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Abstract : After showing that any special semigroup amalgam in the class of all
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1 Introduction

In [1], Scheiblich has shown that the class of normal bands is closed. In [2],
the authors have generalized this result and have shown that the class of all left
[right] regular bands is closed. In this paper, we further extend this result and
show, by using zigzag manipulations, that the class of all left [right] regular bands
is closed within the class of all regular bands. However, it is not known whether
the class of all regular bands is closed.

In [3, Theorem 2.2], the authors have shown that the class of all left [right]
quasinormal bands has the special amalgamation property. Now, we generalize
this result, by showing that the class of all semigroups satisfying the identity
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axy = axaylyra = yaza] has special amalgamation property. Notice that this
class of semigroups contains the class of all left [right] quasinormal bands.

2 Preliminaries

Let U, S be semigroups with U C S. Following Isbell [4], we say that U
dominates an element d of S if for every semigroup 7" and for all homomorphisms
B,v:S —=T,ub =wyfor all w € U implies df = d~y. The set of all elements of S
dominated by U is called the dominion of U in S, and we denote it by Dom(U, S).
It may be easily seen that Dom(U,S) is a subsemigroup of S containing U. A
semigroup U is said to be C-closed if for all S € C such that U is a subsemigroup of
S, Dom(U,S) = U. Let B and C be classes of semigroups such that B C C. Then
B is said to be C-closed if every member of B is C-closed. A class C of semigroups
is said to be closed if for all U, S € C with U a subsemigroup of S, Dom(U, S) = U.

A morphism a : A — B in the category C of all semigroups is called an
epimorphism (epi for short) if for all C' € C and for all morphisms 8,7 : B — C,
aff = ay implies f = v . It may easily be seen that a morphism o : S — T is
epi if and only if the inclusion mapping i : S — T is epi, and an inclusion map
1:U — S is epi if and only if Dom(U,S) = S. For more details, one may refer to
[5-7].

A most useful characterization of semigroup dominions is provided by Isbell’s
Zigzag Theorem.

Result 2.1 ([4, Theorem 2.3] or [8, Theorem VII.2.13]). Let U be a subsemigroup
of a semigroup S and letd € S. Then d € Dom(U, S) if and only if d € U or there
exists a series of factorizations of d as follows:

d = aoyi = T101Y1 = T102Y2 = T2G3Y2 = -+ = TmG2m—1Ym = Tm02m,  (2.1)
wherem > 1, a; €U (i=0,1,...,2m), z;,y; €S (i=1,2,...,m); and

ag = r10a1, A2m—1Ym = A2m,
2i—1Yi = 02iYi+1, Ti02; = Ti4102i41 1<i<m-—1).

Such a series of factorization is called a zigzag in S over U with value d, length
m and Spine ag, i, ..., a2m.

We refer to the equations in Result 2.1, in whatever follows, as the zigzag
equations.

A (semigroup)amalgam A = [{S; : i € I}; U; {¢; : i € I}] consists of a
semigroup U (called the core of the amalgam), a family {S; : ¢ € I'} of semigroups
disjoint from each other and from U, and a family ¢; : U — S;(i € I) of monomor-
phisms. We shall simplify the notation to U = [S;; U; ¢;] or to U = [S;; U] when
the context allows.

We shall say that the amalgam A is embedded in a semigroup T if there exist
a monomorphism A : U — T and, for each i € I, a monomorphism \; : S; —» T
such that
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(a) ¢id; = A for each i € I;
(b) SiAiNS;A; =UM for all ¢,j € I such that ¢ # j.

A semigroup amalgam U = [{S,S'}; U; {i,a | U}] consisting of a semigroup
S, a subsemigroup U of S, an isomorphic copy S’ of S, where « : S — S’ be an iso-
morphism and 4 is the inclusion mapping of U into .S, is called a special semigroup
amalgam. A class C of semigroups is said to have the special amalgamation prop-
erty if every special semigroup amalgam in C is embeddable in C.

Result 2.2 ([8, Theorem VII.2.3]). Let U be a subsemigroup of a semigroup S.
Let S’ be a semigroup disjoint from S and let o : S — S’ be an isomorphism. Let
P = Sxy S, be the free product of the amalgam

U=1[15s,5% U; {i,a| U},

where 1 is the inclusion mapping of U into S, and let u, i’ be the natural monomor-
phisms from S, S’ respectively into P. Then

(Sun Syt = Dom(U, S).

From the above result, it follows that a special semigroup amalgam [{S, S"}; U;
{i,a | U}] is embeddable in a semigroup if and only if Dom(U, S) = U. Therefore,
the above amalgam with core U is embeddable in a semigroup if and only if U is
closed in S.

Recall that a band B (a semigroup in which every element is an idempotent)
is called left [right] regular if it satisfies the identity axza = ax|axa = zal, left[righ]
quasi-normal if it satisfies the identity axy = axaylyzra = yaxa] and regular if it
satisfies the identity axya = axaya respectively (see [9]).

We shall be using standard notations and refer the reader to Clifford and
Preston [10] and Howie [8] for any unexplained symbols and terminology.
Further, in whatever follows, bracketed statements or notions are dual to the
other statements or notions.

3 Main Results

Lemma 3.1. Let U be a left regular band and S be any regular band such that U
be a subband of S. If for d € Dom(U,S)\ U and (2.1) be a zigzag in S over U of
minimal length m, then

m—1 m—1 m—1
(H a2i> Ym = (H a2i> a2m—1(112m—4a2m—6 : "azao) <H a2i> Ym-
i=0

1=0 =0
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Proof. Now

m—1
(H a2i> Ym
i=0

= apa204 * - A2m—402m—2Ym

= 21010204 * * - Q2 —402m—2Ym (by zigzag equations)
2 .

= (z10102) a4 - - - A2m—102m—2Ym (as S is a band)

= 2101 (0221210102)a4 - - - A2m—402m—2Ym

= (z101)(a2r102%10102)0y * * * A2m— 4020 —2Ym (as S is a regular band)
= (1‘1&1&2)(1‘1&21?1(11(12&4) ©tA2m—402m—2Ym

= (21a102)(T2a321010204) - * * A2m—402m—2Ym (by zigzag equations)
= (z10102)(T203%1010204)(T2a3T1A1A2a4) * * * A2 —4G2m—2Ym (as S is a band)
= (CC1(11G2)(5172(13171(1102&421)(I203$1a1a204) ©rA2m—402m—2Ym

= (z10102)(T2a37101020404T2) (a371010204) -+ + Q2 —4G2m —2Ym

= (21a102)(T2032101a204T204T2)(a321a1a204)

2m—402m—2Ym (as S is a regular band)
= (xlalaz)($2a3m1a1a2a4)(x3a5x2a3x1a1a2a4a6)

C o Q2m—402m—2Ym (by zigzag equations)
= (210102) (22037101 0204) (230572037101 a20406)

" A2m—402m—2Ym (as S is a band)

= (1‘1&1&2)(1‘2&31?1(11(12&4) co ($77L—1a2m—31:m—2a2m—5 c 0 T2a371010A204
et a?m—Q)ym
= (z10102)(T203T1010204)

2 .
co (Typ—1G2m—3 * - T2G3T1A10204 ** * Aam—2)" Ym (as S is a band)

m—1
= (x1a1a2) | Tm—1A2m—3 * - T203 H a2;
i=0
m—1
Tm—102m—3 " T203 H azi Ym
i=0

m—2
= (x1a1a2) ot Tm—1 | A2m—3 - L2043 H a2; A2m—2Tm—1
i=0

m—1
(azms T 2203 (H am‘)) Ym
i=0

= (l“lalaz) ce (ﬂvm—lZ1Cl2m—2$m—1)2’29m
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(where 21 = agp_3 - ~x2a3(H262 ag;) and z3 = agpy_3 - - ;vgag(H?:Ol as;)
= (z101a2) * * * (Ty—121Tm—102m—2Tm—1)22Ym (as S is a regular band
) (T—121TmA2m—1Tm—1)22Ym (by zigzag equations
Yo (T 1 21T (03— 1) T 1) 22Yim (as U is a band
) (Ty—121Tm—102m —202m—1Tm—1)22Ym (by zigzag equations
) (

A(Tyn—12102m—202m—1Tm—1)22Ym (as S is a regular band

L o N T —

m—1
= (z1a1a2) -+ (Tm—12102m—202m—1Tm—1) | Q2m—3 -+ T203 Ha% Ym
i=0

(since zp = agy,_3- SCQ(Zg(H?iBl az;))

m—1
= (Z‘lalaz) T —12102m—202m—1 | Tm—202m—4Tm—-202m—5 ** - T203 H a2; Ym
i=0

(by zigzag equations as Z,,—102m—3 = Tm—202m—4)
= (l'lalaz) o 'Im—1a2m—3(l”m—223a2m—1Im—QCLQm—Mm—z)Zsym
(as 21 = agm_3 - - - xgag(H:-r:OZ as;) and where)
(23 = G2m—5Tm—302m—7 " - - m%(H?:ol az;))
= (1‘1(11@2) e 'xm71a2m73(xm7223a2m71a2m74mm72)ZBym
(as -2, 23a2m—1,a2m—4q € S and S is a regular band)
= (1‘1611(12) e 'Iﬂm—la2m—3(l”m—zazm—533m—324a2m—1azm—4$m—202m—55€m—3)2’4ym
(where 24 = agpm—7- - asgag(]_[:.'l_ol as;) and as)
(23 = G2m—5Tm—302m—7 - - - 3?2(13(1_[;1_01 az;))
= ($1a1a2) o 'xm71a2m73xm73a2m76(xm73z4a2mf1a2m74xm73a2m76mm73)z4ym
(by zigzag equations)
- (3310;1&2) tee -r7n—1a2m—3xm—3a2’m—6(xm—324a27n—1a2m—4a27n—6$7n—3)z4ym

(since Tp,—3, 2402m—102m—4, G2m—¢ € S and as S is a regular band)

m—1
= ($1a1a2) | Tm—102m—3 * - T2a3 H a2; a2m—1
i=0

m—1
A2m—402m—6 " * * 200 H a2i | |Ym
i=0

= (z10102) - - - 2602m—125Ym (where z5 = a2m—402m—¢ - - - azao(H?fOl az;))
(and 26 = Tm—102m—3 " " * $2a3(H;T;ol a2i))
= (mlalaZ)(I2@3x1a1a2a4) ©r2602m—125Ym

= (21a102T10271)A10204 - * * 2602m—125Ym (by zigzag equations)
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= (xlalagagxl)a1a2a4 Cr2602m—125Ym
= (x1a1a2)(x1a1a2)a4 ©t2602m—125Ym
= ($1a1a2)a4 ©2602m—125Ym

= Qo204 - - 2642m—125Ym
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(as S is a regular band)
(as ag € 9)

(as S is a band)

(by zigzag equations)

m—1
= apa204 | Tm—-102m—3 - T203 H az; A2m—125Ym
i=0

(a0a2a4 s a2m74a2m72)a2m7125ym

(as 26 = Tym—102m—3 - - 332&3(1_[?:01 az))

m—1
= (a0a2a4 s a2m76a2m74a2m72)a2m71(a2m74a2m76 s GQGO( H a2i))ym
1=0

I] o

_ (’”‘1

=0

as required.

(as 25 = Gom—4G2m—6 " - - azao(H:-r:ol az;))

m—1
a2m—1(a2m—-1a2m—6 - * - a2ao) Ha2z‘ Ym
i=0

O

Theorem 3.2. Let V be the class of all left regular bands and C be the class of all

reqular bands. Then V is C-closed.

Proof. Let U and S be a left regular band and a regular band respectively with
U a subband of S. Take any d € Dom(U, S) \ U. Then, by Result 2.1, we may let
(2.1) be a zigzag in S over U with value d of minimal length m. Now

d =

= (z1a1710271)a1a2ys

= ($1a1$2a§$1)a102y2

= (af1a1a:1aza3x1)a1a2y2

aoyY1
r101Y1
r1a101Y1
T1a1G02Y2

2
($1a1a2) Y2

(fﬂlalaQﬂ?l) (alazy2)

1a17203T10102Y2

= ($1@1a2a3$1)a1a2y2

apt2a3a0a2Y2
apa2a3Y2

r1a1a204Y3

(by zigzag equations)

(by zigzag equations)
(as S is a band)

(as S is a regular band)

(by zigzag equations)

(by zigzag equations

(as S is a regular band

)
)
(by zigzag equations)
(as U is a left regular band)

)

(by zigzag equations
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= (x1a1a2)2a4y3
= (r1010271)010204Y3
= ($1a1$1a21‘1)a1a2a4y3

= 7101220371010204Y3

2
= z1a1(z2a321010204) Y3

= Cﬂlal($2a3$1a102a45€2)(03$1a102a4)y3
= xlal(x2a3x1a1a2x2a4xg)(a3x1a1a2a4)y3
= 101 (22037101 025305T2)A371010204Y3
= 2101 (2032101022303 72)a3T1 0102043
= xlal(J:Qagmlala2x2a4a5m2)a3m1a1a2a4y3
= 101 (22037101 020405T2)A3T1010204Y3
= 21012102(T101020405210221 )01 0204Y3

= ;z:lalxlag(x1a1a2a4a5a2z1)a1a2a4y3

= (xlalxlagxl)a1a2a4a5a2a0a2a4y3
= (551(11@2331)a1a2a4a5a2aoa2a4y3
= (a0a2)2a4a5a2a0a2a4y3
(apaz)apazasasapazasys

= apa20405a00204Y3

= apG20405Y3

= apa204 - A2m—402m—-3Ym—1

= apa204 * - A2m—402m—2Ym
m—1
[T e
i=0
m—1
IT e
i=0

(i)
(
=

=0

|
)
|
|

=0

(as U is a left regular band
(as U is a left regular band

(a2m71a2m74a2m76 ce a2a0)

T 020 (a2m-1a2m—202m -102m -4 | a2m 6
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(as S is a band)

(as S is a regular band)
(by zigzag equations)
(as S is a band)

(as S is a regular band)
(by zigzag equations)
(as S is a band)

(by zigzag equations
(as S is a regular band
(by zigzag equations
(as S is a regular band
(by zigzag equations
(as S is a regular band
(by zigzag equations

)
)
)
)
)
)
)
(as U is a band)
)
)

(by zigzag equations)

m—1
H a2; | Ym (by Lemma 2.1)
i=0

1
wq azi | Ym (where w1 = a2pm—102m—402m—6 - - A200)
W1 Ym (as H:’;Bl agi, w1 € U and U is a left regular band)

CG200Ym

(as W1 = @2m—102m—4A2m—6 " * * azao)
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m—3
= 24 (a2mf4a2m72a2m71>a2m76 CA200Ym
i=0
(as a2m—4a,2m—2a2m—1 € U and U is a left regular band)
m—1
= a2 | A2m—1A2m—6 " " A200Ym
i=0
m—4
= az; (a27n—6a2m—4a27n—2a2m—1a27n—6) c 1 a2a0Ym
i=0
m—4
= 24 (a2m76a2m74a2m72a2m71)a2m78 ©a200Ym
=0
(as aom—g, A2m—402m—2a2m—1 € U and U is a left regular band)
m—1
= a2; | A2m—1A2m—8 * * * A200Ym
i=0
m—1
= H a2; | A2m—1A200Ym
i=0

= a0a2(a4 te a2m7402m72a2m71)a2a0ym

aoag(a4 co a2m—4a2m—2a2m—1)a0ym

(as az, (aq - G2m—4G2m—202m—1) € U and U is a left regular band)
= ao(a2a4 T a2m74a2m72a2m71)a0ym
= ao(a2a4 s a2m74a2m72a2m71)ym
(as ag, (a2a4 - * - A2m—14G2m—2a2m—1) € U and U is a left regular band)

= Qo204 - -+ a2m—4a2m—2(a2m—1ym)

= apa2ay -+ Gam—a02m—2(A2m) (by zigzag equations)
= H ag; € U
i=0
=deUl.
Hence Dom(U,S) =U. O

Dually, we may prove the following:

Theorem 3.3. Let V be the variety of all right reqular bands and C be the variety
of all reqular bands. Then V is C-closed.

In [3], the authors have shown that the class of all left [right] quasinormal
bands is closed within the class of all left [right] quasinormal bands. We now
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generalize this result and show that the variety V=[azy = axay] of semigroups is

closed.

Theorem 3.4. The variety V=[axy = axay| of semigroups is closed.

Proof. Take any U, S € V with U a subsemigroup of S and let d € Dom(U, S) \ U.
Then, by Result 2.1, we may let (2.1) be a zigzag in S over U with value d of

minimal length m. Now

d = apy1
= 10141

r1a121Y1
T101T1a1Y1
= T106101Y1
= T10102Y2
= I1a17102Y2
1a1T2a03Y2

= 11012203T203Y2

= T1a1720303Y2
= T101710203Y2
= 71010203Y2

= apG2a3Y2

(H am) (azyz)
i=0

m—2
= (H a2i> (a2m73ym71)
=0

= apG2a4 - - - azm—4(a2m—2ym)

= ($1a1a2)a4 ©A2m—402m—2Ym

= (961(11331(12)@4 ©c o A2m—402m—2Ym
= (71012203)04  * - Q2 —402m—2Ym

= £E1a1(172a3l’2a4) ©A2m—402m—2Ym

= $161($2a3$2a4) © Ty —202m—402m—2Ym
= T10122a3%204 - -+ (T—102m—302m—2)Ym

= X1a1T2a03%204 * * - (xm—1a2m—3$m—la2m—2)ym

(by zigzag equations)
(since x1,a1,y1 € 5)
(since ay,x1,y1 € 5)
(since x1,a1,y1 € 5)

(by zigzag equations)

(since x1,a; € S)

(by zigzag equations

(since x3,a3,y2 € S
(since z3,a3 € S

)
)
)
(by zigzag equations)
(since x1,a1,a2 € S)

)

(by zigzag equations

(by zigzag equations)
(by zigzag equations)
(since x1,a1,as € 5)
(by zigzag equations)

)

(since x3,a3,a4 € S

(by zigzag equations)

(since Zp—1, 2m—3, G2m—2 € S)
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= X10a1T2a03X204 - * -
= T101T203T204 * - *
= T10172a37204 * - -

= 21G01X203T204 * *

= T10172a37204 **

= 210172032204 " *

= T10172a37204 * **

Thai J. Math. 12 (2014)/ N. Alam and N.M. Khan

(Tm—1G2m—3TmG2m—1)Ym (by zigzag equations)
xm—1a2m—3($ma2m—1xmym) (SiHCG Tmy A2m—1,Ym S S)
$m—1a2m—3$m(a2m—1$ma2m—1ym)

(since azpm—1,Tm, Ym € )

: xm71a2m73(xma2m71a2m71ym)

(Since Ty 02m—1, A2m—1Ym € S)

(Tin—102m—3Tm—102m—2)a2m—1Ym (by zigzag equations)

. (xm71a2m73a2m72)a2m71ym

(since xp,—1, G2m—3, G2m—2 € S)

Tom—202m —402m —202m —1Ym (by zigzag equations)

= T1a1 (x2a3m2a4) © o A2m—402m—202m—1Ym

= 1101(22a304) - * G2m—402m—202m—1Ym (since x9,as,a4 € S)
= 2101220304 * * * A2m—402m—202m —1Ym, (since T2,0a3, Q4 € S)
= (£1a12102)04 * - * A2m—402m—202m (by zigzag equations)
= (21a102)a4 * - * A2 —402m—202m (since z1,a1,a2 € S)
= ApA2ay4 - * * A2y—402m—202m (by zigzag equations)
m
= Hagi eU. (31)
i=0
= deU.
Hence Dom(U,S) =U. O

Dually, we have the following:

Theorem 3.5. The variety V=[yzra = yaxa| of semigroups is closed.
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