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Abstract : Let V be any vector space and P(V) the set of all partial linear
transformations defined on V, that is, all linear transformations « : S — T where
S, T are subspaces of V. Then P(V) is a semigroup under composition. Let W be a
subspace of V. We define PT(V, W) ={a € P(V):Va C W}. So PT(V,W) is a
subsemigroup of P(V'). In this paper, we present the largest regular subsemigroup
and determine Green’s relations on PT(V, W). Furthermore, we study the natural
partial order < on PT(V,W) in terms of domains and images and find elements
of PT(V,W) which are compatible.
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1 Introduction

A partial transformation semigroup is the collection of functions from a sub-
set of X into X with composition which is denoted by P(X). In addition, the
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semigroup T(X) and I(X) are defined by

T(X) = {a€P(X):dom o= X} and
I(X) = {a€P(X): «ais injective}.

We note that if we let & € P(X) and Z C X, the notation Za means {za :
z € ZNdom a}. It is clear that, Xa = im o.

In [2], Fernandes and Sanwong introduced the partial transformation semi-
group with restricted range. They considered the semigroups PT(X,Y) and
I(X,Y) defined by

PT(X,Y) = {a€P(X):XaCY}and
I(X,Y) = {acI(X):XaCY}

where Y is a subset of X. They proved that PF = {a € PT(X,Y): Xa =Ya} is
the largest regular subsemigroup of PT(X,Y’). Moreover, they determined Green’s
relations on PT(X,Y) and I(X,Y).

In 2008, Sanwong and Sommanee [9] studied the subsemigroup T'(X,Y) =
T(X)NPT(X,Y) of T(X) where Y is a subset of X. They gave a necessary and
sufficient condition for T'(X,Y") to be regular. In the case when T(X,Y") is not
regular, the largest regular subsemigroup was obtained and this subsemigroup was
shown to determine the Green’s relations on T'(X,Y). Also, a class of maximal
inverse subsemigroups of T'(X,Y’) was obtained.

Analogously to P(X), we can define a partial linear transformation on some
vector spaces. Let V be any vector space, P(V') the set of all linear transformations
a:S — T where S and T are subspaces of V', that is, every element « € P(V), the
domain and range of « are subspaces of V. Then we have P(V) under composition
is a semigroup and it is called the partial linear transformation semigroup of V.
The subsemigroups T'(V') and I(V') are defined by

T(V) = {ae€P(V):dom o=V} and
I(V) = {ae€P(V):«is injective}.

Similarly, the linear transformation semigroups with restricted range can be
defined as follows. For any vector space V' and a subspace W of V,

PT(V,W) = {acP(V):VaCW},
T(V,W) = {aeT(V):VaC W} and
I(V,W) = {aclI(V):VaC W}

Obviously, PT(V,V) = P(V), T(V,V) = T(V) and I(V,V) = I(V). Hence we
may regard PT(V,W), T(V,W) and I(V,W) as generalizations of P(V), T(V)
and I(V), respectively.

It is known that Green’s relations on T(V') are as follows (see [3], page 63).
Let a, f € T(V). Then
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aLlpB if and only if Va = V3;
aR B if and only if ker o = ker 3;
aDp if and only if dim(Vea) = dim(Vp);
D=J.

In 2007, Droms [1] gave a complete description of Green’s relations on P(V)
and I(V). We have for a, 5 € P(V) :

aLlp if and only if Va = V3;
aR B if and only if ker « = ker § and dom o = dom S;
aDp if and only if dim(Vea) = dim(Vp);
D=J.

And for o, g € I(V) :

aLlpB if and only if Va = V3;
aR S if and only if dom o = dom f;
aDp if and only if dim(Vea) = dim(Vp);
D=J.

Later in 2008, Sullivan [11] described Green’s relations and ideals for the semi-
group T'(V,W). And its Green’s relations are as follows. Let Q = {a € T(V, W) :
Va C Wa}. For o, 6 € T(V, V) :

alB if and only if a = B or (o, 8 € Q and Va =V );
aR B if and only if ker o = ker ;
oDg if and only if ker « = ker 8 or (o, 8 € @ and dim(Va) = dim(V 3));
aJp if and only if ker a = ker 8 or
dim(Va) = dim(Wa) = dim(Wg) = dim(V 3).

Now, we deal with a natural partial order or Mitsch order [6] on any semigroup
S defined by for a,b € S.

a < b if and only if a = zb = by, za = a for some z,y € S*.

In 2005, Sullivan [10] studied the natural partial order < on P(V'). The author
found all elements of P(V') which are compatible with respect to <.

In 2012, Sangkhanan and Sanwong [7] characterized the natural partial order
< on PT(X,Y) and found elements of PT(X,Y) which are compatible with <.
Recently, they presented the largest regular subsemigroup of I(V, W) and deter-
mined its Green’s relations in [8]. Furthermore, the authors studied the natural
partial order < on I(V,W) in terms of domains and images. Finally, they also
found elements of I(V, W) which are compatible.

In this paper, we describe the largest regular subsemigroup of PT'(V, W) and
characterized its Green’s relations. Furthermore, we study the natural partial
order < on PT(V, W) in terms of domains and images. Moreover, we characterize
elements of PT(V, W) which are compatible.
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2 Regularity and Green’s relations on PT(V, W)

Since PT(V,W) = {a € P(V) : Va C W}, we have the following simple result on
PT(V,W) which will be used throughout the paper.

Lemma 2.1. If S and T are subspaces of V. with S C T, then Sa C T for all
a € PT(V,W).

For convenience, we adopt the convention: namely, if « € P(X) then we write

=)

and take as understood that the subscript ¢ belongs to some (unmentioned) index
set I, the abbreviation {a;} denotes {a; : ¢ € I}, and that Xa = {a;} and
aiofl = X;.
Similarly, we can use this notation for elements in P(V'). To construct a map
a € P(V), we first choose a basis {e;} for a subspace of V and a subset {a;} of
V, and then let e;a = a; for each i € I and extend this map linearly to V. To
shorten this process, we simply say, given {e;} and {a;} within the context, then
for each « € P(V), we can write
(@)
o= .
a;

A subspace U of V generated by a linearly independent subset {e;} of V is
denoted by (e;) and when we write U = (e;), we mean that the set {e;} is a basis
of U, and we have dim U = |I|. For each oo € P(V'), the kernel and the range of «
denoted by ker a and Va respectively, and the rank of « is dim(V«).

Let V be a vector space and {u;} a subset of V. The notation »_ a;u; means
the linear combination:

Qi Uiy + Qi Uiy + oo+ Q5 Uy,

for some n € N, u;,, 4y, ..., u;, € {u;} and scalars a;,, ai,, ..., a;,. Suppose that
a € PT(V,W) and U is a subspace of V. If we write Ua = (u;«), it means that
u; € UNdom « for all 4. In addition, we can show that {u;} is linearly independent.

Let PQ = {a € PT(V,W):Va C Wa}. For a € PQ and 8 € PT(V,W), we
obtain Va C Wa which implies that Va8 C WafS. So af € PQ. Therefore, PQ
is a right ideal of PT'(V,W).

Lemma 2.2. The set PQ is a right ideal of PT(V,W).

Theorem 2.3. Let o € PT(V,W). Then « is regular if and only if « € PQ.
Consequently, PQ is the largest reqular subsemigroup of PT(V,W).

Proof. From Lemma 2.2, we see that PQ is a subsemigroup of PT(V,W). Let
a € PQ. Then Va C Wa = (wja). So {w,} is linearly independent. If v € dom ¢,
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then va = 3 zj(w;a) = (3 z;w;)a for some scalars z;. So (v — Y z;w;)a =0
implies v — ) x;w; € ker . Hence v € ker o + (w;). Let u € kera N (w;). Then
ua =0 and u =) y,w; for some scalars y;, so 0 = ua = > y;w;a implies y; =0
for all j since {wj;a} is linearly independent. Hence ker o N (w;) = (0) which
follows that dom a = kera @ (w;). If kera = (u;) and W = Wa & (vg), we can

write
o= U; w;
0 wja

v w;x
ﬁz( 0 w; )

We can see that V3 = (w;) € W, so f € PT(V,W) and a = afa. Hence « is
regular. Now, let a be any regular element in PT(V, W). Then o = aSa for some
B e PT(V,W),so Va=Vafa = (Vaf)a C Wa. Therefore, a € PQ. O

and define

By the above theorem, we have the following corollary.

Corollary 2.4. Let W be a non-zero subspace of a vector space V.. Then PT(V, W)
is a regular semigroup if and only if V. =W.

Proof. 1t is clear that if V = W, then PT(V,W) = P(V) and PT(V, W) is regular.
Conversely, if W is a proper subspace of V, then we can write W = (w;) and
V = (w;) @ (v;). Since W is a non-zero subspace, we choose w;, € {w;} and

vj, € {v;}. Define
_ w; - Vj
a= ()

Hence Wa = (0) C (w;,) = Va and then « is not regular by Theorem 2.3. O

By the above corollary, we note that if W is a non-zero proper subspace of a
vector space V, then PT(V, W) is not a regular semigroup. It is concluded that,
in this case, PT(V,W) is not isomorphic to P(U) for any vector space U since
P(U) is regular. This shows that PT(V, W) is almost never isomorphic to P(U).

Lemma 2.5. Let a, 8 € PT(V,W). Then o =~ for some v € PT(V,W) if and
only if Va C Wp.

Proof. If a = 7 for some v € PT(V,W), then Va = V48 C W. Now, assume
that Va C W and write Va = (v;«). Hence {v;} is linearly independent. For
each 4, there is w; € W such that v;a = w; 8. Thus {w; S} is linearly independent.
Now, let V3 = (w;8) ® (v;f), keraw = (u,) and ker 8 = (us). Then {u,} U {v;}
and {us} U {w;} U{v;} are linearly independent. Since dom a = ker oo & (v;) and
dom 8 = ker 8@ (w;) @ (v;), by the same proof as given for [11, Lemma 2| then is
~v € PT(V,W) such that a = vf, as required. O

By the above lemma, we get the following result immediately.
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Lemma 2.6. Let o, € PT(V,W). If B € PQ, then a = ~f for some vy €
PT(V,W) if and only if Vaa C V.

Theorem 2.7. Let o, 8 € PT(V,W). Then oLf if and only if (o, 8 € PQ and
Va=Vg3) or (o, € PT(V,W)\ PQ and o = f3).

Proof. Assume that aLB3. Then a = A\ and 3 = ua for some A\, u € PT(V, W)
Suppose that « € PQ. If A=1or u =1, then 8 = a € PQ and Va = V§.
On the other hand, if \,u € PT(V,W) then V3 = Vua = (VuX)S C W} since
Vur € W. Thus g € PQ. From o = A§ and 8 = pa, we have Va = V3 by
Lemma 2.6. Now, suppose that o € PT(V, W)\ PQ. If \,u € PT(V,W), then
Va=VA5 = (VAu)a € Wa which contradicts o € PT'(V, W) \ PQ. Thus A =1
or p=1andso 8 =ae PT(V,W)\ PQ. The converse is a direct consequence of
Lemma 2.6 O

Theorem 2.8. If o, € PT(V,W), then a = v for some v € PT(V,W) if and
only if dom o C dom S and ker 8 C kera. Consequently, aRS if and only if
dom a = dom (3 and ker a = ker 3.

Proof. Tt is clear that if & = 8v for some v € PT(V,W), then dom o C dom f.
Let v € ker 8. Then v = 0 implies va = vBy = 0, so ker 8 C ker .

Conversely, suppose dom « C dom 8 and ker § C ker . Write ker 5 = (u;),
kera = (u;,u;) and dom a = kera @ (vg). Since dom o C dom 3, we have
dom 8 = dom a® (vs). Then

. U; Uy Vk o Ui Uy Vk Vg
a—<0 0 w%)’ﬂ_(o w; Wy ws>
for some wj, wj, wy, ws € W. We can see that {w;,wy} is linearly independent.
Define v € PT(V,W) by
_ wj W
T ( 0w ) |

Then a = B, as required. O

Lemma 2.9. Let o, € PT(V,W). If dom o = dom S and ker o = ker 8 then
either both o and B are in PQ, or neither is in PQ. Consequently, o«Rp if and
only if (o, B € PQ, dom o = dom 3 and ker a« = ker 8) or (o, 8 € PT(V,W)\ PQ,
dom o = dom 3 and ker v = ker j3).

Proof. Assume that dom o = dom S and ker o = ker 8 and suppose that o, 5 €
PQ is false. So one of a or § is not in PQ, we suppose that o ¢ PQ. Thus
(VAW)a € Wa, so there is vg € V'\ W such that voa # wa for all w € W. Thus
vg —w ¢ kera for all w e W. If 8 € PQ, then V§ = W§, so vy = wf for some
w €W (vy € dom a = dom ) which implies that vg —w € ker 8 = ker o which is
a contradiction. Therefore 8 ¢ PQ. O
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As a direct consequence of Theorem 2.7, Theorem 2.8 and Lemma 2.9, we have
the following corollary.

Corollary 2.10. Let o, € PT(V,W). Then oHp if and only if (o, € PQ,
Va =V, dom a = dom 8 and kera = ker8) or (o, € PT(V,W)\ PQ and
a=p).

Theorem 2.11. Let o, € PT(V,W). Then oDg if and only if (o, € PQ

and dim(Va) = dim(Vg)) or (o,8 € PT(V, W)\ PQ, dom o = dom S and
ker a = ker 3).

Proof. Let a, 8 € PT(V,W) be such that aDS. Then aly and yRf for some
v € PT(V,W). If &« € PQ, then since Ly, we must have v € PQ and Va = V7.
From yR 3, we get 5 € PQ, dom v = dom S and kery = ker 5. So we obtain

dim(Va) =dim(Vy) = dim(dom v/ker~)
dim(dom S/ ker ) = dim(V 3).

If « € PT(V,WW)\ PQ, then v = « (since aLy) and thus RS which implies
that dom o = dom S and kera = ker 8. So by Lemma 2.9, we must have § €
PT(V,W)\ PQ.

Conversely, assume that the conditions hold. Clearly, if o, 8 € PT(V, W)\ PQ,
dom « = dom S and ker v = ker § then R 3, and so aDf (since R C D). If o, 8 €
PQ and dim(Va) = dim(V ), then Va = Wa = (w;a) and V3 = W = (w);53).
Let ker o« = (u,.) and ker 8 = (us), so we can write

U wjy _ us W}
(5 )= (6 ).

where (w;), (w}) € W. If v € PT(V,W) is defined by

(% )
then dom v = dom «, kery =kera, Vy =V and v € PQ, so aRYLS. O

Lemma 2.12. Let o, € PT(V,W). If a = ABp for some A € PT(V,W) and
w € PT(V,W)t, then dim(Va) < dim(W ).

Proof. Since Va = (VA)Bu C W, we have dim(Va) < dim(W Bu). Let Whu =
(w;p) where {w;} € W and {w;} is linearly independent. Then (w;) C Wp
which implies that

dim(Wp) = dim(w;p) = dim(w;) < dim(W ).

Therefore, dim(Va) < dim(W§5). O
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Theorem 2.13. Let o, 5 € PT(V,W). Then aJ B if and only if (dom o = dom
and ker a = ker ) or dim(Va) = dim(Wa) = dim(WB) = dim(V ).

Proof. Assume that aJS. Then a = A\3u and 8 = Nap' for some A\, N, pu, 1’ €
PT(V,W)L. If X =1= X, then a = B and 8 = ap’ which imply that aR3. Thus
dom « = dom § and ker o = ker 8. If either A or X is in PT(V, W), then we can
write @ = 035 and 8 = o’ad’ for some 0,0’ € PT(V,W) and 6,8 € PT(V,W)!.
For example, if A = 1 and X € PT(V,W), then « = Bu and 8 = Nay' imply
a=Bu=Nap)p=Na(p'n) =N(Bp)w'pn=NB(up'1r). Thus, by Lemma 2.12,
it follows that

dim(W3) > dim(Va) > dim(Wa) > dim(V3) > dim(Wp),

whence dim(Va) = dim(Wa) = dim(Wg) = dim(V 3).

Conversely, assume that the conditions hold. If dom o = dom 5 and ker a =
ker 5, then aRp and so aJpB. Now, suppose that dim(Va) = dim(Wa) =
dim(Wg) = dim(VB). Let kera = (u;), ker 8 = (u;) and Vo = (vper). Then
dom a = kera @ (vg). Since dim(Va) = dim(Wg3), we let W8 = (w;5) and
dom 8 =ker 8 & (w},) ® (v;). Then we write

o u vy S u; w, oy
a<0 wk)’ﬂ<0 wi.fB wl>'

Let V = (w,.B8) & (vy,) and define A\, p € PT(V,W) by

u; vy, U Wi
\ = e k .
(6 )= )
Then o = ASu, as required. Similarly, we can show that 8 = Nay’' for some

N, u' € PT(V,W) by using the equality dim(V 3) = dim(Wa). O

Corollary 2.14. If o, 8 € PQ, then aJpS on PT(V,W) if and only if aDB on
PT(V,W).

Proof. In general, we have D C J. Let o, 8 € PQ and aJ 83 on PT(V,W). Then
(dom a = dom 8 and kera = ker8) or dim(Va) = dim(Wea) = dim(Wg3) =
dim(V 3). If dom « = dom § and ker a = ker 3, then

dim(Vea) = dim(dom «/ ker o) = dim(dom 8/ ker 8) = dim(V 3).

Thus, both cases imply dim(V«) = dim(V 3) and DS on PT(V, W) by Theorem
2.11. O

Theorem 2.15. D=7 on PT(V,W) if and only if dim W is finite or V. =W.

Proof. Tt is clear that if V.= W, then PT(V,W) = P(V) = PQ which follows that
D = J by Corollary 2.14. Suppose that dim W is finite. Let «, 8 € PT(V,W)
with aJ8. If dom o = dom 8 and kera = ker 8, then RS and hence aDg.
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Now, assume that dim(Va) = dim(Wa) = dim(Wg) = dim(V ). Since dim W
is finite, we have dim(Va),dim(V j3) are finite which implies that Va = Wa and
VB =Wg. Thus o, 8 € PQ and dim(Va) = dim(V 3). Therefore, aDj.

Conversely, suppose that dim W is infinite and W C V. Let {v;} be a basis
of W and {v,} a basis of V such that I C J. Then there is an infinite countable
subset {uy} of {v;} where n € N. Let v € {v;} \ {v;} and define «, 8 by

. v Up _ [ U2pn-1 U U2p
a_(ul Uzn)’ﬁ_< 0 U1 U4n>.
Then o, 8 € PT(V,W)\ PQ and dim(Va) = dim(Wa) = Xy = dim(Wp) =

dim(V ), so aJB. Since ker & = (0) # (ug,—1) = ker 3, we have o and 8 are not
D-related on PT(V,W). O

3 Partial orders

Recall that the natural partial order on any semigroup S is defined by
a < b if and only if a = zb = by, za = a for some z,y € S*,
or equivalently
a < b if and only if a = wb = bz,az = a for some w, z € S*. (3.1)

In this paper, we use (3.1) to define the partial order on the semigroup
PT(V,W), that is for each o, 3 € PT(V, W)

a < B if and only if @ = y8 = Bu, a = au for some v, u € PT(V, W)

We note that if W C V., then PT(V, W) has no identity elements. So, in this case
PT(V,W)! #£ PT(V,W). In addintion, < on PT(V,W) does not coincide with
the restriction of < on P(V'). For example, let V' = (v1,v9,v3) and W = (v, v2).

Define
v V2 v1 V2 U
o= 3 )and 8 = 3.
v1 U1 U1 V2 V2 U1

U1 V2 U3 V1 V2 U3
7_<va U3 U3 )and“_<v1 v U3 )

then o = v0 = Bu, a = ap which implies that o < 8 in P(V') but we cannot find
v € PT(V,W)! such that o = v3. Hence a £ 8 in PT(V,W).

In [4], Kowol and Mitsch characterized < on T(X) as follows. If «, 8 € T(X),
then the following statements are equivalent.

(1) a<B.

(2) Xa € X and a = B for some idempotent p € T(X).

If we let
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(3) BB~ C aa™! and a = AB for some idempotent A € T'(X).

(4) Xa C XB,887 ! Caa™! and va = 28 for all z € X with 28 € Xa.

In [5], Marques-Smith and Sullivan extended the above result to P(X) as
follows. If a, 8 € P(X), then

a < B if and only if Xa € Xf3,dom o C dom 3,03~ ! C aa~! and
BB~ N (dom B x dom ) C acx™ 1.

Later in [10], Sullivan proved an analogue for P(V) as follows. If o, 5 € P(V),
then

a < B if and only if Va C V3,dom a C dom S, ker 8 C ker « and
Vap~1 C E(a, B)

where E(a, 8) = {u € V : ua = uff}.

Recently, we extended the result for P(X) to PT(X,Y) (see [7]). For o, €
PT(X,Y), a < g if and only if o = § or the following statements hold.

(1) Xa CYB.

(2) dom o C dom S and ker 8N (dom S x dom «a) C ker o .

(3) For each z € dom g, if 28 € X, then z € dom « and za = zf5.

Now, we aim to prove an analogue result for PT(V, W) and this result extends
a similar result on P(V).

Theorem 3.1. Let o, 8 € PT(V,W). Then « < 8 if and only if « = B or the
following statements hold.

(1) Va C WB.

(2) dom a C dom S.

(3) Vap=' C E(a, f).

Proof. Suppose that o < 3. Then there exist v, € PT(V,W)! such that a =
v8 =pPpand o = au. Iff y =1or p=1, then a = 8. If v,u € PT(V,W), then
(1) and (2) hold by Lemma 2.5 and Theorem 2.8. If v € VaB™!, then v3 € Va
which implies that v = wa for some w € V', thus

vB = wa = wap = vy = va.

Hence v € dom « and va = vB. So v € E(a, ). Conversely, assume that the
conditions (1)-(3) hold. To show that ker 5 C ker v, let v € ker 8. Then v € dom
and v3 = 0 € Va which implies that v € Vaf~! C E(a, 3). We obtain v € dom «
and va = v8 = 0. So, v € kera. Again by Lemma 2.5 and Theorem 2.8, there
exist v, u € PT(V, W) such that a = v8 = Su. Now, we prove that Va C dom g,
by letting w € Va. Then there is v € dom « such that va = w. Since a = v, we
have w = va = vy from which it follows that vy € Vaf™! C E(a, 3). That is
vy € dom «a and vya = vyfS. Thus vyf8 = vya = vyBp = wu which implies that
w € dom p. So, Va C dom u. Hence

1

dom ap = (im a Ndom p)a~! = (im a)a™" = dom a.
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For each v € dom «, va = vy3. We obtain vy € VaB~! C E(a, ) which implies
that vy € dom « and vya = vyf3. Thus

va = vy = vya = vyBu = vapu.
Therefore, o = ap. O

Let < be a partial order on a semigroup S. An element ¢ € S is said to be
left [right] compatible if ca < ¢b [ac < be] for each a,b € S such that a < b. Now,
we characterize all elements in PT(V, W) which are compatible with respect to <.
We first prove the following lemma.

We note that a zero partial linear transformation is a zero map having domain
as a subspace of V.

Lemma 3.2. LetdimW =1 and a, § € PT(V,W). If a < 8, then a = f or a is
a zero partial linear transformation.

Proof. Suppose that a < 8 and « is not a zero partial linear transformation. So
1 < dmVa < dmW = 1, and then Va = W. For each v € dom j3, vB €
VB C W = Va which implies that v € VaB~! C E(a, ) by Theorem 3.1(3).
Hence v € dom « and va = vf3. Thus dom 5 C dom «. Since o < 3, we have
dom a C dom . Therefore, dom o = dom § and a = S. O

Theorem 5.2 in [7] showed that if |Y| > 1 and ) # v € PT(X,Y), then

(1) v is left compatible with < if and only if Yy =Y

(2) v is right compatible with < if and only if (Y C dom + and ~|y is injective)
or Y Ndom v = 0.

And Theorem 3.1 in [10] proved that if v € P(V) has non-zero rank and
dimV > 1, then

(1) v € P(V) is left compatible with < if and only if v is surjective;

(2) v € P(V) is right compatible with < if and only if v € T(V) and ~ is
injective.

For the semigroup PT(V, W), we have the following result.

Theorem 3.3. Let v € PT(V,W). The following statements hold.

(1) If dim W = 1, then every element in PT(V,W) is always left compatible
with <.

(2) If dim W > 1, then ~ is left compatible with < if and only if Wy =W or
v s a zero partial linear transformation.

(3) If dim W > 1, then v € PT(V,W) is right compatible with < if and only
if W C dom v and ~y|w is injective.

Proof. (1) Assume that dimW = 1. Let o, 8 € PT(V,W) with a < §, and let
A € PT(V,W). By the above lemma, we obtain o = f or « is a zero partial
linear transformation. If o = 3, then Aae = A\3. Now, we consider the case « is a
zero partial linear transformation. We obtain VAa = (0) C WAS and dom Ao =

(im ANdom a)A~! C (im ANdom B)A~! = dom AB. Let v € V(Aa)(AB)~1. We
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obtain vAB € VAa C Va which implies that vA € Vapf~! C E(a, 8) since a < .
Thus vAf = vAa. So v € E(Aa, AB). Therefore, Ao < A\S.

(2) Assume that dimW > 1. Suppose that Wy C W and 7 is not a zero
partial linear transformation. If W~ = (0), then there is v € Vy\ Wy C Vy
since 7 is not a zero partial linear transformation. From dim W > 1, there exists
v#w € W\ Wy where {v,w} is linearly independent. If W~ # (0), there are
0£v e Wy CVyand w e W\ Wy where {v,w} is linearly independent since
W~ C W. It is concluded that we can choose 0 # w € W\ Wy and 0 # v € Vy
where {v,w} is linearly independent. Define «, f € PT(V,W) by

(o u)o-(in)

Then o < g. It is clear that v € V8 but v ¢ Vya, so ya # . Since w € Vrya
but w ¢ W3, we conclude that ya £ 8.

Conversely, it is clear that ya = « for each o € PT(V, W) if 7 is a zero partial
linear transformation. In this case, we obtain ~ is left compatible. Assume that
Wy =W. Let a,8 € PT(V,W) be such that a < . We have Vya C Va C
WgE =W~ and

-1

dom ya = (imyNdom a)y™! C (imy Ndom B)y~! = dom 3.

Let v € V(ya)(yB8)~!. Then vy8 € Vya C Va which implies that vy € VaB=! C
E(a, ). Hence vy € dom « and vya = vy, so v € E(ya,v8). Therefore,
ya < B

(3) Suppose that dim W > 1. Assume that W C dom v and v|w is injective.
Let o, € PT(V,W) be such that o < 8. So Va C Wf which implies that
Vay € WpBy. Since W C dom 7, we obtain dom a7y = (im a N dom v)a~! C
(Wndom y)a™t = Wa™ =dom a C dom 8= (im 8 N W)~ C (im 8 N
dom v)3~! = dom Bv. For each v € V(av)(By)~!, we have v3y = wa~y for some
w € V. Since «v|w is injective, we have v = wa € Va, thus v € dom « and
va = vB. Hence v € dom a = (im a N W)a~! C (im aNdom y)a~! = dom ay
and vary = vfBy from which it follows that v € E(avy, 8v). Therefore, ay < 5.

Conversely, if v|w is not injective, then ker |y # (0). Let 0 # w € kery|w.
Define a, 8 € PT(V,W) by a = (8) and 3 = (V). So, we obtain a < f by
Theorem 3.1 and ay # B~ since w € dom B~ but w ¢ dom ay. We also have
ay % By since wBy = wy = 0 € Vay which implies that w € V(ay)(87)~! but
w ¢ dom avy. If W ¢ dom =, then there is w € W\dom ~. Define o, 8 € PT(V, W)
by a = () and 8 = (¥). Thus a < 8 and ay # By. And ay £ By since
dom ay = (w) € (0) = dom Bv. Therefore, 7 is not right compatible. O
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