

−s
[
f
(
qk

(
xi
k − xj

k

))]rk)∥∥∥ 1
M

λ
→ 0 (i, j → ∞) ,

also, since λ is an FK−space, for each k

amkk
−s
[
f
(
qk

(
xi
k − xj

k

))]rk
→ 0 (i, j → ∞)

and so qk

(
xi
k − xj

k

)
→ 0 (i, j → ∞) from the continuity of f. Because of the com-

pleteness of each Xk, there exists an xk ∈ Xk such that qk
(
xi
k − x

)
→ 0 (i → ∞)

for each k. Construct the sequence x = (xk) with these points and define sequences(
amkk

−s
[
f
(
qk
(
xi
k − xk

))]rk)∞
i=1

, k = 1, 2, . . .. Then amkk
−s
[
f
(
qk
(
xi
k − xk

))]rk
→ 0 (i → ∞) for each k. Now we can determine a sequence µk ∈ c0

(
0 < µk

i ≤ 1
)

for each k, such that

amkk
−s
[
f
(
qk
(
xi
k − xk

))]rk ≤ µk
i amkk

−s
[
f
(
qk
(
xi
k

))]rk
.

On the other hand,

[f (qk (xk))]
rk ≤ D

{[
f
(
qk
(
xi
k − xk

))]rk
+
[
f
(
qk
(
xi
k

))]rk}
,
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where D = max
(
1, 2H−1

)
; H = sup rk. From (1) we have

amkk
−s [f (qk (xk))]

rk ≤ D
(
1 + µk

i

)
k−s

[
f
(
qk
(
xi
k

))]rk
≤ 2Damkk

−s
[
f
(
qk
(
xi
k

))]rk
.

So we get x ∈ λ (A,Xk, r, f, s) from the normality of λ. Now, for each ε > 0 there
exist i0 (ε) such that [

g
(
xi − xj

)]M
< εM for i, j > i0.

Also,∥∥∥∥∥
t0∑

k=1

amkk
−s
[
f
(
qk

(
xi
k − xj

k

))]rk
ek

∥∥∥∥∥
λ

≤

∥∥∥∥∥
∞∑
k=1

amkk
−s
[
f
(
qk

(
xi
k − xj

k

))]rk
ek

∥∥∥∥∥
λ

=
[
g
(
xi − xj

)]M
.

Letting j → ∞ we have∥∥∥∥∥
t0∑

k=1

amkk
−s

[
f
(
qk

(
xi
k − xj

k

))]rk
ek

∥∥∥∥∥
λ

→

∥∥∥∥∥
t0∑

k=1

amkk
−s

[
f
(
qk

(
xi
k − xk

))]rk
ek

∥∥∥∥∥
λ

< εM

for i > i0. Since (ek) is a Schauder basis for λ∥∥∥∥∥
t0∑

k=1

amkk
−s
[
f
(
qk
(
xi
k − xk

))]rk
ek

∥∥∥∥∥
λ

→
∥∥∥(amkk

−s
[
f
(
qk
(
xi
k − xk

))]rk)∥∥∥
λ
< εM

as j0 → ∞. Then we get g
(
xi − x

)
< ε for i > i0 so g

(
xi − x

)
→ 0 (i → ∞) .

Theorem 2.3. λ (A,Xk, r, f, s) is an FK−space iff each Xk is a Banach space.
Moreover it has AK−property in this case since λ has.

Proof. The condition is necessary and sufficient to the Frechet structure. Only we
shall prove that, the projections

Pk : λ (A,Xk, r, f, s) → Xk ; Pk (x) = xk

are continuous under this condition. Let (xn) ⊂ λ (A,Xk, r, f, s) is a sequence
such that g (xn) = ∥(amkk

−s [f (qk (x
n
k ))]

rk)∥ → 0. Then

amkk
−s [f (qk (x

n
k ))]

rk → 0 (n → ∞)

for each k, since λ is an FK−space. This implies

qk (x
n
k ) = qk (Pk (x

n)) → 0 (n → ∞)
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for each k. This shows that each Pk is sequential continuous at 0, so is continuous.
Also

g
(
x− x(n)

)
= g (0, 0, . . . , 0, xn+1, xn+2, . . .)

=

∥∥∥∥∥
∞∑

k=n+1

amkk
−s [f (qk (xk))]

rk ek

∥∥∥∥∥
λ

→ 0 (n → ∞)

since λ is an AK−space. Hence λ (A,Xk, r, f, s) is an AK−space.

We obtain some sequence space in literature with some special choosing. For
example, taking (Xk, qk) as Banach spaces, rk = 1 for each k, amk = 1 for all
m, k and s = 0, we get the space F (Ek, f) investigated in [18]. Moreover taking
Ek = C for each k and amk = 1 for all m, k, in F (Ek, f) we obtain the space L (f)
[9], and also can be reached the space l (pv) in ([6]) with the selections amk = 1
for all m, k, f (x) = x, λ = l1, Xk = C for each k and s = 0.

Lemma 2.5. Let f1, f2 are modulus function and 0 < δ < 1. If f1 (t) > δ for
t ∈ [0,∞) then

(f2 ◦ f1) (t) ≤
2f2 (1)

δ
f1 (t)

[17].

Theorem 2.4. Let f1, f2 are modulus function and s, s1, s2 > 0. Then

i) lim sup f1(t)
f2(t)

< ∞ implies λ (A,Xk, r, f2, s) ⊂ λ (A,Xk, r, f1, s) ,

ii) λ (A,Xk, r, f1, s) ⊂ λ (A,Xk, r, f2, s) ⊆ λ (A,Xk, r, f1 + f2, s) ,

iii) If the matrix A = (amk) is a regular matrix and λ includes the sequence
(k−s) , then λ (A,Xk, r, f1, s) ⊆ λ (A,Xk, r, f1 ◦ f2, s) ,

iv) s1 ≤ s2 implies λ (A,Xk, r, f1, s1) ⊆ λ (A,Xk, r, f1, s2) .

Proof. i) Since there exist a K > 0 such that f1 (t) ≤ f2 (t) by the hypothesis, we
can write that

amkk
−s [f1 (qk (xk))]

rk ≤ KHamkk
−s [f2 (qk (xk))]

rk .

This proves the assertion from the normality of λ.

ii) The relation follows from the inequality

amkk
−s [(f1 + f2) (qk (xk))]

rk = amkk
−s [f1 (qk (xk)) + f2 (qk (xk))]

rk

≤ Damkk
−s {[f1 (qk (xk))]

rk + [f2 (qk (xk))]
rk}

where C = max
(
1, 2H−1

)
.
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iii) Let 0 < δ < 1, and define the sets N1 = {k ∈ N : f1 (qk (xk)) ≤ δ} and
N2 = {k ∈ N : f1 (qk (xk)) > δ}. It follows from Lemma 2.5 that

(f2 ◦ f1) (qk (xk)) ≤
2f2 (1)

δ
f1 (qk (xk))

when k ∈ N2. If k ∈ N1 then

(f2 ◦ f1) (qk (xk)) ≤ f2 (δ) ,

and so
k−s [(f2 ◦ f1) (qk (xk))]

rk ≤ ε1k
−s

for x ∈ λ (A,Xk, r, f1, s) , where ε1 = max
{
[f2 (δ)]

inf rk , [f2 (δ)]
sup rk

}
. On the

other hand

amkk
−s [(f2 ◦ f1) (qk (xk))]

rk ≤ amkk
−s

[
2f2 (1)

δ
f1 (qk (xk))

]rk
≤ ε2amkk

−s [f1 (qk (xk))]
rk

for k ∈ N2.Where ε2 = max

{[
2f2(1)

δ

]inf rk
,
[
2f2(1)

δ

]sup rk
}
.Now, say ε = max {ε1, ε2}

and we get

amkk
−s [(f2 ◦ f1) (qk (xk))]

rk ≤ ε
(
amkk

−s + amkk
−s [f1 (qk (xk))]

rk
)
.

Then (amkk
−s + amkk

−s [f1 (qk (xk))]
rk) ∈ λ since λ includes the sequence (k−s) .

Therefore

amkk
−s [(f2 ◦ f1) (qk (xk))]

rk ≤ amkk
−s + amkk

−s [f1 (qk (xk))]
rk

for k ∈ N1 ∪N2 = N. This implies x ∈ λ (A,Xk, r, f1 ◦ f2, s) from normality.

iv) This follows from the inequality

amkk
−s2 [f1 (qk (xk))]

rk ≤ amkk
−s1 [f1 (qk (xk))]

rk

for s1 ≤ s2.
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