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Abstract : The sequence space ℓ(p) was introduced by Maddox [Spaces of
strongly summable sequences, Quart. J. Math. Oxford 18 (2) (1967) 345–355].
Quite recently, the domain of the generalized difference matrix B(r, s) in the se-
quence space ℓp has been investigated by Kirişçi and Başar [Some new sequence
spaces derived by the domain of generalized difference matrix, Comput. Math.
Appl. 60 (5) (2010) 1299–1309]. In the present paper, the sequence space ℓ̂(p)
of non-absolute type is studied which is the domain of the generalized difference
matrix B(r, s) in the sequence space ℓ(p). Furthermore, the alpha-, beta- and

gamma-duals of the space ℓ̂(p) are determined, and the Schauder basis is con-

structed. The classes of matrix transformations from the space ℓ̂(p) to the spaces
ℓ∞, c and c0 are characterized. Additionally, the characterizations of some other
matrix transformations from the space ℓ̂(p) to the Euler, Riesz, difference, etc.,
sequence spaces are obtained by means of a given lemma. The last two sections of
the paper are devoted to some results about the rotundity of the space ℓ̂(p) and
conclusion.

1The main results of this paper were presented in part at the conference Functional
Analysis and Its Applications to be held June 16–18, 2009 in Nĭs, Republic of Serbia at
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1 Preliminaries, Background and Notation

By w, we denote the space of all complex valued sequences. Any vector sub-
space of w is called a sequence space. We write ℓ∞, c and c0 for the spaces of
all bounded, convergent and null sequences, respectively. Also by bs, cs, ℓ1 and
ℓp; we denote the spaces of all bounded, convergent, absolutely convergent and
p-absolutely convergent series, respectively; where 1 < p < ∞.

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x)
and scalar multiplication is continuous, i.e., |αn−α| → 0 and g(xn−x) → 0 imply
g(αnxn − αx) → 0 for all α’s in R and all x’s in X, where θ is the zero vector in
the linear space X.

Assume here and after that (pk) be a bounded sequence of strictly positive
real numbers with sup pk = H and L = max{1,H}. Then, the linear space ℓ(p)
was defined by Maddox [1] (see also Simons [2] and Nakano [3]) as follows:

ℓ(p) =

{
x = (xk) ∈ w :

∑
k

|xk|pk < ∞

}
, (0 < pk ≤ H < ∞)

which is the complete space paranormed by

g(x) =

(∑
k

|xk|pk

)1/L

.

For simplicity in notation, here and in what follows, the summation without limits
runs from 0 to ∞. We assume throughout that p−1

k +(p′k)
−1 = 1 provided inf pk ≤

H < ∞ and denote the collection of all finite subsets of N = {0, 1, 2, . . . } by F .
Let λ, µ be any two sequence spaces and A = (ank) be an infinite matrix of

complex numbers ank, where n, k ∈ N. Then, we say that A defines a matrix
mapping from λ into µ, and we denote it by writing A : λ → µ, if for every
sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A-transform of x, is in µ;
where

(Ax)n =
∑
k

ankxk for all n ∈ N. (1.1)

By (λ : µ), we denote the class of all matrices A such that A : λ → µ. Thus,
A ∈ (λ : µ) if and only if the series on the right side of (1.1) converges for each
n ∈ N and every x ∈ λ, and we have Ax = {(Ax)n}n∈N ∈ µ for all x ∈ λ. A



Some Topological and Geometric Properties of the Domain ... 115

sequence x is said to be A-summable to l if Ax converges to l which is called as
the A-limit of x.

The main purpose of this paper, which is a continuation of Kirişçi and Başar
[4], is to introduce the sequence space ℓ̂(p) of non-absolute type consisting of all
sequences whose B(r, s)-transforms are in the space ℓ(p); where the generalized
difference matrix B(r, s) = {bnk(r, s)} is defined by

bnk(r, s) :=

 r, k = n,
s, k = n− 1,
0, 0 ≤ k < n− 1 or k > n,

for all k, n ∈ N with r, s ∈ R\{0}. Furthermore, the basis is constructed and

the alpha-, beta- and gamma-duals are computed for the space ℓ̂(p). Besides

this, the matrix transformations from the space ℓ̂(p) to some sequence spaces are

characterized. Finally, some results related to the rotundity of the space ℓ̂(p) are
derived.

The rest of this paper is organized, as follows:
In Section 2, the linear sequence space ℓ̂(p) is defined and proved that it is

a complete paranormed space with a Schauder basis. Section 3 is devoted to the
determination of α-, β- and γ-duals of the space ℓ̂(p). In Section 4, the classes

(ℓ̂(p) : ℓ∞), (ℓ̂(p) : c) and (ℓ̂(p) : c0) of infinite matrices are characterized. Addi-
tionally, the characterizations of some other classes of matrix transformations from
the space ℓ̂(p) to the Euler, Riesz, difference, etc., sequence spaces are obtained
by means of a given lemma. In Section 5, some consequences about the rotundity
of the space ℓ̂(p) are given. In the final section of the paper; after comparing with
the related results in the existing literature, open problems and further suggestions
are noted.

2 The Sequence Space ℓ̂(p) of Non-absolute Type

In this section, we introduce the complete paranormed linear sequence space
ℓ̂(p).

The matrix domain λA of an infinite matrix A in a sequence space λ is defined
by

λA =
{
x = (xk) ∈ w : Ax ∈ λ

}
, (2.1)

which is a sequence space. Choudhary and Mishra [5] defined the sequence space
ℓ(p) which consists of all sequences such that S-transforms of them are in the space
ℓ(p), where S = (snk) is defined by

snk =

{
1 , 0 ≤ k ≤ n,
0 , k > n,

for all k, n ∈ N. Başar and Altay [6] have recently examined the space bs(p)
which is formerly defined by Başar in [7] as the set of all series whose sequences
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of partial sums are in ℓ∞(p). More recently, Aydın and Başar [8] have studied the
space ar(u, p) which is the domain of the matrix Ar in the sequence space ℓ(p),
where the matrix Ar = {ank(r)} is defined by

ank(r) =

{
1+rk

n+1 uk, 0 ≤ k ≤ n,

0, k > n,

for all k, n ∈ N, (uk) such that uk ̸= 0 for all k ∈ N and 0 < r < 1. Altay and
Başar [9] have studied the sequence space rt(p) which is derived from the sequence
space ℓ(p) of Maddox by the Riesz means Rt. With the notation of (2.1), the
spaces ℓ(p), bs(p), ar(u, p) and rt(p) can be redefined by

ℓ(p) = [ℓ(p)]S , bs(p) = [ℓ∞(p)]S , ar(u, p) = [ℓ(p)]Ar , rt(p) = [ℓ(p)]Rt .

Following Choudhary and Mishra [5], Mursaleen [10], Malkowsky et al. [11], Çolak
et al. [12], Başar and Altay [6], Altay and Başar [9, 13–15], Aydın and Başar

[8, 16], we introduce the sequence space ℓ̂(p) as the set of all sequences whose
B(r, s)-transforms are in the space ℓ(p), that is

ℓ̂(p) :=

{
(xk) ∈ w :

∑
k

|sxk−1 + rxk|pk < ∞

}
, (0 < pk ≤ H < ∞).

It is trivial that in the case pk = p for all k ∈ N, the sequence space ℓ̂(p) is reduced
to the sequence space ℓ̂p which is introduced by Kirişçi and Başar [4]. With the

notation of (2.1), we can redefine the space ℓ̂(p) as follows:

ℓ̂(p) := [ℓ(p)]B(r,s) .

Define the sequence y = (yk), which will be frequently used, as the B(r, s)-
transform of a sequence x = (xk), i.e.,

yk := sxk−1 + rxk for all k ∈ N. (2.2)

Since the spaces ℓ(p) and ℓ̂(p) are linearly isomorphic one can easily observe that

x = (xk) ∈ ℓ̂(p) if and only if y = (yk) ∈ ℓ(p), where the sequences x = (xk) and
y = (yk) are connected with the relation (2.2).

Now, we may begin with the following theorem which is essential in the text:

Theorem 2.1. ℓ̂(p) is the complete linear metric space paranormed by g1 defined
by

g1(x) :=

(∑
k

|sxk−1 + rxk|pk

)1/L

,

where 0 < pk ≤ H < ∞ for all k ∈ N.
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Proof. The linearity of ℓ̂(p) with respect to the coordinatewise addition and scalar
multiplication follows from the inequalities which are satisfied for x = (xk), z =

(zk) ∈ ℓ̂(p), (see [17, p. 30]) and for any α ∈ C, the complex field, (see [18]),
respectively,[∑

k

|s(xk−1 + zk−1) + r(xk + zk)|pk

]1/L
≤

(∑
k

|sxk−1 + rxk|pk

)1/L

+

(∑
k

|szk−1 + rzk|pk

)1/L

(2.3)

and

|α|pk ≤ max{1, |α|L}. (2.4)

It is clear that g1(θ) = 0 and g1(x) = g1(−x) for all x ∈ ℓ̂(p). Additionally, the
inequalities (2.3) and (2.4) yield the subadditivity of g1 and

g1(αx) ≤ max{1, |α|}g1(x).

Let {xn} be any sequence of the points ℓ̂(p) such that g1(x
n − x) → 0 and

(αn) also be any sequence of scalars such that αn → α, as n → ∞. Then, since
the inequality

g1(x
n) ≤ g1(x) + g1(x

n − x)

holds by subadditivity of g1, {g1(xn)} is bounded and we thus have

g1(αnx
n − αx) =

[∑
k

∣∣s(αnx
n
k−1 − αxk−1) + r(αnx

n
k − αxk)

∣∣pk

]1/L
≤ |αn − α| g1(xn) + |α| g1(xn − x)

which tends to zero as n → ∞. That is to say that the scalar multiplication is
continuous. Hence, g1 is a paranorm on the space ℓ̂(p).

It remains to prove the completeness of the space ℓ̂(p). Let B = B(r, s) and

{xi} be any Cauchy sequence in the space ℓ̂(p), where xi =
{
x
(i)
0 , x

(i)
1 , x

(i)
2 , . . .

}
.

Then, for a given ε > 0 there exists a positive integer n0(ε) such that

g1(x
i − xj) < ε (2.5)

for all i, j > n0(ε). Using the definition of g1, we obtain for each fixed k ∈ N that

∣∣(Bxi)k − (Bxj)k
∣∣ ≤ [∑

k

∣∣(Bxi)k − (Bxj)k
∣∣pk

]1/L
< ε
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for all i, j ≥ n0(ε) which leads us to the fact that
{
(Bx0)k, (Bx1)k, (Bx2)k, . . .

}
is

a Cauchy sequence of complex numbers for each fixed k ∈ N. Since C is complete,
it converges, say (Bxi)k → (Bx)k as i → ∞. Using these infinitely many limits
(Bx)0, (Bx)1, (Bx)2, . . . , we define the sequence {(Bx)0, (Bx)1, (Bx)2, . . . }. From
(2.5) for each m ∈ N and i, j ≥ n0(ε)

m∑
k=0

∣∣(Bxi)k − (Bxj)k
∣∣pk ≤ g1(x

i − xj)L < εL. (2.6)

Take any i ≥ n0(ε). First let j → ∞ in (2.6) and after m → ∞, to obtain
g1(x

i − x) ≤ ε. Finally, taking ε = 1 in (2.6) and letting i ≥ n0(1) we have by
Minkowski’s inequality for each m ∈ N that[

m∑
k=0

|(Bx)k|pk

]1/L
≤ g1(x

i − x) + g1(x
i) ≤ 1 + g1(x

i)

which implies that x ∈ ℓ̂(p). Since g1(x
i − x) ≤ ε for all i ≥ n0(ε) it follows that

xi → x as i → ∞ which shows that ℓ̂(p) is complete.

Therefore, one can easily check that the absolute property does not hold on
the space ℓ̂(p), that is g1(x) ̸= g1(|x|); where |x| = (|xk|). This says that ℓ̂(p) is
the sequence space of non-absolute type.

A sequence space λ with a linear topology is called a K-space provided each of
the maps pi : λ → C defined by pi(x) = xi is continuous for all i ∈ N. A K-space
λ is called an FK-space provided λ is complete linear metric space. An FK-space
whose topology is normable is called a BK-space. Now, we may give the following:

Theorem 2.2. ℓ̂p is the linear space under the coordinatewise addition and scalar
multiplication which is the BK-space with the norm

∥x∥ :=

(∑
k

|sxk−1 + rxk|p
)1/p

, where 1 ≤ p < ∞.

Proof. Because of the first part of the theorem is a routine verification, we omit
the detail. Since ℓp is the BK-space with respect to its usual norm (see [17, pp.
217-218]) and B is a normal matrix, Theorem 4.3.2 of Wilansky [19, p. 61] gives

the fact that ℓ̂p is the BK-space, where 1 ≤ p < ∞.

Let us suppose that 1 < pk ≤ sk for all k ∈ N. Then, it is known that
ℓ(p) ⊂ ℓ(s) which leads us to the immediate consequence that ℓ̂(p) ⊂ ℓ̂(s).

With the notation of (2.2), define the transformation T from ℓ̂(p) to ℓ(p) by
x 7→ y = Tx. Since T is linear and bijection, we have

Corollary 2.3. The sequence space ℓ̂(p) of non-absolute type is linearly isomorphic
to the space ℓ(p), where 0 < pk ≤ H < ∞ for all k ∈ N.
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We firstly define the concept of the Schauder basis for a paranormed sequence
space and nextly give the basis of the sequence space ℓ̂(p).

Let (λ, g) be a paranormed space. A sequence (bk) of the elements of λ is
called a basis for λ if and only if, for each x ∈ λ, there exists a unique sequence
(αk) of scalars such that

lim
n→∞

g

(
x−

n∑
k=0

αkbk

)
= 0.

The series
∑

k αkbk which has the sum x is then called the expansion of x with
respect to (bn), and written as x =

∑
k αkbk. Since, it is known that the matrix

domain λA of a sequence space λ has a basis if and only if λ has a basis whenever
A = (ank) is a triangle (cf. [20, Remark 2.4]), we have:

Corollary 2.4. Let 0 < pk ≤ H < ∞ and λk = (Bx)k for all k ∈ N. Define the

sequence b(k)(r, s) =
{
b
(k)
n (r, s)

}
n∈N of the elements of the space ℓ̂(p) by

b(k)n (r, s) :=

{
0, n < k,

1
r

(−s
r

)n
, n ≥ k,

(2.7)

for every fixed k ∈ N. Then, the sequence {b(k)(r, s)}k∈N given by (2.7) is a

basis for the space ℓ̂(p) and any x ∈ ℓ̂(p) has a unique representation of the form
x :=

∑
k λkb

(k)(r, s).

3 The Alpha-, Beta- and Gamma-duals of the
Space ℓ̂(p)

In this section, we state and prove the theorems determining the alpha-, beta-
and gamma-duals of the sequence space ℓ̂(p) of non-absolute type.

The set S(λ, µ) defined by

S(λ, µ) :=
{
z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ

}
(3.1)

is called the multiplier space of the sequence spaces λ and µ. With the notation
of (3.1), the alpha-, beta- and gamma-duals of a sequence space λ, which are
respectively denoted by λα, λβ and λγ , are defined by

λα := S(λ, ℓ1), λβ := S(λ, cs) and λγ := S(λ, bs).

Because of Part (i) can be established in the similar way to the proof of Part
(ii), we omit the detail of that part and give the proof only for Part (ii) in Theorems
3.4-3.6, below.

We begin with quoting three lemmas which are needed in proving Theorems
3.4-3.6.
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Lemma 3.1 (Lascarides and Maddox [21, (i) and (ii) of Theorem 1]). Let A =
(ank) be an infinite matrix. Then, the following statements hold:

(i) Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ℓ(p) : ℓ∞) if and only if

sup
n,k∈N

|ank|pk < ∞. (3.2)

(ii) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(p) : ℓ∞) if and only if
there exists an integer M > 1 such that

sup
n∈N

∑
k

∣∣ankM−1
∣∣p′

k < ∞. (3.3)

Lemma 3.2 (Lascarides and Maddox [21, Corollary for Theorem 1]). Let 0 <
pk ≤ H < ∞ for all k ∈ N. Then, A = (ank) ∈ (ℓ(p) : c) if and only if (3.2), (3.3)
hold, and

lim
n→∞

ank = βk for all k ∈ N. (3.4)

Lemma 3.3 (Grosse-Erdmann [22, Theorem 5.1.0]). Let A = (ank) be an infinite
matrix. Then, the following statements hold:

(i) Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ℓ(p) : ℓ1) if and only if

sup
N∈F

sup
k∈N

∣∣∣∣∣∑
n∈N

ank

∣∣∣∣∣
pk

< ∞. (3.5)

(ii) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(p) : ℓ1) if and only if
there exists an integer M > 1 such that

sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

ankM
−1

∣∣∣∣∣
p′
k

< ∞. (3.6)

Theorem 3.4. Define the sets drs1 (p) and drs2 (p) by

drs1 (p) =

a = (ak) ∈ w : sup
N∈F

sup
k∈N

∣∣∣∣∣∣
∑

n∈N∗
k

1

r

(
−s

r

)n−k

an

∣∣∣∣∣∣
pk

< ∞

 ,

drs2 (p) =
∪

M>1

a = (ak) ∈ w : sup
N∈F

∑
k

∣∣∣∣∣∣
∑

n∈N∗
k

1

r

(
−s

r

)n−k

anM
−1

∣∣∣∣∣∣
p′
k

< ∞

 ,

where N∗
k = N ∩ {n ∈ N : n ≥ k}. Then,

(i) {ℓ̂(p)}α := drs1 (p), (0 < pk ≤ 1).
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(ii) {ℓ̂(p)}α := drs2 (p), (1 < pk ≤ H < ∞).

Proof. (ii) Let us take any a = (an) ∈ w. We easily derive with (2.2) that

anxn =
1

r

n∑
k=0

(
−s

r

)n−k

anyk = (Cy)n for all n ∈ N, (3.7)

where C = {cnk(r, s)} is defined by

cnk(r, s) =

{
1
r

(−s
r

)n−k
an, 0 ≤ k ≤ n,

0, k > n,

for all k, n ∈ N. Thus, we deduce from (3.7) that ax = (anxn) ∈ ℓ1 whenever

x = (xk) ∈ ℓ̂(p) if and only if Cy ∈ ℓ1 whenever y = (yk) ∈ ℓ(p). From Lemma

3.3, we obtain the desired result that {ℓ̂(p)}α = drs2 (p).

Theorem 3.5. Define the sets drs3 (p), drs4 (p) and drs5 by

drs3 (p) :=

(ak) ∈ w : sup
k,n∈N

∣∣∣∣∣∣1r
n∑

j=k

(
−s

r

)j−k

aj

∣∣∣∣∣∣
pk

< ∞

 ,

drs4 (p) :=
∪

M>1

(ak) ∈ w : sup
n∈N

n∑
k=0

∣∣∣∣∣∣1r
n∑

j=k

(
−s

r

)j−k

ajM
−1

∣∣∣∣∣∣
p′
k

< ∞

 ,

drs5 :=

(ak) ∈ w : lim
n→∞

n∑
j=k

(
−s

r

)j−k

aj exists

 .

Then,

(i) {ℓ̂(p)}β := drs3 (p) ∩ drs5 , (0 < pk ≤ 1).

(ii) {ℓ̂(p)}β := drs4 (p) ∩ drs5 , (1 < pk ≤ H < ∞).

Proof. (ii) Take any a = (ak) ∈ w and consider the equality obtained with (2.2)
that

n∑
k=0

akxk =
n∑

k=0

 n∑
j=k

1

r

(
−s

r

)j−k

aj

 yk = (Dy)n for all n ∈ N, (3.8)

where D = {dnk(r, s)} is defined by

dnk(r, s) =

{ ∑n
j=k

1
r

(−s
r

)j−k
aj , 0 ≤ k ≤ n,

0, k > n,
(3.9)
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for all k, n ∈ N. Thus, we deduce from (3.8) that ax = (akxk) ∈ cs whenever

x = (xk) ∈ ℓ̂(p) if and only if Dy ∈ c whenever y = (yk) ∈ ℓ(p). Therefore, we
derive from Lemma 3.2 that

∑
k

∣∣∣∣∣∣
n∑

j=k

1

r

(
−s

r

)j−k

ajM
−1

∣∣∣∣∣∣
p′
k

< ∞

and

lim
n→∞

n∑
j=k

(
−s

r

)j−k

aj exists.

This shows that {ℓ̂(p)}β = drs4 (p) ∩ drs5 .

Theorem 3.6. The following statements hold:

(i) {ℓ̂(p)}γ := drs4 (p), (0 < pk ≤ 1).

(ii) {ℓ̂(p)}γ := drs3 (p), (1 < pk ≤ H < ∞).

Proof. (ii) We see from (3.8) that ax = (akxk) ∈ bs whenever x = (xk) ∈ ℓ̂(p) if
and only if Dy ∈ ℓ∞ whenever y = (yk) ∈ ℓ(p), where D = {dnk(r, s)} is defined

by (3.9). Therefore, we obtain from Part (ii) of Lemma 3.1 that {ℓ̂(p)}γ = drs3 (p)
and this completes the proof.

4 Matrix Transformations on the Sequence Space
ℓ̂(p)

In this section, we characterize some matrix transformations on the space ℓ̂(p).
Theorem 4.1 gives the exact conditions of the general case 0 < pk ≤ H < ∞ by
combining the cases 0 < pk ≤ 1 and 1 < pk ≤ H < ∞. We consider only the case
1 < pk ≤ H < ∞ and leave the case 0 < pk ≤ 1 to the reader because of it can be
proved in the similar way.

We write for brevity that

ãnk =
∞∑
j=k

1

r

(
−s

r

)j−k

anj for all k, n ∈ N.

Theorem 4.1. Let A = (ank) be an infinite matrix. Then, the following state-
ments hold:

(i) Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ℓ̂(p) : ℓ∞) if and only if

{ank}k∈N ∈ drs3 (p) ∩ drs5 (p) for each fixed n ∈ N, (4.1)

sup
n,k∈N

|ãnk|pk < ∞. (4.2)
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(ii) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ̂(p) : ℓ∞) if and only if
there exists an integer M > 1 such that

{ank}k∈N ∈ drs4 (p) ∩ drs5 (p) for each fixed n ∈ N, (4.3)

C(M) = sup
n∈N

∑
k

∣∣ãnkM−1
∣∣p′

k < ∞. (4.4)

Proof. (ii) Suppose that the conditions (4.3) and (4.4) hold, and x ∈ ℓ̂(p). In this

situation, since {ank}k∈N ∈ {ℓ̂(p)}β for every fixed n ∈ N, the A-transform of x
exists. Consider the following equality obtained by using the relation (2.2) that

m∑
k=0

ankxk =
m∑

k=0

m∑
j=k

1

r

(
−s

r

)j−k

anjyk (4.5)

for all m,n ∈ N. Taking into account the hypothesis we derive from (4.5) as
m → ∞ that ∑

k

ankxk =
∑
k

ãnkyk for each n ∈ N. (4.6)

Now, by combining (4.6) with the following inequality which holds for any M > 0
and any a, b ∈ C

|ab| ≤ M
(∣∣aM−1

∣∣p′

+ |b|p
)
,

where p > 1 and p−1 + p′−1 = 1 (see [21]), one can easily see that

sup
n∈N

∣∣∣∣∣∑
k

ankxk

∣∣∣∣∣ ≤ sup
n∈N

∑
k

|ãnk| |yk|

≤ M [C(M) + gL1 (y)] < ∞.

Conversely, suppose that A ∈ (ℓ̂(p) : ℓ∞) and 1 < pk ≤ H < ∞ for all k ∈ N.
Then Ax exists for every x ∈ ℓ̂(p) and this implies that {ank}k∈N ∈ {ℓ̂(p)}β for
all n ∈ N. Now, the necessity of (4.3) is immediate. Besides, we have from (4.6)
that the matrix E = (enk) defined by enk = ãnk for all n, k ∈ N, is in the class
(ℓ(p) : ℓ∞). Then, E satisfies the condition (3.3) which is equivalent to (4.4).

This completes the proof.

Theorem 4.2. Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ̂(p) : c) if and
only if (4.1)-(4.4) hold and

lim
n→∞

ãnk = αk for each fixed k ∈ N. (4.7)
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Proof. Let A ∈ (ℓ̂(p) : c) and 1 < pk ≤ H < ∞ for all k ∈ N. Then, since the
inclusion c ⊂ ℓ∞ holds, the necessities of (4.3) and (4.4) are immediately obtained
from Part (i) of Theorem 4.1.

To prove the necessity of (4.7), consider the sequence b(k)(r, s) defined by (2.7)

which is in the space ℓ̂(p) for every fixed k ∈ N. Because of the A-transform of

every x ∈ ℓ̂(p) exists and is in c by the hypothesis,

Ab(k)(r, s) =


∞∑
j=k

1

r

(
−s

r

)j−k

anj


n∈N

∈ c

for every fixed k ∈ N which shows the necessity of (4.7).
Conversely suppose that the conditions (4.3), (4.4) and (4.7) hold, and take

any x = (xk) in the space ℓ̂(p). Then, Ax exists. We observe for all m,n ∈ N that

m∑
k=0

∣∣∣∣∣∣
m∑

j=k

1

r

(
−s

r

)j−k

anjM
−1

∣∣∣∣∣∣
p′
k

≤ sup
n∈N

m∑
k=0

∣∣∣∣∣∣
m∑

j=k

1

r

(
−s

r

)j−k

anjM
−1

∣∣∣∣∣∣
p′
k

which gives the fact by letting m,n → ∞ with (4.4) and (4.7) that

lim
m,n→∞

m∑
k=0

∣∣∣∣∣∣
m∑

j=k

1

r

(
−s

r

)j−k

anjM
−1

∣∣∣∣∣∣
p′
k

≤ sup
n∈N

m∑
k=0

∣∣∣∣∣∣
m∑

j=k

1

r

(
−s

r

)j−k

anjM
−1

∣∣∣∣∣∣
p′
k

< ∞.

This shows that
∑

k |αkM
−1|p′

k < ∞ and so (αk)k∈N ∈ {ℓ̂(p)}β for each n ∈ N
which implies that the series

∑
k αkxk converges for every x ∈ ℓ̂(p).

Let us now consider the equality obtained from (4.6) with ank −αk instead of
ank ∑

k

(ank − αk)xk =
∑
k

enkyk for all n ∈ N, (4.8)

where E = (enk) defined by enk = ãnk −αk for all k, n ∈ N. Therefore, we have at
this stage from Lemma 3.2 with βk = 0 for all k ∈ N that the matrix E belongs
to the class (ℓ(p) : c0) of infinite matrices. Thus, we see by (4.8) that

lim
n→∞

∑
k

(ank − αk)xk = 0. (4.9)

(4.9) means that Ax ∈ c whenever x ∈ ℓ̂(p) and this is what we wished to prove.

Therefore, we have:

Corollary 4.3. Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ̂(p) : c0) if and
only if (4.1)-(4.4) hold, and (4.7) also holds with αk = 0 for all k ∈ N.
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Now, we give the following lemma given by Başar and Altay [23] which is useful
for deriving the characterizations of the certain matrix classes via Theorems 4.1,
4.2 and Corollary 4.3:

Lemma 4.4 (Başar and Altay [23, Lemma 5.3]). Let λ, µ be any two sequence
spaces, A be an infinite matrix and B also be a triangle matrix. Then, A ∈ (λ : µB)
if and only if BA ∈ (λ : µ).

It is trivial that Lemma 4.4 has several consequences. Indeed, combining
Lemma 4.4 with Theorems 4.1, 4.2 and Corollary 4.3, one can derive the following
results:

Corollary 4.5. Let A = (ank) be an infinite matrix and define the matrix C =
(cnk) by

cnk =
n∑

j=0

(
n

j

)
(1− t)n−jtjajk for all n, k ∈ N.

Then, the necessary and sufficient conditions in order for A belongs to anyone of
the classes (ℓ̂(p) : et∞), (ℓ̂(p) : etc) and (ℓ̂(p) : et0) are obtained from the respective
ones in Theorems 4.1, 4.2 and Corollary 4.3 by replacing the entries of the matrix
A by those of the matrix C; where 0 < t < 1, et∞ and etc, e

t
0 respectively denote

the spaces of all sequences whose Et-transforms are in the spaces ℓ∞ and c, c0 and
are recently studied by Altay et al. [24], Altay and Başar [25], where Et denotes
the Euler mean of order t.

Corollary 4.6. Let A = (ank) be an infinite matrix and t = (tk) be a sequence of
positive numbers and define the matrix C = (cnk) by

cnk =
1

Tn

n∑
j=0

tjajk for all n, k ∈ N,

where Tn =
∑n

k=0 tk for all n ∈ N. Then, the necessary and sufficient conditions

in order for A belongs to anyone of the classes (ℓ̂(p) : rt∞), (ℓ̂(p) : rtc) and (ℓ̂(p) : rt0)
are obtained from the respective ones in Theorems 4.1, 4.2 and Corollary 4.3 by
replacing the entries of the matrix A by those of the matrix C; where rt∞, rtc and
rt0 are defined by Altay and Başar in [26] as the spaces of all sequences whose
Rt-transforms are respectively in the spaces ℓ∞, c and c0, and are derived from
the paranormed spaces rt∞(p), rtc(p) and rt0(p) in the case pk = p for all k ∈ N.

Since the spaces rt∞, rtc and rt0 reduce in the case t = e to the Cesàro sequence
spaces X∞, c̃ and c̃0 of non-absolute type, respectively, Corollary 4.6 also includes
the characterizations of the classes (ℓ̂(p) : X∞), (ℓ̂(p) : c̃) and (ℓ̂(p) : c̃0), as a
special case; where X∞ and c̃, c̃0 are the Cesàro spaces of the sequences consisting
of C1-transforms are in the spaces ℓ∞ and c, c0, and studied by Ng and Lee [27];
Şengönül and Başar [28], respectively, where C1 denotes the Cesàro mean of order
1.
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Corollary 4.7. Let A = (ank) be an infinite matrix and define the matrix C =
(cnk) by cnk = ank − an+1,k for all n, k ∈ N. Then, the necessary and sufficient

conditions in order for A belongs to anyone of the classes (ℓ̂(p) : ℓ∞(∆)), (ℓ̂(p) :

c(∆)) and (ℓ̂(p) : c0(∆)) are obtained from the respective ones in Theorems 4.1,
4.2 and Corollary 4.3 by replacing the entries of the matrix A by those of the
matrix C; where ℓ∞(∆), c(∆), c0(∆) denote the difference spaces of all bounded,
convergent, null sequences and are introduced by Kızmaz [29].

Corollary 4.8. Let A = (ank) be an infinite matrix and define the matrix C =
(cnk) by cnk =

∑n
j=0 ajk for all n, k ∈ N. Then the necessary and sufficient

conditions in order for A belongs to anyone of the classes (ℓ̂(p) : bs), (ℓ̂(p) : cs)

and (ℓ̂(p) : cs0) are obtained from the respective ones in Theorems 4.1, 4.2 and
Corollary 4.3 by replacing the entries of the matrix A by those of the matrix C,
where cs0 denotes the set of those series converging to zero.

5 The Rotundity of the Space ℓ̂(p)

Among many geometric properties, the rotundity of Banach spaces is one of
the most important topics in functional analysis. For details, the reader may refer
to [30–32]. In this section, we characterize the rotundity of the space ℓ̂(p) and
emphasize some results related to this concept.

By S(X) and B(X), we denote the unit sphere and unit ball of a Banach space
X, respectively. A point x ∈ S(X) is called an extreme point if 2x = y+ z implies
y = z for all y, z ∈ S(X).

A Banach space X is said to be rotund (strictly convex ) if every point of S(X)
is an extreme point.

Let X be a real vector space. A functional σ : X → [0,∞) is called a modular
if

(i) σ(x) = 0 if and only if x = θ,

(ii) σ(αx) = σ(x) for all scalars α with |α| = 1;

(iii) σ(αx+ βy) ≤ σ(x) + σ(y) for all x, y ∈ X and α, β ≥ 0 with α+ β = 1.

(iv) The modular σ is called convex if σ(αx+βy) ≤ ασ(x)+βσ(y) for all x, y ∈ X
and α, β > 0 with α+ β = 1.

A modular σ on X is called

(a) Right continuous if limα→1+ σ(αx) = σ(x) for all x ∈ Xσ.

(b) Left continuous if limα→1− σ(αx) = σ(x) for all x ∈ Xσ.

(c) Continuous if it is both right and left continuous, where

Xσ =

{
x ∈ X : lim

α→0+
σ(αx) = 0

}
.
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For ℓ̂(p), we define σp(x) =
∑

k |sxk−1 + rxk|pk . If pk ≥ 1 for all k ∈ N, by the
convexity of the function t 7→ |t|pk for each k ∈ N, one can easily observe that σp

is a convex modular on the sequence space ℓ̂(p). We consider the sequence space

ℓ̂(p) equipped with the Luxemburg norm given by

∥x∥ = inf
{
α > 0 : σp

(x
α

)
≤ 1
}
. (5.1)

It is easy to show that the sequence space ℓ̂(p) is a Banach space with the norm
(5.1).

Now, we may emphasize some basic properties for modular σp.

Theorem 5.1. The modular σp on the sequence space ℓ̂(p) satisfies the following
properties:

(i) If 0 < α ≤ 1, then αLσp (x/α) ≤ σp(x) and σp(αx) ≤ ασp(x).

(ii) If α ≥ 1, then σp(x) ≤ αLσp (x/α).

(iii) If α ≥ 1, then σp(x) ≥ ασp (x/α).

(iv) The modular σp is continuous on the sequence space ℓ̂(p).

Proof. (i) We have for any x ∈ ℓ̂(p) and α ∈ (0, 1] that

σp(x) =
∑
k

|sxk−1 + rxk|pk

=
∑
k

∣∣∣∣α(sxk−1 + rxk)

α

∣∣∣∣pk

≥ αL
∑
k

∣∣∣∣sxk−1 + rxk

α

∣∣∣∣pk

= αLσp

(x
α

)
.

Since pk ≥ 1 for all k and 0 < α ≤ 1, we have αpk ≤ α for all k, hence σp(αx) ≤
ασp(x).

(ii) If α ≥ 1, then 1/α ≤ 1. From (i), we have(
1

α

)L

σp(x) =

(
1

α

)L

σp

(
x/α

1/α

)
≤ σp

(x
α

)
and hence σp(x) ≤ αLσp (x/α).

(iii) If we apply the second part of (i) with β = 1/α ≤ 1, then it is immediate
that

ασp

(x
α

)
= ασp(βx) ≤ αβσp(x) = σp(x),

as expected.
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(iv) By Parts (ii) and (iii) of the present theorem, we have for α > 1 that

σp(x) ≤ ασp(x) ≤ σp(αx) ≤ αLσp(x). (5.2)

By passing to limit as α → 1+ in (5.2), we have limα→1+ σp(αx) = σp(x). Hence,
σp is right continuous. If 0 < α < 1, by Part (i) of the present theorem, we have

αLσp(x) ≤ σp(αx) ≤ ασp(x). (5.3)

Also by letting α → 1− in (5.3), we observe that limα→1− σp(αx) = σp(x) and
hence σp is left continuous. These two consequences give us the desired fact that
σp is continuous.

Now, we may give some relationships between the modular σp and the

Luxemburg norm on the sequence space ℓ̂(p).

Theorem 5.2. Let x ∈ ℓ̂(p). Then, the following statements hold:

(i) If ∥x∥ < 1, then σp(x) ≤ ∥x∥.

(ii) If ∥x∥ > 1, then σp(x) ≥ ∥x∥.

(iii) ∥x∥ = 1 if and only if σp(x) = 1.

(iv) ∥x∥ < 1 if and only if σp(x) < 1.

(v) ∥x∥ > 1 if and only if σp(x) > 1.

Proof. (i) Let ε > 0 such that 0 < ε < 1 − ∥x∥. By the definition of ∥ · ∥, there
exists an α > 0 such that ∥x∥ + ε > α and σp(x/α) ≤ 1. From Parts (i) and (ii)
of Theorem 5.1, we have

σp(x) ≤ σp

[
(∥x∥+ ε)

x

α

]
≤ (∥x∥+ ε)σp

(x
α

)
≤ ∥x∥+ ε.

Since ε is arbitrary, we have (i).

(ii) If we choose ε > 0 such that 0 < ε < 1−1/∥x∥, then 1 < (1−ε)∥x∥ < ∥x∥.
Combining the definition of the Luxemburg norm given by (5.1) and Part (i) of
Theorem 5.1, we have

1 < σp

[
x

(1− ε)∥x∥

]
≤ 1

(1− ε)∥x∥
σp(x),

so (1− ε)∥x∥ < σp(x) for all ε ∈ (0, 1− 1/∥x∥). This implies that ∥x∥ < σp(x).
Since σp is continuous, (iii) directly follows from Theorem 1.4 of [32].

(iv) follows from Parts (i) and (iii).

(v) follows from Parts (ii) and (iii).

Theorem 5.3. The space ℓ̂(p) is rotund if and only if pk > 1 for all k ∈ N.
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Proof. Necessity. Let ℓ̂(p) be rotund and choose k ∈ N such that pk = 1 for k < 3.
Consider the following sequences given by

x =

{
0,

1

r
,
−s

r2
,
(−s)2

r3
,
(−s)3

r4
, . . .

}
,

z =

{
0, 0,

1

r
,
−s

r2
,
(−s)2

r3
, . . .

}
.

Then, it is immediate that x ̸= z and

σp(x) = σp(z) = σp

(
x+ z

2

)
= 1.

By Part (iii) of Theorem 5.2; x, z, (x + z)/2 ∈ S[ℓ̂(p)] which leads us the contra-

diction that the sequence space ℓ̂(p) is not rotund.

Sufficiency. Let x ∈ S[ℓ̂(p)] and v, z ∈ S[ℓ̂(p)] with x = (v+z)/2. By convexity
of σp and Part (iii) of Theorem 5.2, we have

1 = σp(x) ≤
σp(v) + σp(z)

2
≤ 1

2
+

1

2
= 1

which gives that σp(v) = σp(z) = 1 and

σp(x) =
σp(v) + σp(z)

2
. (5.4)

Further, we have by (5.4) that

∑
k

|sxk−1 + rxk|pk =
1

2

[∑
k

|svk−1 + rvk|pk

]
+

1

2

[∑
k

|szk−1 + rzk|pk

]
.

Since x = (v + z)/2, we have

∑
k

∣∣∣∣12 [s(vk−1 + zk−1) + r(vk + zk)]

∣∣∣∣pk

=
1

2

(∑
k

|svk−1 + rvk|pk

)

+
1

2

(∑
k

|szk−1 + rzk|pk

)
.

This implies that∣∣∣∣12 [s(vk−1 + zk−1) + r(vk + zk)]

∣∣∣∣pk

=
1

2
|svk−1 + rvk|pk +

1

2
|szk−1 + rzk|pk (5.5)

for all k ∈ N. Since the function t 7→ |t|pk is strictly convex for all k ∈ N, it follows
by (5.5) that vk = zk for all k ∈ N. Hence v = z, that is the sequence space ℓ̂(p)
is rotund.
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Conclusion

The diference spaces ℓ∞(∆), c(∆) and c0(∆) were introduced by Kızmaz [29].
We treat more different than Kızmaz and the other authors following him, and
use the technique for obtaining a new sequence space by the domain of a triangle
matrix. Following this way, the domain of some triangle matrices in the sequence
space ℓ(p) was recently studied and obtained certain topological and geometric
results by Altay and Başar [9, 14]; Choudhary and Mishra [5]; Başar et al. [33];
Aydın and Başar [8]. Although bv(e, p) = [ℓ(p)]∆ is investigated, since B(1,−1) ≡
∆, our results are more general than those of Başar, Altay and Mursaleen [33].
Also in case pk = p for all k ∈ N the results of the present study are reduced to
the corresponding results of the recent paper of Kirişçi and Başar [4].
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[33] F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of
p-bounded variation sequences, Nonlinear Anal. 68 (2) (2008) 273–287.

(Received 22 February 2012)
(Accepted 24 September 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th


