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Abstract : In this paper, we establish a common fixed point theorem for Gregus
type mappings in metric spaces using the (CLRg) property. Our result generalizes
and improves upon, among others the corresponding results of Gregus [1], Fisher
and Sessa [2], Huang and Cho [3], Jungck[4], Ciric [5] and Mukherjee and Verma
[6].
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1 Introduction

Generalizing the concept of commuting mappings, Sessa [7] introduced con-
cept of weakly commuting mappings. Later on, Jungck [8] enlarged the class of
non-commuting mappings by compatible mappings. Further generalizations of
compatible mappings are given by Jungck et al. [9], Pathak and Khan [10] and
Pathak et al. [11], Cho et al. [12]. However, the study of common fixed points
of noncompatible mappings are also very interesting. Work along these lines has
been initiated by Pant [13, 14].

On the other hand Gregus [1] proved a fixed point theorem in Banach spaces,
known as Gregus fixed point theorem and then many authors have obtained fixed
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point theorems of Gregus type (See [2, 3, 6, 10, 15, 16]).
Huang and Cho [3] proved the following common fixed point theorems as a

generalization of Gregus’s [1] result for compatible mappings in complete convex
metric spaces:

Theorem 1.1 ([3]). Let X be a complete convex metric space with a convex struc-
ture W and C is a nonempty closed convex subset of X. Let f and g be compatible
mappings of C into itself satisfying the condition

dp(fx, fy) ≤ adp(gx, gy) + bmax{dp(fx, gx), dp(fy, gy)}
+ cmax{dp(gx, gy), dp(fx, gx), dp(fy, gy)} (B)

for all x, y in C, where a, b, c > 0, p ≥ 1, a + b + c = 1 and max
{ (1−b)2

a b + c
}
<

(2− 21−p)(2p − 1)−1. If g is w-affine and continuous in C and f(C) ⊂ g(C), then
f and g have a unique common fixed point z in C and f is continuous at z.

In 2002, Amari and Moutawakil [17] defined the notion of property (E.A)
which contains the class of non-compatible mappings. It is observed that property
(E.A) requires the completeness (or closedness) of subspaces for existence of the
fixed point. Recently, Sintunavarat and Kuman [18] defined the notion of (CLRg)
property. They showed that (CLRg) property never requires completeness (or
closedness) of subspaces (also see [19, 20]).

The purpose of this paper is to prove existence of common fixed points for
Gregus type mappings in metric spaces using the (CLRg) property. Our result
is more general, it extends various known results from Banach spaces to general
metric spaces.

2 Preliminaries

Sessa [7] introduced the notion of weak commutativity:

Definition 2.1 ([7]). Two self-mappings f and g of a metric space (X, d) are said
to be weakly commuting if

d(fgx, gfx) ≤ d(fx, gx), for all x ∈ X.

It is clear that two commuting mappings are weakly commuting but the con-
verse is not true as is shown in [7].

Definition 2.2 ([8]). Two self-mappings f and g of a metric space (X, d) are said
to be compatible if

lim
n→∞

d(fgxn, gfxn) = 0,

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t,

for some t ∈ X.
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Obviously, two weakly commuting mappings are compatible, but the converse
is not true as shown in [8].

Definition 2.3 ([21]). Two self-mappings f and g of a metric space (X, d) are
said to be weakly compatible if they commute at their coincidence points, i.e. if
fu = gu for some u ∈ X, then fgu = gfu.

It is easy to see that two compatible mappings are weakly compatible.

Definition 2.4 ([17]). Two self-mappings f and g of a metric space (X, d) are
said to satisfy the property (E.A) if there exists a sequence {xn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t,

for some t ∈ X.

Definition 2.5 ([18]). Two self-mappings f and g of a metric space (X, d) are said
to satisfy the common limit in the range of g property if there exists a sequence
{xn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = gu,

for some u ∈ X.

In what follows, the common limit in the range of g property will be denoted
by the (CLRg) property.

Now, we give examples of mappings f and g which are satisfying the (CLRg)
property.

Example 2.6. Let X = [0,∞) with the usual metric on X. Define f, g : X → X
by fx = x/2 and gx = 2x for all x ∈ X. Consider the sequence {xn} = {1/n}.
Since

lim
n→∞

fxn = lim
n→∞

gxn = 0 = g0,

therefore f and g satisfy the (CLRg) property.

Example 2.7. Let X = [0,∞) with the usual metric on X. Define f, g : X → X
by fx = x+2 and gx = 3x for all x ∈ X. Consider the sequence {xn} = {1+1/n}.
Since

lim
n→∞

fxn = lim
n→∞

gxn = 3 = g1,

therefore f and g satisfy the (CLRg) property.

Remark 2.8. It is clear from the Jungck’s definition [8] that two self-mappings
f and g of a metric space (X, d) will be non-compatible if there exists atleast one
sequence {xn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X,

but limn→∞ d(fgxn, gfxn) is either non-zero or non-existent. Therefore, two non-
compatible self-mappings of a metric space (X, d) satisfy the property (E.A).
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3 Main Results

Theorem 3.1. Let f and g be two weakly compatible self-mappings of a metric
space (X, d) such that

(i) f and g satisfy the (CLRg) property,

(ii)

dp(fx, fy) ≤ adp(gx, gy) + bmax{dp(fx, gx), dp(fy, gy)}
+ cmax{dp(gx, gy), dp(fx, gx), dp(fy, gy)}

for all x, y ∈ X, where a, b, c > 0, p ≥ 1, a+ b+ c = 1,

then f and g have a unique common fixed point.

Proof. Since f and g satisfy the (CLRg) property, there exists a sequence {xn} in
X such that

lim
n→∞

fxn = lim
n→∞

gxn = gu, for some u in X.

Now we show that fu = gu. Suppose that fu ̸= gu. Then using condition (ii)
with x = xn and y = u, we get

dp(fxn, fu) ≤ adp(gxn, gu) + b max{dp(fxn, gxn), d
p(fu, gu)}

+ c max{dp(gxn, gu), d
p(fxn, gxn), d

p(fu, gu)}.

Making n → ∞ this yields

dp(gu, fu) ≤ adp(gu, gu) + b max{dp(gu, gu), dp(fu, gu)}
+ c max{dp(gu, gu), dp(gu, gu), dp(fu, gu)}

≤ (b+ c)dp(gu, fu),

which is a contradiction. Hence fu = gu.
Since f and g are weakly compatible, fu = gu implies fgu = gfu and therefore

ffu = fgu = gfu.
Finally, we show that fu is a common fixed point of f and g. Suppose that

fu ̸= ffu. Then using condition (ii) with x = u and y = fu, we get

dp(fu, ffu) ≤ adp(gu, gfu) + b max{dp(fu, gu), dp(ffu, gfu)}
+ c max{dp(gu, gfu), dp(fu, gu), dp(ffu, gfu)}

≤ adp(fu, ffu) + b max{dp(fu, fu), dp(ffu, ffu)}
+ c max{dp(fu, ffu), dp(fu, fu), dp(ffu, ffu)}

≤ (a+ c)dp(fu, ffu),

which is a contradiction. Hence fu = ffu and gfu = ffu = fu. Thus fu is a
common fixed point of mappings f and g.
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Let t and v two common fixed points of mappings f and g. Then using
condition (ii), we have

dp(t, v) = dp(ft, fv)

≤ adp(gt, gv) + bmax{dp(ft, gt), dp(fv, gv)}
+ cmax{dp(gt, gv), dp(ft, gt), dp(fv, gv)}

= adp(t, v) + bmax{dp(t, t), dp(v, v)}+ cmax{dp(t, v), dp(t, t), dp(v, v)}
= (a+ c)dp(t, v),

which is a contradiction. Hence t = v. Thus f and g have a unique common fixed
point in X.

We now give an example to illustrate Theorem 3.1.

Example 3.2. Let X = [0, 2] with the usual metric on X. Define f, g : X → X
as follows:

f(x) =

{
1, 0 ≤ x ≤ 1,
5
4 , 1 < x ≤ 2.

g(x) =

{
2− x, 0 ≤ x ≤ 1,
0, 1 < x ≤ 2.

It is clear that f and g satisfy (CLRg) property. To see this let us consider the
sequence {xn} given by xn = 1− 1

n . Then limn→∞ fxn = limn→∞ gxn = 1 = g1.
Also f1 = g1 ⇒ fg1 = gf1, which shows that the f and g are weakly compatible.

By a simple calculation one can verify that f and g satisfy the condition (ii).

Thus all the conditions of Theorem 3.1 are satisfied and 1 is the unique com-
mon fixed point of f and g.

Remark 3.3. Theorem 3.1 is more general, so it extends various well known
results from Banach space to general metric space. Also from result it is asserted
that the (CLRg) property never requires Closedness of subspace, continuity of one
or more mappings and containment of range of involved mappings.

If we take p = 1 in Theorem 3.1, we obtain:

Corollary 3.4. Let f and g be two weakly compatible self-mappings of a metric
space (X, d) such that

(i) S and T satisfy the (CLRg) property,

(ii)

d(fx, fy) ≤ ad(gx, gy) + bmax{d(fx, gx), d(fy, gy)}
+ cmax{d(gx, gy), d(fx, gx), d(fy, gy)}

for all x, y ∈ X, where a, b, c > 0, a+ b+ c = 1,

then f and g have a unique common fixed point.
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Corollary 3.5. Let f and g be two weakly compatible self-mappings of a metric
space (X, d) such that

(i) S and T satisfy the (CLRg) property,

(ii)

d(fx, fy) ≤ ad(gx, gy) + bmax{d(fx, gx), d(fy, gy)}

for all x, y ∈ X, where a, b > 0, a+ b = 1,

then f and g have a unique common fixed point.

Next we prove existence of unique common fixed points for a pair of weakly
compatible mappings using property (E.A) under additional condition closedness
of subspaces.

Theorem 3.6. Let f and g be two weakly compatible self-mappings of a metric
space (X, d) such that

(i) f and g satisfy the property (E.A),

(ii)

dp(fx, fy) ≤ adp(gx, gy) + bmax{dp(fx, gx), dp(fy, gy)}
+ cmax{dp(gx, gy), dp(fx, gx), dp(fy, gy)}

for all x, y ∈ X, where a, b, c > 0, p ≥ 1, a+ b+ c = 1.

If range of g is closed subspace of X, then f and g have a unique common fixed
point.

Proof. Since f and g satisfy the property (E.A), there exists a sequence {xn} in
X such that

lim
n→∞

fxn = lim
n→∞

gxn = t, for some t in X.

Since g(X) is a closed subspace ofX there exists u ∈ X such that t = gu. Therefore
f and g satisfy the (CLRg) property. It follows from Theorem 3.1 that f and g
have a unique common fixed point in X.

Corollary 3.7. Let f and g be two weakly compatible self-mappings of a metric
space (X, d) such that

(i) f and g satisfy the property (E.A),

(ii)

d(fx, fy) ≤ ad(gx, gy) + bmax{d(fx, gx), d(fy, gy)}
+ cmax{d(gx, gy), d(fx, gx), d(fy, gy)}

for all x, y ∈ X, where a, b, c > 0, a+ b+ c = 1,



A Common Fixed Point Theorem for Gregus Type Mappings 109

(iii) f(X) ⊂ g(X).

If range of g is a closed subspace of X, then f and g have a unique common fixed
point.

Corollary 3.8. Let f and g be two weakly compatible self-mappings of a metric
space (X, d) such that

(i) f and g satisfy the property (E.A),

(ii)

d(fx, fy) ≤ ad(gx, gy) + bmax{d(fx, gx), d(fy, gy)}

for all x, y ∈ X, where a, b > 0, a+ b = 1,

(iii) f(X) ⊂ g(X).

If range of g is a closed subspace of X, then f and g have a unique common fixed
point.

Since Property (E.A) contains the class of non-compatible mappings. Follow-
ing results are direct consequences:

Corollary 3.9. Let f and g be two weakly compatible non-compatible self-mappings
of a metric space (X, d) such that

(i)

dp(fx, fy) ≤ adp(gx, gy) + bmax{dp(fx, gx), dp(fy, gy)}
+ cmax{dp(gx, gy), dp(fx, gx), dp(fy, gy)}

for all x, y ∈ X, where a, b, c > 0, p ≥ 1, a+ b+ c = 1,

(ii) f(X) ⊂ g(X).

If range of g is a closed subspace of X, then f and g have a unique common fixed
point.

Corollary 3.10. Let f and g be two weakly compatible non-compatible self-mappings
of a metric space (X, d) such that

(i)

d(fx, fy) ≤ ad(gx, gy) + bmax{d(fx, gx), d(fy, gy)}
+ cmax{d(gx, gy), d(fx, gx), d(fy, gy)}

for all x, y ∈ X, where a, b, c > 0, a+ b+ c = 1,

(ii) f(X) ⊂ g(X).

If range of g is a closed subspace of X, then f and g have a unique common fixed
point.
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Corollary 3.11. Let f and g be two weakly compatible non-compatible self-mappings
of a metric space (X, d) such that

(i)

d(fx, fy) ≤ ad(gx, gy) + bmax{d(fx, gx), d(fy, gy)}

for all x, y ∈ X, where a, b > 0, a+ b = 1,

(ii) f(X) ⊂ g(X).

If range of g is a closed subspace of X, then f and g have a unique common fixed
point.

Remark 3.12. Our results improve several known results of Gregus [1], Fisher
and Sessa [2], Huang and Cho [3], Jungck [4], Ciric [5] and Mukherjee and Verma
[6] concerning Gregus type mappings in the following ways:

(i) the completeness of space is not required,

(ii) the completeness of subspace is not required (even closedness of subspace is
not required in case of (CLRg) property),

(iii) containment of ranges of involved mappings is not necessary in case of
(CLRg) property,

(iv) continuity of mappings is not required,

(v) the convexity structure in the results is not required,

(vi) the linearity condition of mapping g is dropped.
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