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Abstract : Let V be any vector space and P (V ) the set of all partial linear
transformations defined on V , that is, all linear transformations α : S → T where
S, T are subspaces of V . Then P (V ) is a semigroup under composition. LetW be a
subspace of V . We define PT (V,W ) = {α ∈ P (V ) : V α ⊆ W}. So PT (V,W ) is a
subsemigroup of P (V ). In this paper, we present the largest regular subsemigroup
and determine Green’s relations on PT (V,W ). Furthermore, we study the natural
partial order ≤ on PT (V,W ) in terms of domains and images and find elements
of PT (V,W ) which are compatible.
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1 Introduction

A partial transformation semigroup is the collection of functions from a sub-
set of X into X with composition which is denoted by P (X). In addition, the
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semigroup T (X) and I(X) are defined by

T (X) = {α ∈ P (X) : dom α = X} and

I(X) = {α ∈ P (X) : α is injective}.

We note that if we let α ∈ P (X) and Z ⊆ X, the notation Zα means {zα :
z ∈ Z ∩ dom α}. It is clear that, Xα = im α.

In [2], Fernandes and Sanwong introduced the partial transformation semi-
group with restricted range. They considered the semigroups PT (X,Y ) and
I(X,Y ) defined by

PT (X,Y ) = {α ∈ P (X) : Xα ⊆ Y } and

I(X,Y ) = {α ∈ I(X) : Xα ⊆ Y }

where Y is a subset of X. They proved that PF = {α ∈ PT (X,Y ) : Xα = Y α} is
the largest regular subsemigroup of PT (X,Y ). Moreover, they determined Green’s
relations on PT (X,Y ) and I(X,Y ).

In 2008, Sanwong and Sommanee [9] studied the subsemigroup T (X,Y ) =
T (X) ∩ PT (X,Y ) of T (X) where Y is a subset of X. They gave a necessary and
sufficient condition for T (X,Y ) to be regular. In the case when T (X,Y ) is not
regular, the largest regular subsemigroup was obtained and this subsemigroup was
shown to determine the Green’s relations on T (X,Y ). Also, a class of maximal
inverse subsemigroups of T (X,Y ) was obtained.

Analogously to P (X), we can define a partial linear transformation on some
vector spaces. Let V be any vector space, P (V ) the set of all linear transformations
α : S → T where S and T are subspaces of V , that is, every element α ∈ P (V ), the
domain and range of α are subspaces of V . Then we have P (V ) under composition
is a semigroup and it is called the partial linear transformation semigroup of V .
The subsemigroups T (V ) and I(V ) are defined by

T (V ) = {α ∈ P (V ) : dom α = V } and

I(V ) = {α ∈ P (V ) : α is injective}.

Similarly, the linear transformation semigroups with restricted range can be
defined as follows. For any vector space V and a subspace W of V ,

PT (V,W ) = {α ∈ P (V ) : V α ⊆ W},
T (V,W ) = {α ∈ T (V ) : V α ⊆ W} and

I(V,W ) = {α ∈ I(V ) : V α ⊆ W}.

Obviously, PT (V, V ) = P (V ), T (V, V ) = T (V ) and I(V, V ) = I(V ). Hence we
may regard PT (V,W ), T (V,W ) and I(V,W ) as generalizations of P (V ), T (V )
and I(V ), respectively.

It is known that Green’s relations on T (V ) are as follows (see [3], page 63).
Let α, β ∈ T (V ). Then



Green’s relations and partial orders on semigroups ... 83

αLβ if and only if V α = V β;
αRβ if and only if kerα = kerβ;

αDβ if and only if dim(V α) = dim(V β);
D = J .

In 2007, Droms [1] gave a complete description of Green’s relations on P (V )
and I(V ). We have for α, β ∈ P (V ) :

αLβ if and only if V α = V β;
αRβ if and only if kerα = kerβ and dom α = dom β;

αDβ if and only if dim(V α) = dim(V β);
D = J .

And for α, β ∈ I(V ) :

αLβ if and only if V α = V β;
αRβ if and only if dom α = dom β;

αDβ if and only if dim(V α) = dim(V β);
D = J .

Later in 2008, Sullivan [11] described Green’s relations and ideals for the semi-
group T (V,W ). And its Green’s relations are as follows. Let Q = {α ∈ T (V,W ) :
V α ⊆ Wα}. For α, β ∈ T (V,W ) :

αLβ if and only if α = β or (α, β ∈ Q and V α = V β);
αRβ if and only if kerα = kerβ;

αDβ if and only if kerα = kerβ or (α, β ∈ Q and dim(V α) = dim(V β));
αJ β if and only if kerα = kerβ or

dim(V α) = dim(Wα) = dim(Wβ) = dim(V β).

Now, we deal with a natural partial order or Mitsch order [6] on any semigroup
S defined by for a, b ∈ S.

a ≤ b if and only if a = xb = by, xa = a for some x, y ∈ S1.

In 2005, Sullivan [10] studied the natural partial order ≤ on P (V ). The author
found all elements of P (V ) which are compatible with respect to ≤.

In 2012, Sangkhanan and Sanwong [7] characterized the natural partial order
≤ on PT (X,Y ) and found elements of PT (X,Y ) which are compatible with ≤.
Recently, they presented the largest regular subsemigroup of I(V,W ) and deter-
mined its Green’s relations in [8]. Furthermore, the authors studied the natural
partial order ≤ on I(V,W ) in terms of domains and images. Finally, they also
found elements of I(V,W ) which are compatible.

In this paper, we describe the largest regular subsemigroup of PT (V,W ) and
characterized its Green’s relations. Furthermore, we study the natural partial
order ≤ on PT (V,W ) in terms of domains and images. Moreover, we characterize
elements of PT (V,W ) which are compatible.
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2 Regularity and Green’s relations on PT (V,W )

Since PT (V,W ) = {α ∈ P (V ) : V α ⊆ W}, we have the following simple result on
PT (V,W ) which will be used throughout the paper.

Lemma 2.1. If S and T are subspaces of V with S ⊆ T , then Sα ⊆ Tα for all
α ∈ PT (V,W ).

For convenience, we adopt the convention: namely, if α ∈ P (X) then we write

α =

(
Xi

ai

)
.

and take as understood that the subscript i belongs to some (unmentioned) index
set I, the abbreviation {ai} denotes {ai : i ∈ I}, and that Xα = {ai} and
aiα

−1 = Xi.
Similarly, we can use this notation for elements in P (V ). To construct a map

α ∈ P (V ), we first choose a basis {ei} for a subspace of V and a subset {ai} of
V , and then let eiα = ai for each i ∈ I and extend this map linearly to V . To
shorten this process, we simply say, given {ei} and {ai} within the context, then
for each α ∈ P (V ), we can write

α =

(
ei
ai

)
.

A subspace U of V generated by a linearly independent subset {ei} of V is
denoted by ⟨ei⟩ and when we write U = ⟨ei⟩, we mean that the set {ei} is a basis
of U , and we have dimU = |I|. For each α ∈ P (V ), the kernel and the range of α
denoted by kerα and V α respectively, and the rank of α is dim(V α).

Let V be a vector space and {ui} a subset of V . The notation
∑

aiui means
the linear combination:

ai1ui1 + ai2ui2 + ...+ ainuin

for some n ∈ N, ui1 , ui2 , ..., uin ∈ {ui} and scalars ai1 , ai2 , ..., ain . Suppose that
α ∈ PT (V,W ) and U is a subspace of V . If we write Uα = ⟨uiα⟩, it means that
ui ∈ U∩dom α for all i. In addition, we can show that {ui} is linearly independent.

Let PQ = {α ∈ PT (V,W ) : V α ⊆ Wα}. For α ∈ PQ and β ∈ PT (V,W ), we
obtain V α ⊆ Wα which implies that V αβ ⊆ Wαβ. So αβ ∈ PQ. Therefore, PQ
is a right ideal of PT (V,W ).

Lemma 2.2. The set PQ is a right ideal of PT (V,W ).

Theorem 2.3. Let α ∈ PT (V,W ). Then α is regular if and only if α ∈ PQ.
Consequently, PQ is the largest regular subsemigroup of PT (V,W ).

Proof. From Lemma 2.2, we see that PQ is a subsemigroup of PT (V,W ). Let
α ∈ PQ. Then V α ⊆ Wα = ⟨wjα⟩. So {wj} is linearly independent. If v ∈ dom α,



Green’s relations and partial orders on semigroups ... 85

then vα =
∑

xj(wjα) = (
∑

xjwj)α for some scalars xj . So (v −
∑

xjwj)α = 0
implies v −

∑
xjwj ∈ kerα. Hence v ∈ kerα + ⟨wj⟩. Let u ∈ kerα ∩ ⟨wj⟩. Then

uα = 0 and u =
∑

yjwj for some scalars yj , so 0 = uα =
∑

yjwjα implies yj = 0
for all j since {wjα} is linearly independent. Hence kerα ∩ ⟨wj⟩ = ⟨0⟩ which
follows that dom α = kerα ⊕ ⟨wj⟩. If kerα = ⟨ui⟩ and W = Wα ⊕ ⟨vk⟩, we can
write

α =

(
ui wj

0 wjα

)
and define

β =

(
vk wjα
0 wj

)
.

We can see that V β = ⟨wj⟩ ⊆ W , so β ∈ PT (V,W ) and α = αβα. Hence α is
regular. Now, let α be any regular element in PT (V,W ). Then α = αβα for some
β ∈ PT (V,W ), so V α = V αβα = (V αβ)α ⊆ Wα. Therefore, α ∈ PQ.

By the above theorem, we have the following corollary.

Corollary 2.4. Let W be a non-zero subspace of a vector space V . Then PT (V,W )
is a regular semigroup if and only if V = W .

Proof. It is clear that if V = W , then PT (V,W ) = P (V ) and PT (V,W ) is regular.
Conversely, if W is a proper subspace of V , then we can write W = ⟨wi⟩ and
V = ⟨wi⟩ ⊕ ⟨vj⟩. Since W is a non-zero subspace, we choose wi1 ∈ {wi} and
vj1 ∈ {vj}. Define

α =

(
wi vj1
0 wi1

)
.

Hence Wα = ⟨0⟩ ( ⟨wi1⟩ = V α and then α is not regular by Theorem 2.3.

By the above corollary, we note that if W is a non-zero proper subspace of a
vector space V , then PT (V,W ) is not a regular semigroup. It is concluded that,
in this case, PT (V,W ) is not isomorphic to P (U) for any vector space U since
P (U) is regular. This shows that PT (V,W ) is almost never isomorphic to P (U).

Lemma 2.5. Let α, β ∈ PT (V,W ). Then α = γβ for some γ ∈ PT (V,W ) if and
only if V α ⊆ Wβ.

Proof. If α = γβ for some γ ∈ PT (V,W ), then V α = V γβ ⊆ Wβ. Now, assume
that V α ⊆ Wβ and write V α = ⟨viα⟩. Hence {vi} is linearly independent. For
each i, there is wi ∈ W such that viα = wiβ. Thus {wiβ} is linearly independent.
Now, let V β = ⟨wiβ⟩ ⊕ ⟨vjβ⟩, kerα = ⟨ur⟩ and kerβ = ⟨us⟩. Then {ur} ∪ {vi}
and {us} ∪ {wi} ∪ {vj} are linearly independent. Since dom α = kerα⊕ ⟨vi⟩ and
dom β = kerβ ⊕ ⟨wi⟩ ⊕ ⟨vj⟩, by the same proof as given for [11, Lemma 2] then is
γ ∈ PT (V,W ) such that α = γβ, as required.

By the above lemma, we get the following result immediately.
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Lemma 2.6. Let α, β ∈ PT (V,W ). If β ∈ PQ, then α = γβ for some γ ∈
PT (V,W ) if and only if V α ⊆ V β.

Theorem 2.7. Let α, β ∈ PT (V,W ). Then αLβ if and only if (α, β ∈ PQ and
V α = V β) or (α, β ∈ PT (V,W ) \ PQ and α = β).

Proof. Assume that αLβ. Then α = λβ and β = µα for some λ, µ ∈ PT (V,W )1.
Suppose that α ∈ PQ. If λ = 1 or µ = 1, then β = α ∈ PQ and V α = V β.
On the other hand, if λ, µ ∈ PT (V,W ) then V β = V µα = (V µλ)β ⊆ Wβ since
V µλ ⊆ W . Thus β ∈ PQ. From α = λβ and β = µα, we have V α = V β by
Lemma 2.6. Now, suppose that α ∈ PT (V,W ) \ PQ. If λ, µ ∈ PT (V,W ), then
V α = V λβ = (V λµ)α ⊆ Wα which contradicts α ∈ PT (V,W ) \ PQ. Thus λ = 1
or µ = 1 and so β = α ∈ PT (V,W ) \PQ. The converse is a direct consequence of
Lemma 2.6

Theorem 2.8. If α, β ∈ PT (V,W ), then α = βγ for some γ ∈ PT (V,W ) if and
only if dom α ⊆ dom β and kerβ ⊆ kerα. Consequently, αRβ if and only if
dom α = dom β and kerα = kerβ.

Proof. It is clear that if α = βγ for some γ ∈ PT (V,W ), then dom α ⊆ dom β.
Let v ∈ kerβ. Then vβ = 0 implies vα = vβγ = 0, so kerβ ⊆ kerα.

Conversely, suppose dom α ⊆ dom β and kerβ ⊆ kerα. Write kerβ = ⟨ui⟩,
kerα = ⟨ui, uj⟩ and dom α = kerα ⊕ ⟨vk⟩. Since dom α ⊆ dom β, we have
dom β = dom α⊕ ⟨vs⟩. Then

α =

(
ui uj vk
0 0 w′

k

)
, β =

(
ui uj vk vs
0 wj wk ws

)
for some w′

k, wj , wk, ws ∈ W . We can see that {wj , wk} is linearly independent.
Define γ ∈ PT (V,W ) by

γ =

(
wj wk

0 w′
k

)
.

Then α = βγ, as required.

Lemma 2.9. Let α, β ∈ PT (V,W ). If dom α = dom β and kerα = kerβ then
either both α and β are in PQ, or neither is in PQ. Consequently, αRβ if and
only if (α, β ∈ PQ, dom α = dom β and kerα = kerβ) or (α, β ∈ PT (V,W )\PQ,
dom α = dom β and kerα = kerβ).

Proof. Assume that dom α = dom β and kerα = kerβ and suppose that α, β ∈
PQ is false. So one of α or β is not in PQ, we suppose that α /∈ PQ. Thus
(V \W )α * Wα, so there is v0 ∈ V \W such that v0α ̸= wα for all w ∈ W . Thus
v0 − w /∈ kerα for all w ∈ W . If β ∈ PQ, then V β = Wβ, so v0β = wβ for some
w ∈ W (v0 ∈ dom α = dom β) which implies that v0 −w ∈ kerβ = kerα which is
a contradiction. Therefore β /∈ PQ.
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As a direct consequence of Theorem 2.7, Theorem 2.8 and Lemma 2.9, we have
the following corollary.

Corollary 2.10. Let α, β ∈ PT (V,W ). Then αHβ if and only if (α, β ∈ PQ,
V α = V β, dom α = dom β and kerα = kerβ) or (α, β ∈ PT (V,W ) \ PQ and
α = β).

Theorem 2.11. Let α, β ∈ PT (V,W ). Then αDβ if and only if (α, β ∈ PQ
and dim(V α) = dim(V β)) or (α, β ∈ PT (V,W ) \ PQ, dom α = dom β and
kerα = kerβ).

Proof. Let α, β ∈ PT (V,W ) be such that αDβ. Then αLγ and γRβ for some
γ ∈ PT (V,W ). If α ∈ PQ, then since αLγ, we must have γ ∈ PQ and V α = V γ.
From γRβ, we get β ∈ PQ, dom γ = dom β and ker γ = kerβ. So we obtain

dim(V α) = dim(V γ) = dim(dom γ/ ker γ)

= dim(dom β/ kerβ) = dim(V β).

If α ∈ PT (V,W ) \ PQ, then γ = α (since αLγ) and thus αRβ which implies
that dom α = dom β and kerα = kerβ. So by Lemma 2.9, we must have β ∈
PT (V,W ) \ PQ.

Conversely, assume that the conditions hold. Clearly, if α, β ∈ PT (V,W )\PQ,
dom α = dom β and kerα = kerβ then αRβ, and so αDβ (since R ⊆ D). If α, β ∈
PQ and dim(V α) = dim(V β), then V α = Wα = ⟨wjα⟩ and V β = Wβ = ⟨w′

jβ⟩.
Let kerα = ⟨ur⟩ and kerβ = ⟨us⟩, so we can write

α =

(
ur wj

0 wjα

)
, β =

(
us w′

j

0 w′
jβ

)
,

where ⟨wj⟩, ⟨w′
j⟩ ⊆ W . If γ ∈ PT (V,W ) is defined by

γ =

(
ur wj

0 w′
jβ

)
,

then dom γ = dom α, ker γ = kerα, V γ = V β and γ ∈ PQ, so αRγLβ.

Lemma 2.12. Let α, β ∈ PT (V,W ). If α = λβµ for some λ ∈ PT (V,W ) and
µ ∈ PT (V,W )1, then dim(V α) ≤ dim(Wβ).

Proof. Since V α = (V λ)βµ ⊆ Wβµ, we have dim(V α) ≤ dim(Wβµ). Let Wβµ =
⟨wiµ⟩ where {wi} ⊆ Wβ and {wi} is linearly independent. Then ⟨wi⟩ ⊆ Wβ
which implies that

dim(Wβµ) = dim⟨wiµ⟩ = dim⟨wi⟩ ≤ dim(Wβ).

Therefore, dim(V α) ≤ dim(Wβ).
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Theorem 2.13. Let α, β ∈ PT (V,W ). Then αJ β if and only if (dom α = dom β
and kerα = kerβ) or dim(V α) = dim(Wα) = dim(Wβ) = dim(V β).

Proof. Assume that αJ β. Then α = λβµ and β = λ′αµ′ for some λ, λ′, µ, µ′ ∈
PT (V,W )1. If λ = 1 = λ′, then α = βµ and β = αµ′ which imply that αRβ. Thus
dom α = dom β and kerα = kerβ. If either λ or λ′ is in PT (V,W ), then we can
write α = σβδ and β = σ′αδ′ for some σ, σ′ ∈ PT (V,W ) and δ, δ′ ∈ PT (V,W )1.
For example, if λ = 1 and λ′ ∈ PT (V,W ), then α = βµ and β = λ′αµ′ imply
α = βµ = (λ′αµ′)µ = λ′α(µ′µ) = λ′(βµ)µ′µ = λ′β(µµ′µ). Thus, by Lemma 2.12,
it follows that

dim(Wβ) ≥ dim(V α) ≥ dim(Wα) ≥ dim(V β) ≥ dim(Wβ),

whence dim(V α) = dim(Wα) = dim(Wβ) = dim(V β).
Conversely, assume that the conditions hold. If dom α = dom β and kerα =

kerβ, then αRβ and so αJ β. Now, suppose that dim(V α) = dim(Wα) =
dim(Wβ) = dim(V β). Let kerα = ⟨ui⟩, kerβ = ⟨uj⟩ and V α = ⟨vkα⟩. Then
dom α = kerα ⊕ ⟨vk⟩. Since dim(V α) = dim(Wβ), we let Wβ = ⟨w′

kβ⟩ and
dom β = kerβ ⊕ ⟨w′

k⟩ ⊕ ⟨vl⟩. Then we write

α =

(
ui vk
0 wk

)
, β =

(
uj w′

k vl
0 w′

kβ wl

)
.

Let V = ⟨w′
kβ⟩ ⊕ ⟨vm⟩ and define λ, µ ∈ PT (V,W ) by

λ =

(
ui vk
0 w′

k

)
, µ =

(
vm w′

kβ
0 wk

)
.

Then α = λβµ, as required. Similarly, we can show that β = λ′αµ′ for some
λ′, µ′ ∈ PT (V,W ) by using the equality dim(V β) = dim(Wα).

Corollary 2.14. If α, β ∈ PQ, then αJ β on PT (V,W ) if and only if αDβ on
PT (V,W ).

Proof. In general, we have D ⊆ J . Let α, β ∈ PQ and αJ β on PT (V,W ). Then
(dom α = dom β and kerα = kerβ) or dim(V α) = dim(Wα) = dim(Wβ) =
dim(V β). If dom α = dom β and kerα = kerβ, then

dim(V α) = dim(dom α/ kerα) = dim(dom β/ kerβ) = dim(V β).

Thus, both cases imply dim(V α) = dim(V β) and αDβ on PT (V,W ) by Theorem
2.11.

Theorem 2.15. D = J on PT (V,W ) if and only if dimW is finite or V = W .

Proof. It is clear that if V = W , then PT (V,W ) = P (V ) = PQ which follows that
D = J by Corollary 2.14. Suppose that dimW is finite. Let α, β ∈ PT (V,W )
with αJ β. If dom α = dom β and kerα = kerβ, then αRβ and hence αDβ.
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Now, assume that dim(V α) = dim(Wα) = dim(Wβ) = dim(V β). Since dimW
is finite, we have dim(V α),dim(V β) are finite which implies that V α = Wα and
V β = Wβ. Thus α, β ∈ PQ and dim(V α) = dim(V β). Therefore, αDβ.

Conversely, suppose that dimW is infinite and W ( V . Let {vi} be a basis
of W and {vj} a basis of V such that I ( J . Then there is an infinite countable
subset {un} of {vi} where n ∈ N. Let v ∈ {vj} \ {vi} and define α, β by

α =

(
v un

u1 u2n

)
, β =

(
u2n−1 v u2n

0 u1 u4n

)
.

Then α, β ∈ PT (V,W ) \ PQ and dim(V α) = dim(Wα) = ℵ0 = dim(Wβ) =
dim(V β), so αJ β. Since kerα = ⟨0⟩ ̸= ⟨u2n−1⟩ = kerβ, we have α and β are not
D-related on PT (V,W ).

3 Partial orders

Recall that the natural partial order on any semigroup S is defined by

a ≤ b if and only if a = xb = by, xa = a for some x, y ∈ S1,

or equivalently

a ≤ b if and only if a = wb = bz, az = a for some w, z ∈ S1. (3.1)

In this paper, we use (3.1) to define the partial order on the semigroup
PT (V,W ), that is for each α, β ∈ PT (V,W )

α ≤ β if and only if α = γβ = βµ, α = αµ for some γ, µ ∈ PT (V,W )1.

We note that if W ( V , then PT (V,W ) has no identity elements. So, in this case
PT (V,W )1 ̸= PT (V,W ). In addintion, ≤ on PT (V,W ) does not coincide with
the restriction of ≤ on P (V ). For example, let V = ⟨v1, v2, v3⟩ and W = ⟨v1, v2⟩.
Define

α =

(
v1 v2 v3
v1 v1 v1

)
and β =

(
v1 v2 v3
v2 v2 v1

)
.

If we let

γ =

(
v1 v2 v3
v3 v3 v3

)
and µ =

(
v1 v2 v3
v1 v1 v3

)
,

then α = γβ = βµ, α = αµ which implies that α ≤ β in P (V ) but we cannot find
γ ∈ PT (V,W )1 such that α = γβ. Hence α � β in PT (V,W ).

In [4], Kowol and Mitsch characterized ≤ on T (X) as follows. If α, β ∈ T (X),
then the following statements are equivalent.

(1) α ≤ β.
(2) Xα ⊆ Xβ and α = βµ for some idempotent µ ∈ T (X).
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(3) ββ−1 ⊆ αα−1 and α = λβ for some idempotent λ ∈ T (X).
(4) Xα ⊆ Xβ, ββ−1 ⊆ αα−1 and xα = xβ for all x ∈ X with xβ ∈ Xα.
In [5], Marques-Smith and Sullivan extended the above result to P (X) as

follows. If α, β ∈ P (X), then

α ≤ β if and only if Xα ⊆ Xβ, dom α ⊆ dom β, αβ−1 ⊆ αα−1 and
ββ−1 ∩ (dom β × dom α) ⊆ αα−1.

Later in [10], Sullivan proved an analogue for P (V ) as follows. If α, β ∈ P (V ),
then

α ≤ β if and only if V α ⊆ V β, dom α ⊆ dom β, kerβ ⊆ kerα and
V αβ−1 ⊆ E(α, β)

where E(α, β) = {u ∈ V : uα = uβ}.
Recently, we extended the result for P (X) to PT (X,Y ) (see [7]). For α, β ∈

PT (X,Y ), α ≤ β if and only if α = β or the following statements hold.
(1) Xα ⊆ Y β.
(2) dom α ⊆ dom β and kerβ ∩ (dom β × dom α) ⊆ kerα .
(3) For each x ∈ dom β, if xβ ∈ Xα, then x ∈ dom α and xα = xβ.
Now, we aim to prove an analogue result for PT (V,W ) and this result extends

a similar result on P (V ).

Theorem 3.1. Let α, β ∈ PT (V,W ). Then α ≤ β if and only if α = β or the
following statements hold.

(1) V α ⊆ Wβ.
(2) dom α ⊆ dom β.
(3) V αβ−1 ⊆ E(α, β).

Proof. Suppose that α ≤ β. Then there exist γ, µ ∈ PT (V,W )1 such that α =
γβ = βµ and α = αµ. If γ = 1 or µ = 1, then α = β. If γ, µ ∈ PT (V,W ), then
(1) and (2) hold by Lemma 2.5 and Theorem 2.8. If v ∈ V αβ−1, then vβ ∈ V α
which implies that vβ = wα for some w ∈ V , thus

vβ = wα = wαµ = vβµ = vα.

Hence v ∈ dom α and vα = vβ. So v ∈ E(α, β). Conversely, assume that the
conditions (1)-(3) hold. To show that kerβ ⊆ kerα, let v ∈ kerβ. Then v ∈ dom β
and vβ = 0 ∈ V α which implies that v ∈ V αβ−1 ⊆ E(α, β). We obtain v ∈ dom α
and vα = vβ = 0. So, v ∈ kerα. Again by Lemma 2.5 and Theorem 2.8, there
exist γ, µ ∈ PT (V,W ) such that α = γβ = βµ. Now, we prove that V α ⊆ dom µ,
by letting w ∈ V α. Then there is v ∈ dom α such that vα = w. Since α = γβ, we
have w = vα = vγβ from which it follows that vγ ∈ V αβ−1 ⊆ E(α, β). That is
vγ ∈ dom α and vγα = vγβ. Thus vγβ = vγα = vγβµ = wµ which implies that
w ∈ dom µ. So, V α ⊆ dom µ. Hence

dom αµ = (im α ∩ dom µ)α−1 = (im α)α−1 = dom α.
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For each v ∈ dom α, vα = vγβ. We obtain vγ ∈ V αβ−1 ⊆ E(α, β) which implies
that vγ ∈ dom α and vγα = vγβ. Thus

vα = vγβ = vγα = vγβµ = vαµ.

Therefore, α = αµ.

Let ≼ be a partial order on a semigroup S. An element c ∈ S is said to be
left [right] compatible if ca ≼ cb [ac ≼ bc] for each a, b ∈ S such that a ≼ b. Now,
we characterize all elements in PT (V,W ) which are compatible with respect to ≤.
We first prove the following lemma.

We note that a zero partial linear transformation is a zero map having domain
as a subspace of V .

Lemma 3.2. Let dimW = 1 and α, β ∈ PT (V,W ). If α ≤ β, then α = β or α is
a zero partial linear transformation.

Proof. Suppose that α ≤ β and α is not a zero partial linear transformation. So
1 ≤ dimV α ≤ dimW = 1, and then V α = W . For each v ∈ dom β, vβ ∈
V β ⊆ W = V α which implies that v ∈ V αβ−1 ⊆ E(α, β) by Theorem 3.1(3).
Hence v ∈ dom α and vα = vβ. Thus dom β ⊆ dom α. Since α ≤ β, we have
dom α ⊆ dom β. Therefore, dom α = dom β and α = β.

Theorem 5.2 in [7] showed that if |Y | > 1 and ∅ ̸= γ ∈ PT (X,Y ), then
(1) γ is left compatible with ≤ if and only if Y γ = Y ;
(2) γ is right compatible with ≤ if and only if (Y ⊆ dom γ and γ|Y is injective)

or Y ∩ dom γ = ∅.
And Theorem 3.1 in [10] proved that if γ ∈ P (V ) has non-zero rank and

dimV > 1, then
(1) γ ∈ P (V ) is left compatible with ≤ if and only if γ is surjective;
(2) γ ∈ P (V ) is right compatible with ≤ if and only if γ ∈ T (V ) and γ is

injective.
For the semigroup PT (V,W ), we have the following result.

Theorem 3.3. Let γ ∈ PT (V,W ). The following statements hold.
(1) If dimW = 1, then every element in PT (V,W ) is always left compatible

with ≤.
(2) If dimW > 1, then γ is left compatible with ≤ if and only if Wγ = W or

γ is a zero partial linear transformation.
(3) If dimW ≥ 1, then γ ∈ PT (V,W ) is right compatible with ≤ if and only

if W ⊆ dom γ and γ|W is injective.

Proof. (1) Assume that dimW = 1. Let α, β ∈ PT (V,W ) with α ≤ β, and let
λ ∈ PT (V,W ). By the above lemma, we obtain α = β or α is a zero partial
linear transformation. If α = β, then λα = λβ. Now, we consider the case α is a
zero partial linear transformation. We obtain V λα = ⟨0⟩ ⊆ Wλβ and dom λα =
(im λ ∩ dom α)λ−1 ⊆ (im λ ∩ dom β)λ−1 = dom λβ. Let v ∈ V (λα)(λβ)−1. We
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obtain vλβ ∈ V λα ⊆ V α which implies that vλ ∈ V αβ−1 ⊆ E(α, β) since α ≤ β.
Thus vλβ = vλα. So v ∈ E(λα, λβ). Therefore, λα ≤ λβ.

(2) Assume that dimW > 1. Suppose that Wγ ( W and γ is not a zero
partial linear transformation. If Wγ = ⟨0⟩, then there is v ∈ V γ \ Wγ ⊆ V γ
since γ is not a zero partial linear transformation. From dimW > 1, there exists
v ̸= w ∈ W \ Wγ where {v, w} is linearly independent. If Wγ ̸= ⟨0⟩, there are
0 ̸= v ∈ Wγ ⊆ V γ and w ∈ W \ Wγ where {v, w} is linearly independent since
Wγ ( W . It is concluded that we can choose 0 ̸= w ∈ W \Wγ and 0 ̸= v ∈ V γ
where {v, w} is linearly independent. Define α, β ∈ PT (V,W ) by

α =

(
v w
w w

)
, β =

(
v w
v w

)
.

Then α ≤ β. It is clear that v ∈ V γβ but v /∈ V γα, so γα ̸= γβ. Since w ∈ V γα
but w /∈ Wγβ, we conclude that γα � γβ.

Conversely, it is clear that γα = γ for each α ∈ PT (V,W ) if γ is a zero partial
linear transformation. In this case, we obtain γ is left compatible. Assume that
Wγ = W . Let α, β ∈ PT (V,W ) be such that α ≤ β. We have V γα ⊆ V α ⊆
Wβ = Wγβ and

dom γα = (imγ ∩ dom α)γ−1 ⊆ (imγ ∩ dom β)γ−1 = dom γβ.

Let v ∈ V (γα)(γβ)−1. Then vγβ ∈ V γα ⊆ V α which implies that vγ ∈ V αβ−1 ⊆
E(α, β). Hence vγ ∈ dom α and vγα = vγβ, so v ∈ E(γα, γβ). Therefore,
γα ≤ γβ.

(3) Suppose that dimW ≥ 1. Assume that W ⊆ dom γ and γ|W is injective.
Let α, β ∈ PT (V,W ) be such that α ≤ β. So V α ⊆ Wβ which implies that
V αγ ⊆ Wβγ. Since W ⊆ dom γ, we obtain dom αγ = (im α ∩ dom γ)α−1 ⊆
(W ∩ dom γ)α−1 = Wα−1 = dom α ⊆ dom β = (im β ∩ W )β−1 ⊆ (im β ∩
dom γ)β−1 = dom βγ. For each v ∈ V (αγ)(βγ)−1, we have vβγ = wαγ for some
w ∈ V . Since γ|W is injective, we have vβ = wα ∈ V α, thus v ∈ dom α and
vα = vβ. Hence v ∈ dom α = (im α ∩W )α−1 ⊆ (im α ∩ dom γ)α−1 = dom αγ
and vαγ = vβγ from which it follows that v ∈ E(αγ, βγ). Therefore, αγ ≤ βγ.

Conversely, if γ|W is not injective, then ker γ|W ̸= ⟨0⟩. Let 0 ̸= w ∈ ker γ|W .
Define α, β ∈ PT (V,W ) by α =

(
0
0

)
and β =

(
w
w

)
. So, we obtain α ≤ β by

Theorem 3.1 and αγ ̸= βγ since w ∈ dom βγ but w /∈ dom αγ. We also have
αγ � βγ since wβγ = wγ = 0 ∈ V αγ which implies that w ∈ V (αγ)(βγ)−1 but
w /∈ dom αγ. IfW * dom γ, then there is w ∈ W \dom γ. Define α, β ∈ PT (V,W )
by α =

(
w
0

)
and β =

(
w
w

)
. Thus α ≤ β and αγ ̸= βγ. And αγ � βγ since

dom αγ = ⟨w⟩ * ⟨0⟩ = dom βγ. Therefore, γ is not right compatible.
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