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Abstract : The present paper is devoted to studying on the sequence space
A (A, Xg,r, f,s) defined by a modulus function f and an infinite matrix A and
constructed its F'K-structure under some conditions. Finally, we exposed some
inclusion relations among the variations of the space. The vector-valued sequence
space A (A, X, f,s) as a paranormed space which is a most general form of the
space investigated in [1].
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1 Introduction

A sequence (b,),”, in a linear metric space X is called Schauder basis if,
for every x € X, there exists a unique sequence (\,),—, of scalars such that
z=3> " Anby.

By w we denote the space of all real or complex-valued sequences x = (Jck)zozo.
Any vector subspace of w is called a sequence space. As usual, we write ¢, ¢
and [, denote the sets of sequences that are convergent to zero, convergent and
bounded, respectively. Also by /; and I,; we denote the spaces of absolutely and
p—absolutely convergent series, respectively; where 1 < p < co. We write e and
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e(™ (n=0,1,...) for the sequences with e, = 1 (k=0,1,...) and e =1 and
elin) =0 (k#mn).Ifz €w then 2™ = 31" 7™ denotes the m—section of z.

A sequence space A with a linear topology is called a K —space provided each
of the maps P; : A — C defined by P; () = x; is continuous for all i € N; where
C and N denote the complex field and the set of all natural numbers, respectively.
Let A be a K—space. Then, X is called F'K—space provided ) is a complete linear
metric space. An F K —space whose topology is normable is called a BK —space
(see Choudhary and Nanda [2], pp. 272-273).

Let (Xk,qr) be an infinite sequence of seminormed spaces. Then we may
construct the most general sequence spaces s (X}) such that z = () € s (Xy) iff
z € Xy, for each k € N. Taking Xy = C for each k£ € N, we get w, the space of
all complex-valued sequences. This case is called scalar-valued case. Easily check
that s (X) is a linear space (over C) under the natural coordinatewise operations.

Now, let us establish a semimetrizable topology on s (X}) using by seminorm
topologies of the sequence (Xy, qx). Define functions gi : s (Xg) — R, g (x) =
qr (), then each gy is a seminorm on s(Xj). But there exists a topology on
s (X}) such that it is larger than that of gi for each k¥ € N [3]. This is a paranorm
topology, say g , and is obtained from Frechet combination of the sequence (gx)
by

o~ gnl2) o~ 4 ()
n k
o)=Y gty )
nz:% 271 + gn ()] nz:% 21 + gn(z4,)]
Also, d(z,y) = g (z — y) is the invariant semimetric giving this topology, and for
a sequence (z™) C s(Xx), g(«™) — 0iff gy (2™) = gi () = 0 in X}, for each k.
So, s (Xg) is a product space, i.e., s (Xy) = HXk, and g is the weakest topology
such that the projections

PkZS(Xk)—)Xk; Pk(ac):xk, k:1,2,...

are continuous. Totality of g and completeness of s(Xj) with this paranorm
depends on the sequence (X}, gi) . Therefore proving the following assertion is not
hard: (s(X}),g) be a Frechet space if and only if each (Xy, ¢x) is a Banach space.

From above discussion, it is natural to define FK structure on s(Xj) as in
scalar-valued case. Remember that F'K—spaces corresponding H = w [3]. More

generally, we say here an F'K —spaces, we must assume that each X} is a Banach
1

space. loo (Xi), co (X) is a BK—space with the norm ||z, = (32 lzklP)? , p>1
where the norm of X}, denoted by only a symbol ||| for each k. Moreover, if
NX} # ¢ then we can define ¢ (X}) by « € ¢(Xy) iff there exists an [ € NX}, such
that ||z — || = 0. An FK—space F is called to have AK—property, or is called
an AK —space if for each zI" — z in E where 2" = (z1,2,,...,2,,0,...), the
nt" section of x. In addition if E is a BK —space then is called an AK — BK space.

The scalar-valued sequence space A is called normal or solid if y € A whenever
lysl] < |a;|, for some z € A. Also X is called a sequence algebra if it is closed
under the multiplication defined by xy = (x;y;), ¢ > 1. Should A is both normal
and sequence algebra then it is called a nornal sequence algebra. For example, ¢
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is a sequence algebra but not normal. w,l,co and I, (0 < p < co) are normal
sequence algebras [4].

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function g : X — R such that g(0) =0, g(x) =
g (—z), and scalar multiplication is continuous, i.e., |ay, — a] = 0 and g (z, — x) —
0 imply g (apx, —az) — 0 for all a’s in R and all z’s in X, where 6 is the zero
vector in the linear space X. Assume here and after that (r;) be a bounded se-
quence of strictly positive real numbers. Then, the linear space I (r) was defined
by Maddox [5] (see also Simons [6] and Nakano [7]) as follows:

I(r) = {x = (xp) Ew: Z|xk|”‘ < oo}

k

which is a complete space paranormed by

g(x) = (Dm”)

M

where M = max (1,supry) .

A paranorm p on a normal sequence space A is said to be absolutely monotone
whenever p(xz) < p(y) for x,y € X\ with |z;] < |y;| for each ¢ [4]. The norm
lz]| = sup |zx| which makes the I, ¢, ¢o into a BK-space is absolutely monotone,
also so is the norm ||z|| = (3, \mk|p)% onl, p>1.

Now, we shall contruct a vector-valued sequence space (subspace of s (X))
using a modulus function, an infinite matrix and normal sequence algebra A.
Notation of modulus function introduced by Nakano [8] in 1953 and used to
solve some structural problems of the scalar FK-spaces theory. For example, the
question; “is there an FK-space in which the sequence of coordinate vectors is
bounded”, exposed by A. Wilansky, was solved by W. H. Ruckle with negative an-
swer [9]. The Problem was solved by consructing a class of scalar FK-spaces L (f)
where f is a modulus function. L (f) , in fact, is a generalization of the spaces
[, (0 <p<1). Another extension of {,, (p > 0) spaces with respect to a positive
real sequence r = (1) was given by Simons [6]. We shall introduce and generalize
vector-valued FK-spaces with this respects. For the definition of modulus function
and some related results we refer the reader to [9]. In recent years, many authors
have made many studies, using modulus function [1, 10-14].

Some definitions and conventions are made in this section will be given in the
next sections.

2 The Sequence Spaces \(A, X, 7, f,s)

Let A = (amx) be a nonnegative matrix, A be a scalar, normal AKX — BK
sequence algebra with absolutely monotone norm ||-||, and f be a modulus func-
tion. Also, suppose that » = (r) be a bounded sequence of positive real numbers
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and s > 0. Then, let us define

AA, X, r, f,8) = {a: = (z1) € s (Xg) : (amkkfs [(foqr) (xk)]rk) € )\}

where each X}, is a seminormed space.
It is a verification to show that A (A4, X, r, f, s) is a linear space over C under
the coordinatewise operations.

Remark 2.1. The argument s, that is, the factor k=° ,was used by Bulut and
Cakar [15], to generalize the Maddox sequence spaces | (1) where r = (r1,) be defined
above. It performs an extension mission. For example, the space

l(p,s) = {x cw: Zk‘fs |z |™ < oo}

k=1

contains 1 (1) as a subspace for s > 0, and it is coincide with [ (r) only for s = 0. In
a problem, if we need an FK-space containing A (X, r, f) as a subspace, then the
space A (A, Xk, r, f,s) for s > 0 provides a quick example meeting the requirement
(we show that below X (A, Xy, r, f,s) is an FK-space whenever each X}, is a Banach
space).

Now let us give two lemmas to put a paranorm topology on A (A, Xg,r, f,s).
Lemma 2.2. Let (Xk,qr) be an infinite sequence of seminormed spaces, A =
(amk) be a nonnegative matriz and X\ be a normal AK — BK space with absolutely

monotone norm ||-||, . Suppose r = (i) is a bounded sequence of positive real
numbers. Then the mappings

Fp 1 [0,00) = [0,00) 5 Zp (u) =

Zamkk_s [f (ugr (zx))]™ ek
k=1

A

defined by means of an x = (zy) € A(A, Xk, r, f,s), a positive integer n and for
each m, are continuous, where (ey) denotes the unit basis of \.

Proof. Since the norm function is continuous it is sufficient to show that the map-
pings defined by

hi 0 [0,00) = A, hyg (u) = [amkkj_s [f (ugr (zx))]™ ek]
Jfor each m, are continuous. Let u; — 0 (i — o), then
hi (u;) = (0,0,...) (i = o0)

for each k. Hence, each gj is sequential continuous (it is equivalent to continuity
here). O
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Lemma 2.3. Let A be a normal sequence algebra and ||-||, be an absolutely mono-
tone seminorm on . Then for every u = (un), v = (v,) € X and p > 1,

I+ v)"

1 m v
X < MlwPlIX -+ NPl
where (u+v)" = ((uy +v,)")[16].

Theorem 2.1. Define

9(x) = [|amek™ [f (qr ()] ||
where M = max (1, H), H = supr,. Then g is a paranorm on X (A, Xg,r, f,s).
Proof. Tt is obvious that ¢ (§) = 0 and g (—z) = g (z) . From the absolute mono-

tonicity of |||/, properties of f and Lemma 2.3 that

g (@ +y) = || (@meh " [f (@ (@ +m)]™) ||

M

|
< (o 17 (oI + 0 17 0 ) )

A

L L
M M

s] amih ¥ [ (g i)™ )|+ || (amk T 17 (o )]™)

9(z)+9(y)

A

for x,y € A(A, Xk, r, f,s). For the continuity of scalar multiplication suppose that
(u™) is a sequence of scalars such that |u™ — u| — 0 and g (z™ —z) — 0 for an
arbitrary sequence (z™) C A (A, X, 7, f,s). We shall show that

g(pz" —px) =0 (n— o00).
Say 7, = |u™ — p| then

n ., .n

g (" — ) = || (anck ™ [f (a (0" — pa)™) ||

H< STk (A G ] 01 (B <k,n>]7”';}M>

where A(k,n) = Rf(q(z} —zx)), B(k,n) = f(mg(zx)) and R = 1 +
max {1,sup |u"|}. Again by Lemma 2.3,

o4

79 (a" — ) + || (amik ™ [B (k,n Tk)“,\ :

M

g ("a" — ) < R¥ ™ (3 ()] |

A
=R

Because of g (z™ — x) — 0 we must only show that
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H (amrk ™ [B(k,n)]™) Hf’ -0 (n—00).

There exist a positive integer ng such that 0 < 7, <1 for n > ng. Write

(k™ [f (gr (@)]™) = > amek™ [f (g (1)) ex
k=1

A

S ek [f (g (00)) "™ e

k=t+1

A
—0 (t — o0)

since A is an AK —space, where (eg) is the unit vector basis of A. Hence, for every
€ > 0, there exist a positive integer ¢y such that

1
oo M
s - €
> " ankk T f (gk (@) er|| < 7
k=to+1 N

For n > ny, since 1,q (zx) < ¢ (x), we get

k™" [f (Tnqe (26))]™ < amek ™ [f (ar (zx))]™

for each k. This implies

L
M

Z amik ™ [f (qr (21))]"™ ex

k=to+1

M
<

> ik [ (i (20)] ™ e

k=to+1

<€
5
A A

Now, from Lemma 2.2, the function

izto (u) =

S ik [f (ugr (1)) e
k=1

A

is continuous. Hence, there exists a § (0 < § < 1) such that

= (5)",

for 0 < u < 4. Also we can find a number A such that 7, < § for n > A. So, for
n > A, we have

) g
(Zto (Tn)) M = <

A

i

iamkkﬂ U (Tngi (z))]™ ek
k=1

N ™
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so eventually,

| (@mik™ [f (Tngr (zx))]™ ||,’\” < Zamkk f (Tnai (21))]™ e
A
> k™ [F (rnan ()] ™ e
k=to+1 A

<&,

2 2
=E£.

This shows that [|(amk= [B (k)™ |3 =0 (n = 00). 0

Lemma 2.4. If ax,by, € C and 0 < pr, < suppr = H for each k, we have (see
Maddox [17, p.346])

lag + br["* < D(Jag|”™ + [br]"*)

where D = max (1,27-1).

Theorem 2.2. If each (X, qy) is complete then so is A (A, Xk, r, f,s) with the
paranorm g.

Proof. Let (xl) be a Cauchy sequence in A (A4, Xi,r, f,s). Therefore

000 = 1 o - )] )

also, since A is an F'K —space, for each k

i .
R =0 (i,j = 00),

amrk™? [f (qk (m% — mi))yk =0 (4,7 = o0)

and so g (xk — xk) — 0 (4,j — o) from the continuity of f. Because of the com-

pleteness of each X, there exists an x; € Xj such that ¢ (;16}€ — ac) =0 (i — o0)
for each k. Construct the sequence x = (1) with these points and define sequences

(= [F (o (= 2 )]"™) ) k= 1.2 Then anuk= [F (g (o} — 22))]
— 0 (i — 00) for each k. Now we can determme a sequence Ui € cp (0 <uk < 1)
for each k, such that

amik™ [f (g (), = 21))]"™ < pfameh™ [f (ax (23))] ™ -

On the other hand,

[F (@ (@)™ < D{ [ (ax (k= 2))]™ + [£ (o (#1))] }
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where D = max (1,271); H = supry,. From (1) we have

k™ [f (a (z)]™ < D (14 pb) k7% [f (an (2}))]"™"
< 2Dampk™* [f (ar (z}))]™"

So we get © € A (A, Xk, 1, f,s) from the normality of A. Now, for each £ > 0 there
exist ig (¢) such that

[g (xi —J:j)}M <eM fori,j > .

Also,
S i 1 (0 (st — )] er]) < | S [ (e (et~ )] "
k=1 A k=1 A

= [g(«" —2")]"

Letting j — oo we have

S o™ [1 (o (e = 2))] x| [ St [1 (0 (51~ 0))] "
k=1 k=1

for ¢ > ip. Since (ey) is a Schauder basis for A

M
<e¢

A

—
A

>_amik™ [f (ax (@i = 2))] ™" e
k=1

o ™ 15 G = )] ™), < =™

A

as jo — 0o. Then we get g (' — x) < e for i >igso g(a' —x) =0 (i »o00). O

Theorem 2.3. \ (A, Xy, f,s) is an FK—space iff each Xy, is a Banach space.
Moreover it has AK —property in this case since A has.

Proof. The condition is necessary and sufficient to the Frechet structure. Only we
shall prove that, the projections

Pk:)\(A,Xk,T,f,S)%Xk ) Pk(x):xk

are continuous under this condition. Let (z") C A (A, Xk, 7, f,s) is a sequence
such that g (2") = |[(@mrk ™% [f (gx (2))]™)|| — 0. Then

amiek™" [f (ar (@)™ = 0 (n — o0)
for each k, since A is an F'K —space. This implies

ak (7)) = qx (P (")) — 0 (n — o0)
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for each k. This shows that each Py is sequential continuous at 0, so is continuous.
Also

g (a: —3:(”)> =9¢(0,0,...,0,Zp41,Tpio,-.-)

Z amick ™ [f (qr (x1))]™ e

k=n-+1
=0 (n— )

A

since A is an AK —space. Hence A (4, Xk, r, f,s) is an AK —space. O

We obtain some sequence space in literature with some special choosing. For
example, taking (X, qr) as Banach spaces, r, = 1 for each k, an,, = 1 for all
m,k and s = 0, we get the space F (E}, f) investigated in [18]. Moreover taking
E) = C for each k and a,,, = 1 for all m, k, in F (Ey, f) we obtain the space L (f)
[9], and also can be reached the space [ (p,) in ([6]) with the selections a,,r = 1
for all m, k, f () =2, A=11, X = C for each k and s = 0.

Lemma 2.5. Let f1, fo are modulus function and 0 < § < 1. If f1(t) > § for

t € [0,00) then

2f2(1)
)

(fao fi)(t) < f1 ()
117,

Theorem 2.4. Let f1, fo are modulus function and s, si, s3 > 0. Then

Z) hmsup ;;8; < zmplzes )‘(AanaTa f278) CA (A,Xk,’l", flas)a
“) )‘(AuXk7r>flas) C )‘(A7Xk7T7f273) g )\(Aan>r>f1 +f2,3),

i11) If the matric A = (amk) is a regqular matriz and X\ includes the sequence
(k_s) ; then A (A,Xk,T, f1, 3) CA (Aa Xy, J10 fa, 8) )

i’U) 81 < 82 zmplzes )‘(AanaTa fl,sl) g )‘(AanaTa f1752) .

Proof. 1) Since there exist a K > 0 such that f; (¢t) < fa (¢) by the hypothesis, we
can write that

amik ™ [f1 (qr (@)™ < K amphk™ [f2 (g (22))]™ .

This proves the assertion from the normality of A.

ii) The relation follows from the inequality

amik ™ [(f1 + f2) (g (i)™ = amek™ [f1 (ak (1)) + fo (q& (z2))]™
< Damik ™ {[f1 (qr ()™ + [f2 (qr (x1))]™"}

where C' = max (1,2771).
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iii) Let 0 < § < 1, and define the sets N1 = {k € N: f1 (¢ (zx)) < 6} and
No ={k e N: f1 (qx (zx)) > 0}. It follows from Lemma 2.5 that

2f2 (1)

(f20 f1) (qx (z1)) < 5

when k& € No. If £ € N7 then

(f20 f1) (ax (zx)) < f2(9),

fi (Qk (ﬂﬁk))

and so

k= [(f2 0 f1) (qr (zx)]™ < e1k™®
for z € N(A, Xk, 7, f1,8), where e = max{[fQ (&)™ [ f (5)]“‘”’“}. On the
other hand

amek ™ [(f2 0 f1) (qr ()] < apmirk™ {2f25<1)f1 (qr (xk))] k

< EZkakis [fl (Qk (xk))]rk

inf ry

sup r,
for k € No. Where €9 = max { [QfQT(l)] , [QfQT(U} ’ k} . Now, say ¢ = max {e1,¢e2}

and we get
amek ™ [(f2 0 f1) (g (zi)]™ < € (amrk™ + amik™® [f1 (g (zx))]™) -

Then (amrk™° + amek =% [f1 (qx (71))]"™") € X since X includes the sequence (k~°) .
Therefore

amik ™ [(f2 0 f1) (g (@e)]™ < amik™ + amik™ [f1 (a (2x))]"™
for k € Ny U Ny = N. This implies € A (A, Xi,r, f1 © f2,s) from normality.

iv) This follows from the inequality

amick ™% [f1 (e (k)] < amik ™" [f1 (g (21))]"™"

for s; < ss. O
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