Green's Relations and Partial Orders on Semigroups of Partial Linear Transformations with Restricted Range

Kritsada Sangkhanan and Jintana Sanwong ${ }^{1}$
Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : kritsada_kst@hotmail.com (K. Sangkhanan) jintana.s@cmu.ac.th (J. Sanwong)

Abstract

Let V be any vector space and $P(V)$ the set of all partial linear transformations defined on V, that is, all linear transformations $\alpha: S \rightarrow T$ where S, T are subspaces of V. Then $P(V)$ is a semigroup under composition. Let W be a subspace of V. We define $P T(V, W)=\{\alpha \in P(V): V \alpha \subseteq W\}$. So $P T(V, W)$ is a subsemigroup of $P(V)$. In this paper, we present the largest regular subsemigroup and determine Green's relations on $P T(V, W)$. Furthermore, we study the natural partial order \leq on $P T(V, W)$ in terms of domains and images and find elements of $P T(V, W)$ which are compatible.

Keywords : regular elements; Green's relations; partial linear transformation semigroups; natural order; compatibility.
2010 Mathematics Subject Classification : 20M20.

1 Introduction

A partial transformation semigroup is the collection of functions from a subset of X into X with composition which is denoted by $P(X)$. In addition, the

[^0]semigroup $T(X)$ and $I(X)$ are defined by
\[

$$
\begin{aligned}
T(X) & =\{\alpha \in P(X): \text { dom } \alpha=X\} \text { and } \\
I(X) & =\{\alpha \in P(X): \alpha \text { is injective }\} .
\end{aligned}
$$
\]

We note that if we let $\alpha \in P(X)$ and $Z \subseteq X$, the notation $Z \alpha$ means $\{z \alpha$: $z \in Z \cap \operatorname{dom} \alpha\}$. It is clear that, $X \alpha=\operatorname{im} \alpha$.

In [2], Fernandes and Sanwong introduced the partial transformation semigroup with restricted range. They considered the semigroups $P T(X, Y)$ and $I(X, Y)$ defined by

$$
\begin{aligned}
P T(X, Y) & =\{\alpha \in P(X): X \alpha \subseteq Y\} \text { and } \\
I(X, Y) & =\{\alpha \in I(X): X \alpha \subseteq Y\}
\end{aligned}
$$

where Y is a subset of X. They proved that $P F=\{\alpha \in P T(X, Y): X \alpha=Y \alpha\}$ is the largest regular subsemigroup of $P T(X, Y)$. Moreover, they determined Green's relations on $P T(X, Y)$ and $I(X, Y)$.

In 2008, Sanwong and Sommanee [9] studied the subsemigroup $T(X, Y)=$ $T(X) \cap P T(X, Y)$ of $T(X)$ where Y is a subset of X. They gave a necessary and sufficient condition for $T(X, Y)$ to be regular. In the case when $T(X, Y)$ is not regular, the largest regular subsemigroup was obtained and this subsemigroup was shown to determine the Green's relations on $T(X, Y)$. Also, a class of maximal inverse subsemigroups of $T(X, Y)$ was obtained.

Analogously to $P(X)$, we can define a partial linear transformation on some vector spaces. Let V be any vector space, $P(V)$ the set of all linear transformations $\alpha: S \rightarrow T$ where S and T are subspaces of V, that is, every element $\alpha \in P(V)$, the domain and range of α are subspaces of V. Then we have $P(V)$ under composition is a semigroup and it is called the partial linear transformation semigroup of V. The subsemigroups $T(V)$ and $I(V)$ are defined by

$$
\begin{aligned}
T(V) & =\{\alpha \in P(V): \operatorname{dom} \alpha=V\} \text { and } \\
I(V) & =\{\alpha \in P(V): \alpha \text { is injective }\} .
\end{aligned}
$$

Similarly, the linear transformation semigroups with restricted range can be defined as follows. For any vector space V and a subspace W of V,

$$
\begin{aligned}
P T(V, W) & =\{\alpha \in P(V): V \alpha \subseteq W\}, \\
T(V, W) & =\{\alpha \in T(V): V \alpha \subseteq W\} \text { and } \\
I(V, W) & =\{\alpha \in I(V): V \alpha \subseteq W\} .
\end{aligned}
$$

Obviously, $P T(V, V)=P(V), T(V, V)=T(V)$ and $I(V, V)=I(V)$. Hence we may regard $P T(V, W), T(V, W)$ and $I(V, W)$ as generalizations of $P(V), T(V)$ and $I(V)$, respectively.

It is known that Green's relations on $T(V)$ are as follows (see [3], page 63). Let $\alpha, \beta \in T(V)$. Then

$$
\begin{aligned}
& \alpha \mathcal{L} \beta \text { if and only if } V \alpha=V \beta ; \\
& \alpha \mathcal{R} \beta \text { if and only if } \operatorname{ker} \alpha=\operatorname{ker} \beta ; \\
& \alpha \mathcal{D} \beta \text { if and only if } \operatorname{dim}(V \alpha)=\operatorname{dim}(V \beta) ; \\
& \mathcal{D}=\mathcal{J} .
\end{aligned}
$$

In 2007, Droms [1] gave a complete description of Green's relations on $P(V)$ and $I(V)$. We have for $\alpha, \beta \in P(V)$:
$\alpha \mathcal{L} \beta$ if and only if $V \alpha=V \beta ;$
$\alpha \mathcal{R} \beta$ if and only if $\operatorname{ker} \alpha=\operatorname{ker} \beta$ and $\operatorname{dom} \alpha=\operatorname{dom} \beta$;
$\alpha \mathcal{D} \beta$ if and only if $\operatorname{dim}(V \alpha)=\operatorname{dim}(V \beta) ;$

$$
\mathcal{D}=\mathcal{J} .
$$

And for $\alpha, \beta \in I(V)$:
$\alpha \mathcal{L} \beta$ if and only if $V \alpha=V \beta ;$
$\alpha \mathcal{R} \beta$ if and only if $\operatorname{dom} \alpha=\operatorname{dom} \beta$;
$\alpha \mathcal{D} \beta$ if and only if $\operatorname{dim}(V \alpha)=\operatorname{dim}(V \beta) ;$

$$
\mathcal{D}=\mathcal{J} .
$$

Later in 2008, Sullivan [11] described Green's relations and ideals for the semigroup $T(V, W)$. And its Green's relations are as follows. Let $Q=\{\alpha \in T(V, W)$: $V \alpha \subseteq W \alpha\}$. For $\alpha, \beta \in T(V, W):$

$$
\alpha \mathcal{L} \beta \text { if and only if } \alpha=\beta \text { or }(\alpha, \beta \in Q \text { and } V \alpha=V \beta) \text {; }
$$

$\alpha \mathcal{R} \beta$ if and only if $\operatorname{ker} \alpha=\operatorname{ker} \beta$;
$\alpha \mathcal{D} \beta$ if and only if $\operatorname{ker} \alpha=\operatorname{ker} \beta$ or $(\alpha, \beta \in Q$ and $\operatorname{dim}(V \alpha)=\operatorname{dim}(V \beta))$;
$\alpha \mathcal{J} \beta$ if and only if $\operatorname{ker} \alpha=\operatorname{ker} \beta$ or

$$
\operatorname{dim}(V \alpha)=\operatorname{dim}(W \alpha)=\operatorname{dim}(W \beta)=\operatorname{dim}(V \beta) .
$$

Now, we deal with a natural partial order or Mitsch order [6] on any semigroup S defined by for $a, b \in S$.

$$
a \leq b \text { if and only if } a=x b=b y, x a=a \text { for some } x, y \in S^{1} .
$$

In 2005, Sullivan [10] studied the natural partial order \leq on $P(V)$. The author found all elements of $P(V)$ which are compatible with respect to \leq.

In 2012, Sangkhanan and Sanwong [7] characterized the natural partial order \leq on $P T(X, Y)$ and found elements of $P T(X, Y)$ which are compatible with \leq. Recently, they presented the largest regular subsemigroup of $I(V, W)$ and determined its Green's relations in [8]. Furthermore, the authors studied the natural partial order \leq on $I(V, W)$ in terms of domains and images. Finally, they also found elements of $I(V, W)$ which are compatible.

In this paper, we describe the largest regular subsemigroup of $P T(V, W)$ and characterized its Green's relations. Furthermore, we study the natural partial order \leq on $P T(V, W)$ in terms of domains and images. Moreover, we characterize elements of $P T(V, W)$ which are compatible.

2 Regularity and Green's relations on $\operatorname{PT}(V, W)$

Since $P T(V, W)=\{\alpha \in P(V): V \alpha \subseteq W\}$, we have the following simple result on $P T(V, W)$ which will be used throughout the paper.

Lemma 2.1. If S and T are subspaces of V with $S \subseteq T$, then $S \alpha \subseteq T \alpha$ for all $\alpha \in P T(V, W)$.

For convenience, we adopt the convention: namely, if $\alpha \in P(X)$ then we write

$$
\alpha=\binom{X_{i}}{a_{i}}
$$

and take as understood that the subscript i belongs to some (unmentioned) index set I, the abbreviation $\left\{a_{i}\right\}$ denotes $\left\{a_{i}: i \in I\right\}$, and that $X \alpha=\left\{a_{i}\right\}$ and $a_{i} \alpha^{-1}=X_{i}$.

Similarly, we can use this notation for elements in $P(V)$. To construct a map $\alpha \in P(V)$, we first choose a basis $\left\{e_{i}\right\}$ for a subspace of V and a subset $\left\{a_{i}\right\}$ of V, and then let $e_{i} \alpha=a_{i}$ for each $i \in I$ and extend this map linearly to V. To shorten this process, we simply say, given $\left\{e_{i}\right\}$ and $\left\{a_{i}\right\}$ within the context, then for each $\alpha \in P(V)$, we can write

$$
\alpha=\binom{e_{i}}{a_{i}}
$$

A subspace U of V generated by a linearly independent subset $\left\{e_{i}\right\}$ of V is denoted by $\left\langle e_{i}\right\rangle$ and when we write $U=\left\langle e_{i}\right\rangle$, we mean that the set $\left\{e_{i}\right\}$ is a basis of U, and we have $\operatorname{dim} U=|I|$. For each $\alpha \in P(V)$, the kernel and the range of α denoted by ker α and $V \alpha$ respectively, and the rank of α is $\operatorname{dim}(V \alpha)$.

Let V be a vector space and $\left\{u_{i}\right\}$ a subset of V. The notation $\sum a_{i} u_{i}$ means the linear combination:

$$
a_{i_{1}} u_{i_{1}}+a_{i_{2}} u_{i_{2}}+\ldots+a_{i_{n}} u_{i_{n}}
$$

for some $n \in \mathbb{N}, u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{n}} \in\left\{u_{i}\right\}$ and scalars $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}$. Suppose that $\alpha \in P T(V, W)$ and U is a subspace of V. If we write $U \alpha=\left\langle u_{i} \alpha\right\rangle$, it means that $u_{i} \in U \cap \operatorname{dom} \alpha$ for all i. In addition, we can show that $\left\{u_{i}\right\}$ is linearly independent.

Let $P Q=\{\alpha \in P T(V, W): V \alpha \subseteq W \alpha\}$. For $\alpha \in P Q$ and $\beta \in P T(V, W)$, we obtain $V \alpha \subseteq W \alpha$ which implies that $V \alpha \beta \subseteq W \alpha \beta$. So $\alpha \beta \in P Q$. Therefore, $P Q$ is a right ideal of $P T(V, W)$.

Lemma 2.2. The set $P Q$ is a right ideal of $P T(V, W)$.
Theorem 2.3. Let $\alpha \in P T(V, W)$. Then α is regular if and only if $\alpha \in P Q$. Consequently, $P Q$ is the largest regular subsemigroup of $P T(V, W)$.

Proof. From Lemma 2.2, we see that $P Q$ is a subsemigroup of $P T(V, W)$. Let $\alpha \in P Q$. Then $V \alpha \subseteq W \alpha=\left\langle w_{j} \alpha\right\rangle$. So $\left\{w_{j}\right\}$ is linearly independent. If $v \in \operatorname{dom} \alpha$,
then $v \alpha=\sum x_{j}\left(w_{j} \alpha\right)=\left(\sum x_{j} w_{j}\right) \alpha$ for some scalars x_{j}. So $\left(v-\sum x_{j} w_{j}\right) \alpha=0$ implies $v-\sum x_{j} w_{j} \in \operatorname{ker} \alpha$. Hence $v \in \operatorname{ker} \alpha+\left\langle w_{j}\right\rangle$. Let $u \in \operatorname{ker} \alpha \cap\left\langle w_{j}\right\rangle$. Then $u \alpha=0$ and $u=\sum y_{j} w_{j}$ for some scalars y_{j}, so $0=u \alpha=\sum y_{j} w_{j} \alpha$ implies $y_{j}=0$ for all j since $\left\{w_{j} \alpha\right\}$ is linearly independent. Hence $\operatorname{ker} \alpha \cap\left\langle w_{j}\right\rangle=\langle 0\rangle$ which follows that $\operatorname{dom} \alpha=\operatorname{ker} \alpha \oplus\left\langle w_{j}\right\rangle$. If $\operatorname{ker} \alpha=\left\langle u_{i}\right\rangle$ and $W=W \alpha \oplus\left\langle v_{k}\right\rangle$, we can write

$$
\alpha=\left(\begin{array}{cc}
u_{i} & w_{j} \\
0 & w_{j} \alpha
\end{array}\right)
$$

and define

$$
\beta=\left(\begin{array}{cc}
v_{k} & w_{j} \alpha \\
0 & w_{j}
\end{array}\right)
$$

We can see that $V \beta=\left\langle w_{j}\right\rangle \subseteq W$, so $\beta \in P T(V, W)$ and $\alpha=\alpha \beta \alpha$. Hence α is regular. Now, let α be any regular element in $P T(V, W)$. Then $\alpha=\alpha \beta \alpha$ for some $\beta \in P T(V, W)$, so $V \alpha=V \alpha \beta \alpha=(V \alpha \beta) \alpha \subseteq W \alpha$. Therefore, $\alpha \in P Q$.

By the above theorem, we have the following corollary.
Corollary 2.4. Let W be a non-zero subspace of a vector space V. Then $P T(V, W)$ is a regular semigroup if and only if $V=W$.

Proof. It is clear that if $V=W$, then $P T(V, W)=P(V)$ and $P T(V, W)$ is regular. Conversely, if W is a proper subspace of V, then we can write $W=\left\langle w_{i}\right\rangle$ and $V=\left\langle w_{i}\right\rangle \oplus\left\langle v_{j}\right\rangle$. Since W is a non-zero subspace, we choose $w_{i_{1}} \in\left\{w_{i}\right\}$ and $v_{j_{1}} \in\left\{v_{j}\right\}$. Define

$$
\alpha=\left(\begin{array}{cc}
w_{i} & v_{j_{1}} \\
0 & w_{i_{1}}
\end{array}\right)
$$

Hence $W \alpha=\langle 0\rangle \subsetneq\left\langle w_{i_{1}}\right\rangle=V \alpha$ and then α is not regular by Theorem 2.3.
By the above corollary, we note that if W is a non-zero proper subspace of a vector space V, then $P T(V, W)$ is not a regular semigroup. It is concluded that, in this case, $P T(V, W)$ is not isomorphic to $P(U)$ for any vector space U since $P(U)$ is regular. This shows that $P T(V, W)$ is almost never isomorphic to $P(U)$.

Lemma 2.5. Let $\alpha, \beta \in P T(V, W)$. Then $\alpha=\gamma \beta$ for some $\gamma \in P T(V, W)$ if and only if $V \alpha \subseteq W \beta$.

Proof. If $\alpha=\gamma \beta$ for some $\gamma \in P T(V, W)$, then $V \alpha=V \gamma \beta \subseteq W \beta$. Now, assume that $V \alpha \subseteq W \beta$ and write $V \alpha=\left\langle v_{i} \alpha\right\rangle$. Hence $\left\{v_{i}\right\}$ is linearly independent. For each i, there is $w_{i} \in W$ such that $v_{i} \alpha=w_{i} \beta$. Thus $\left\{w_{i} \beta\right\}$ is linearly independent. Now, let $V \beta=\left\langle w_{i} \beta\right\rangle \oplus\left\langle v_{j} \beta\right\rangle$, $\operatorname{ker} \alpha=\left\langle u_{r}\right\rangle$ and $\operatorname{ker} \beta=\left\langle u_{s}\right\rangle$. Then $\left\{u_{r}\right\} \cup\left\{v_{i}\right\}$ and $\left\{u_{s}\right\} \cup\left\{w_{i}\right\} \cup\left\{v_{j}\right\}$ are linearly independent. Since dom $\alpha=\operatorname{ker} \alpha \oplus\left\langle v_{i}\right\rangle$ and $\operatorname{dom} \beta=\operatorname{ker} \beta \oplus\left\langle w_{i}\right\rangle \oplus\left\langle v_{j}\right\rangle$, by the same proof as given for [11, Lemma 2] then is $\gamma \in P T(V, W)$ such that $\alpha=\gamma \beta$, as required.

By the above lemma, we get the following result immediately.

Lemma 2.6. Let $\alpha, \beta \in P T(V, W)$. If $\beta \in P Q$, then $\alpha=\gamma \beta$ for some $\gamma \in$ $P T(V, W)$ if and only if $V \alpha \subseteq V \beta$.

Theorem 2.7. Let $\alpha, \beta \in P T(V, W)$. Then $\alpha \mathcal{L} \beta$ if and only if $(\alpha, \beta \in P Q$ and $V \alpha=V \beta$) or ($\alpha, \beta \in P T(V, W) \backslash P Q$ and $\alpha=\beta$).

Proof. Assume that $\alpha \mathcal{L} \beta$. Then $\alpha=\lambda \beta$ and $\beta=\mu \alpha$ for some $\lambda, \mu \in P T(V, W)^{1}$. Suppose that $\alpha \in P Q$. If $\lambda=1$ or $\mu=1$, then $\beta=\alpha \in P Q$ and $V \alpha=V \beta$. On the other hand, if $\lambda, \mu \in P T(V, W)$ then $V \beta=V \mu \alpha=(V \mu \lambda) \beta \subseteq W \beta$ since $V \mu \lambda \subseteq W$. Thus $\beta \in P Q$. From $\alpha=\lambda \beta$ and $\beta=\mu \alpha$, we have $V \alpha=V \beta$ by Lemma 2.6. Now, suppose that $\alpha \in P T(V, W) \backslash P Q$. If $\lambda, \mu \in P T(V, W)$, then $V \alpha=V \lambda \beta=(V \lambda \mu) \alpha \subseteq W \alpha$ which contradicts $\alpha \in P T(V, W) \backslash P Q$. Thus $\lambda=1$ or $\mu=1$ and so $\beta=\alpha \in P T(V, W) \backslash P Q$. The converse is a direct consequence of Lemma 2.6

Theorem 2.8. If $\alpha, \beta \in P T(V, W)$, then $\alpha=\beta \gamma$ for some $\gamma \in P T(V, W)$ if and only if $\operatorname{dom} \alpha \subseteq \operatorname{dom} \beta$ and $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$. Consequently, $\alpha \mathcal{R} \beta$ if and only if $\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$.

Proof. It is clear that if $\alpha=\beta \gamma$ for some $\gamma \in P T(V, W)$, then dom $\alpha \subseteq \operatorname{dom} \beta$. Let $v \in \operatorname{ker} \beta$. Then $v \beta=0$ implies $v \alpha=v \beta \gamma=0$, so $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$.

Conversely, suppose dom $\alpha \subseteq \operatorname{dom} \beta$ and $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$. Write $\operatorname{ker} \beta=\left\langle u_{i}\right\rangle$, $\operatorname{ker} \alpha=\left\langle u_{i}, u_{j}\right\rangle$ and $\operatorname{dom} \alpha=\operatorname{ker} \alpha \oplus\left\langle v_{k}\right\rangle$. Since dom $\alpha \subseteq \operatorname{dom} \beta$, we have $\operatorname{dom} \beta=\operatorname{dom} \alpha \oplus\left\langle v_{s}\right\rangle$. Then

$$
\alpha=\left(\begin{array}{ccc}
u_{i} & u_{j} & v_{k} \\
0 & 0 & w_{k}^{\prime}
\end{array}\right), \beta=\left(\begin{array}{cccc}
u_{i} & u_{j} & v_{k} & v_{s} \\
0 & w_{j} & w_{k} & w_{s}
\end{array}\right)
$$

for some $w_{k}^{\prime}, w_{j}, w_{k}, w_{s} \in W$. We can see that $\left\{w_{j}, w_{k}\right\}$ is linearly independent. Define $\gamma \in P T(V, W)$ by

$$
\gamma=\left(\begin{array}{cc}
w_{j} & w_{k} \\
0 & w_{k}^{\prime}
\end{array}\right) .
$$

Then $\alpha=\beta \gamma$, as required.
Lemma 2.9. Let $\alpha, \beta \in P T(V, W)$. If $\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$ then either both α and β are in $P Q$, or neither is in $P Q$. Consequently, $\alpha \mathcal{R} \beta$ if and only if $(\alpha, \beta \in P Q$, dom $\alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$) or $(\alpha, \beta \in P T(V, W) \backslash P Q$, $\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$).

Proof. Assume that dom $\alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$ and suppose that $\alpha, \beta \in$ $P Q$ is false. So one of α or β is not in $P Q$, we suppose that $\alpha \notin P Q$. Thus $(V \backslash W) \alpha \nsubseteq W \alpha$, so there is $v_{0} \in V \backslash W$ such that $v_{0} \alpha \neq w \alpha$ for all $w \in W$. Thus $v_{0}-w \notin \operatorname{ker} \alpha$ for all $w \in W$. If $\beta \in P Q$, then $V \beta=W \beta$, so $v_{0} \beta=w \beta$ for some $w \in W\left(v_{0} \in \operatorname{dom} \alpha=\operatorname{dom} \beta\right)$ which implies that $v_{0}-w \in \operatorname{ker} \beta=\operatorname{ker} \alpha$ which is a contradiction. Therefore $\beta \notin P Q$.

As a direct consequence of Theorem 2.7, Theorem 2.8 and Lemma 2.9, we have the following corollary.

Corollary 2.10. Let $\alpha, \beta \in P T(V, W)$. Then $\alpha \mathcal{H} \beta$ if and only if $(\alpha, \beta \in P Q$, $V \alpha=V \beta$, dom $\alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta)$ or $(\alpha, \beta \in P T(V, W) \backslash P Q$ and $\alpha=\beta)$.

Theorem 2.11. Let $\alpha, \beta \in P T(V, W)$. Then $\alpha \mathcal{D} \beta$ if and only if $(\alpha, \beta \in P Q$ and $\operatorname{dim}(V \alpha)=\operatorname{dim}(V \beta))$ or $(\alpha, \beta \in P T(V, W) \backslash P Q$, $\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta)$.

Proof. Let $\alpha, \beta \in P T(V, W)$ be such that $\alpha \mathcal{D} \beta$. Then $\alpha \mathcal{L} \gamma$ and $\gamma \mathcal{R} \beta$ for some $\gamma \in P T(V, W)$. If $\alpha \in P Q$, then since $\alpha \mathcal{L} \gamma$, we must have $\gamma \in P Q$ and $V \alpha=V \gamma$. From $\gamma \mathcal{R} \beta$, we get $\beta \in P Q$, dom $\gamma=\operatorname{dom} \beta$ and $\operatorname{ker} \gamma=\operatorname{ker} \beta$. So we obtain

$$
\begin{aligned}
\operatorname{dim}(V \alpha)=\operatorname{dim}(V \gamma) & =\operatorname{dim}(\operatorname{dom} \gamma / \operatorname{ker} \gamma) \\
& =\operatorname{dim}(\operatorname{dom} \beta / \operatorname{ker} \beta)=\operatorname{dim}(V \beta)
\end{aligned}
$$

If $\alpha \in P T(V, W) \backslash P Q$, then $\gamma=\alpha$ (since $\alpha \mathcal{L} \gamma$) and thus $\alpha \mathcal{R} \beta$ which implies that $\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$. So by Lemma 2.9, we must have $\beta \in$ $P T(V, W) \backslash P Q$.

Conversely, assume that the conditions hold. Clearly, if $\alpha, \beta \in P T(V, W) \backslash P Q$, $\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$ then $\alpha \mathcal{R} \beta$, and so $\alpha \mathcal{D} \beta$ (since $\mathcal{R} \subseteq \mathcal{D}$). If $\alpha, \beta \in$ $P Q$ and $\operatorname{dim}(V \alpha)=\operatorname{dim}(V \beta)$, then $V \alpha=W \alpha=\left\langle w_{j} \alpha\right\rangle$ and $V \beta=W \beta=\left\langle w_{j}^{\prime} \beta\right\rangle$. Let $\operatorname{ker} \alpha=\left\langle u_{r}\right\rangle$ and $\operatorname{ker} \beta=\left\langle u_{s}\right\rangle$, so we can write

$$
\alpha=\left(\begin{array}{cc}
u_{r} & w_{j} \\
0 & w_{j} \alpha
\end{array}\right), \beta=\left(\begin{array}{cc}
u_{s} & w_{j}^{\prime} \\
0 & w_{j}^{\prime} \beta
\end{array}\right)
$$

where $\left\langle w_{j}\right\rangle,\left\langle w_{j}^{\prime}\right\rangle \subseteq W$. If $\gamma \in P T(V, W)$ is defined by

$$
\gamma=\left(\begin{array}{cc}
u_{r} & w_{j} \\
0 & w_{j}^{\prime} \beta
\end{array}\right)
$$

then $\operatorname{dom} \gamma=\operatorname{dom} \alpha$, $\operatorname{ker} \gamma=\operatorname{ker} \alpha, V \gamma=V \beta$ and $\gamma \in P Q$, so $\alpha \mathcal{R} \gamma \mathcal{L} \beta$.
Lemma 2.12. Let $\alpha, \beta \in P T(V, W)$. If $\alpha=\lambda \beta \mu$ for some $\lambda \in P T(V, W)$ and $\mu \in P T(V, W)^{1}$, then $\operatorname{dim}(V \alpha) \leq \operatorname{dim}(W \beta)$.

Proof. Since $V \alpha=(V \lambda) \beta \mu \subseteq W \beta \mu$, we have $\operatorname{dim}(V \alpha) \leq \operatorname{dim}(W \beta \mu)$. Let $W \beta \mu=$ $\left\langle w_{i} \mu\right\rangle$ where $\left\{w_{i}\right\} \subseteq W \beta$ and $\left\{w_{i}\right\}$ is linearly independent. Then $\left\langle w_{i}\right\rangle \subseteq W \beta$ which implies that

$$
\operatorname{dim}(W \beta \mu)=\operatorname{dim}\left\langle w_{i} \mu\right\rangle=\operatorname{dim}\left\langle w_{i}\right\rangle \leq \operatorname{dim}(W \beta)
$$

Therefore, $\operatorname{dim}(V \alpha) \leq \operatorname{dim}(W \beta)$.

Theorem 2.13. Let $\alpha, \beta \in P T(V, W)$. Then $\alpha \mathcal{J} \beta$ if and only if ($\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$) or $\operatorname{dim}(V \alpha)=\operatorname{dim}(W \alpha)=\operatorname{dim}(W \beta)=\operatorname{dim}(V \beta)$.

Proof. Assume that $\alpha \mathcal{J} \beta$. Then $\alpha=\lambda \beta \mu$ and $\beta=\lambda^{\prime} \alpha \mu^{\prime}$ for some $\lambda, \lambda^{\prime}, \mu, \mu^{\prime} \in$ $\operatorname{PT}(V, W)^{1}$. If $\lambda=1=\lambda^{\prime}$, then $\alpha=\beta \mu$ and $\beta=\alpha \mu^{\prime}$ which imply that $\alpha \mathcal{R} \beta$. Thus $\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$. If either λ or λ^{\prime} is in $\operatorname{PT}(V, W)$, then we can write $\alpha=\sigma \beta \delta$ and $\beta=\sigma^{\prime} \alpha \delta^{\prime}$ for some $\sigma, \sigma^{\prime} \in P T(V, W)$ and $\delta, \delta^{\prime} \in P T(V, W)^{1}$. For example, if $\lambda=1$ and $\lambda^{\prime} \in P T(V, W)$, then $\alpha=\beta \mu$ and $\beta=\lambda^{\prime} \alpha \mu^{\prime}$ imply $\alpha=\beta \mu=\left(\lambda^{\prime} \alpha \mu^{\prime}\right) \mu=\lambda^{\prime} \alpha\left(\mu^{\prime} \mu\right)=\lambda^{\prime}(\beta \mu) \mu^{\prime} \mu=\lambda^{\prime} \beta\left(\mu \mu^{\prime} \mu\right)$. Thus, by Lemma 2.12, it follows that

$$
\operatorname{dim}(W \beta) \geq \operatorname{dim}(V \alpha) \geq \operatorname{dim}(W \alpha) \geq \operatorname{dim}(V \beta) \geq \operatorname{dim}(W \beta)
$$

whence $\operatorname{dim}(V \alpha)=\operatorname{dim}(W \alpha)=\operatorname{dim}(W \beta)=\operatorname{dim}(V \beta)$.
Conversely, assume that the conditions hold. If $\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=$ $\operatorname{ker} \beta$, then $\alpha \mathcal{R} \beta$ and so $\alpha \mathcal{J} \beta$. Now, suppose that $\operatorname{dim}(V \alpha)=\operatorname{dim}(W \alpha)=$ $\operatorname{dim}(W \beta)=\operatorname{dim}(V \beta)$. Let $\operatorname{ker} \alpha=\left\langle u_{i}\right\rangle, \operatorname{ker} \beta=\left\langle u_{j}\right\rangle$ and $V \alpha=\left\langle v_{k} \alpha\right\rangle$. Then $\operatorname{dom} \alpha=\operatorname{ker} \alpha \oplus\left\langle v_{k}\right\rangle$. Since $\operatorname{dim}(V \alpha)=\operatorname{dim}(W \beta)$, we let $W \beta=\left\langle w_{k}^{\prime} \beta\right\rangle$ and $\operatorname{dom} \beta=\operatorname{ker} \beta \oplus\left\langle w_{k}^{\prime}\right\rangle \oplus\left\langle v_{l}\right\rangle$. Then we write

$$
\alpha=\left(\begin{array}{cc}
u_{i} & v_{k} \\
0 & w_{k}
\end{array}\right), \beta=\left(\begin{array}{ccc}
u_{j} & w_{k}^{\prime} & v_{l} \\
0 & w_{k}^{\prime} \beta & w_{l}
\end{array}\right) .
$$

Let $V=\left\langle w_{k}^{\prime} \beta\right\rangle \oplus\left\langle v_{m}\right\rangle$ and define $\lambda, \mu \in P T(V, W)$ by

$$
\lambda=\left(\begin{array}{cc}
u_{i} & v_{k} \\
0 & w_{k}^{\prime}
\end{array}\right), \mu=\left(\begin{array}{cc}
v_{m} & w_{k}^{\prime} \beta \\
0 & w_{k}
\end{array}\right) .
$$

Then $\alpha=\lambda \beta \mu$, as required. Similarly, we can show that $\beta=\lambda^{\prime} \alpha \mu^{\prime}$ for some $\lambda^{\prime}, \mu^{\prime} \in P T(V, W)$ by using the equality $\operatorname{dim}(V \beta)=\operatorname{dim}(W \alpha)$.

Corollary 2.14. If $\alpha, \beta \in P Q$, then $\alpha \mathcal{J} \beta$ on $P T(V, W)$ if and only if $\alpha \mathcal{D} \beta$ on $P T(V, W)$.

Proof. In general, we have $\mathcal{D} \subseteq \mathcal{J}$. Let $\alpha, \beta \in P Q$ and $\alpha \mathcal{J} \beta$ on $P T(V, W)$. Then ($\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$) or $\operatorname{dim}(V \alpha)=\operatorname{dim}(W \alpha)=\operatorname{dim}(W \beta)=$ $\operatorname{dim}(V \beta)$. If dom $\alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$, then

$$
\operatorname{dim}(V \alpha)=\operatorname{dim}(\operatorname{dom} \alpha / \operatorname{ker} \alpha)=\operatorname{dim}(\operatorname{dom} \beta / \operatorname{ker} \beta)=\operatorname{dim}(V \beta) .
$$

Thus, both cases imply $\operatorname{dim}(V \alpha)=\operatorname{dim}(V \beta)$ and $\alpha \mathcal{D} \beta$ on $P T(V, W)$ by Theorem 2.11.

Theorem 2.15. $\mathcal{D}=\mathcal{J}$ on $P T(V, W)$ if and only if $\operatorname{dim} W$ is finite or $V=W$.
Proof. It is clear that if $V=W$, then $P T(V, W)=P(V)=P Q$ which follows that $\mathcal{D}=\mathcal{J}$ by Corollary 2.14. Suppose that $\operatorname{dim} W$ is finite. Let $\alpha, \beta \in P T(V, W)$ with $\alpha \mathcal{J} \beta$. If dom $\alpha=\operatorname{dom} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$, then $\alpha \mathcal{R} \beta$ and hence $\alpha \mathcal{D} \beta$.

Now, assume that $\operatorname{dim}(V \alpha)=\operatorname{dim}(W \alpha)=\operatorname{dim}(W \beta)=\operatorname{dim}(V \beta)$. Since $\operatorname{dim} W$ is finite, we have $\operatorname{dim}(V \alpha), \operatorname{dim}(V \beta)$ are finite which implies that $V \alpha=W \alpha$ and $V \beta=W \beta$. Thus $\alpha, \beta \in P Q$ and $\operatorname{dim}(V \alpha)=\operatorname{dim}(V \beta)$. Therefore, $\alpha \mathcal{D} \beta$.

Conversely, suppose that $\operatorname{dim} W$ is infinite and $W \subsetneq V$. Let $\left\{v_{i}\right\}$ be a basis of W and $\left\{v_{j}\right\}$ a basis of V such that $I \subsetneq J$. Then there is an infinite countable subset $\left\{u_{n}\right\}$ of $\left\{v_{i}\right\}$ where $n \in \mathbb{N}$. Let $v \in\left\{v_{j}\right\} \backslash\left\{v_{i}\right\}$ and define α, β by

$$
\alpha=\left(\begin{array}{cc}
v & u_{n} \\
u_{1} & u_{2 n}
\end{array}\right), \beta=\left(\begin{array}{ccc}
u_{2 n-1} & v & u_{2 n} \\
0 & u_{1} & u_{4 n}
\end{array}\right) .
$$

Then $\alpha, \beta \in P T(V, W) \backslash P Q$ and $\operatorname{dim}(V \alpha)=\operatorname{dim}(W \alpha)=\aleph_{0}=\operatorname{dim}(W \beta)=$ $\operatorname{dim}(V \beta)$, so $\alpha \mathcal{J} \beta$. Since $\operatorname{ker} \alpha=\langle 0\rangle \neq\left\langle u_{2 n-1}\right\rangle=\operatorname{ker} \beta$, we have α and β are not \mathcal{D}-related on $P T(V, W)$.

3 Partial orders

Recall that the natural partial order on any semigroup S is defined by

$$
a \leq b \text { if and only if } a=x b=b y, x a=a \text { for some } x, y \in S^{1},
$$

or equivalently

$$
\begin{equation*}
a \leq b \text { if and only if } a=w b=b z, a z=a \text { for some } w, z \in S^{1} . \tag{3.1}
\end{equation*}
$$

In this paper, we use (3.1) to define the partial order on the semigroup $P T(V, W)$, that is for each $\alpha, \beta \in P T(V, W)$

$$
\alpha \leq \beta \text { if and only if } \alpha=\gamma \beta=\beta \mu, \alpha=\alpha \mu \text { for some } \gamma, \mu \in P T(V, W)^{1} .
$$

We note that if $W \subsetneq V$, then $P T(V, W)$ has no identity elements. So, in this case $P T(V, W)^{1} \neq P T(V, W)$. In addintion, \leq on $P T(V, W)$ does not coincide with the restriction of \leq on $P(V)$. For example, let $V=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $W=\left\langle v_{1}, v_{2}\right\rangle$. Define

$$
\alpha=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{1} & v_{1}
\end{array}\right) \text { and } \beta=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3} \\
v_{2} & v_{2} & v_{1}
\end{array}\right) .
$$

If we let

$$
\gamma=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3} \\
v_{3} & v_{3} & v_{3}
\end{array}\right) \text { and } \mu=\left(\begin{array}{ccc}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{1} & v_{3}
\end{array}\right)
$$

then $\alpha=\gamma \beta=\beta \mu, \alpha=\alpha \mu$ which implies that $\alpha \leq \beta$ in $P(V)$ but we cannot find $\gamma \in P T(V, W)^{1}$ such that $\alpha=\gamma \beta$. Hence $\alpha \not \leq \beta$ in $P T(V, W)$.

In [4], Kowol and Mitsch characterized \leq on $T(X)$ as follows. If $\alpha, \beta \in T(X)$, then the following statements are equivalent.
(1) $\alpha \leq \beta$.
(2) $X \alpha \subseteq X \beta$ and $\alpha=\beta \mu$ for some idempotent $\mu \in T(X)$.
(3) $\beta \beta^{-1} \subseteq \alpha \alpha^{-1}$ and $\alpha=\lambda \beta$ for some idempotent $\lambda \in T(X)$.
(4) $X \alpha \subseteq X \beta, \beta \beta^{-1} \subseteq \alpha \alpha^{-1}$ and $x \alpha=x \beta$ for all $x \in X$ with $x \beta \in X \alpha$.

In [5], Marques-Smith and Sullivan extended the above result to $P(X)$ as follows. If $\alpha, \beta \in P(X)$, then

$$
\alpha \leq \beta \text { if and only if } X \alpha \subseteq X \beta, \operatorname{dom} \alpha \subseteq \operatorname{dom} \beta, \alpha \beta^{-1} \subseteq \alpha \alpha^{-1} \text { and }
$$

$$
\beta \beta^{-1} \cap(\operatorname{dom} \beta \times \operatorname{dom} \alpha) \subseteq \alpha \alpha^{-1}
$$

Later in [10], Sullivan proved an analogue for $P(V)$ as follows. If $\alpha, \beta \in P(V)$, then

$$
\begin{gathered}
\alpha \leq \beta \text { if and only if } V \alpha \subseteq V \beta, \operatorname{dom} \alpha \subseteq \operatorname{dom} \beta, \operatorname{ker} \beta \subseteq \operatorname{ker} \alpha \text { and } \\
V \alpha \beta^{-1} \subseteq E(\alpha, \beta)
\end{gathered}
$$

where $E(\alpha, \beta)=\{u \in V: u \alpha=u \beta\}$.
Recently, we extended the result for $P(X)$ to $P T(X, Y)$ (see [7]). For $\alpha, \beta \in$ $P T(X, Y), \alpha \leq \beta$ if and only if $\alpha=\beta$ or the following statements hold.
(1) $X \alpha \subseteq Y \beta$.
(2) $\operatorname{dom} \alpha \subseteq \operatorname{dom} \beta$ and $\operatorname{ker} \beta \cap(\operatorname{dom} \beta \times \operatorname{dom} \alpha) \subseteq \operatorname{ker} \alpha$.
(3) For each $x \in \operatorname{dom} \beta$, if $x \beta \in X \alpha$, then $x \in \operatorname{dom} \alpha$ and $x \alpha=x \beta$.

Now, we aim to prove an analogue result for $P T(V, W)$ and this result extends a similar result on $P(V)$.

Theorem 3.1. Let $\alpha, \beta \in P T(V, W)$. Then $\alpha \leq \beta$ if and only if $\alpha=\beta$ or the following statements hold.
(1) $V \alpha \subseteq W \beta$.
(2) $\operatorname{dom} \alpha \subseteq \operatorname{dom} \beta$.
(3) $V \alpha \beta^{-1} \subseteq E(\alpha, \beta)$.

Proof. Suppose that $\alpha \leq \beta$. Then there exist $\gamma, \mu \in P T(V, W)^{1}$ such that $\alpha=$ $\gamma \beta=\beta \mu$ and $\alpha=\alpha \mu$. If $\gamma=1$ or $\mu=1$, then $\alpha=\beta$. If $\gamma, \mu \in P T(V, W)$, then (1) and (2) hold by Lemma 2.5 and Theorem 2.8. If $v \in V \alpha \beta^{-1}$, then $v \beta \in V \alpha$ which implies that $v \beta=w \alpha$ for some $w \in V$, thus

$$
v \beta=w \alpha=w \alpha \mu=v \beta \mu=v \alpha .
$$

Hence $v \in \operatorname{dom} \alpha$ and $v \alpha=v \beta$. So $v \in E(\alpha, \beta)$. Conversely, assume that the conditions (1)-(3) hold. To show that $\operatorname{ker} \beta \subseteq \operatorname{ker} \alpha$, let $v \in \operatorname{ker} \beta$. Then $v \in \operatorname{dom} \beta$ and $v \beta=0 \in V \alpha$ which implies that $v \in V \alpha \beta^{-1} \subseteq E(\alpha, \beta)$. We obtain $v \in \operatorname{dom} \alpha$ and $v \alpha=v \beta=0$. So, $v \in \operatorname{ker} \alpha$. Again by Lemma 2.5 and Theorem 2.8, there exist $\gamma, \mu \in P T(V, W)$ such that $\alpha=\gamma \beta=\beta \mu$. Now, we prove that $V \alpha \subseteq \operatorname{dom} \mu$, by letting $w \in V \alpha$. Then there is $v \in \operatorname{dom} \alpha$ such that $v \alpha=w$. Since $\alpha=\gamma \beta$, we have $w=v \alpha=v \gamma \beta$ from which it follows that $v \gamma \in V \alpha \beta^{-1} \subseteq E(\alpha, \beta)$. That is $v \gamma \in \operatorname{dom} \alpha$ and $v \gamma \alpha=v \gamma \beta$. Thus $v \gamma \beta=v \gamma \alpha=v \gamma \beta \mu=w \mu$ which implies that $w \in \operatorname{dom} \mu$. So, $V \alpha \subseteq \operatorname{dom} \mu$. Hence

$$
\operatorname{dom} \alpha \mu=(\operatorname{im} \alpha \cap \operatorname{dom} \mu) \alpha^{-1}=(\operatorname{im} \alpha) \alpha^{-1}=\operatorname{dom} \alpha .
$$

For each $v \in \operatorname{dom} \alpha$, v $\alpha=v \gamma \beta$. We obtain $v \gamma \in V \alpha \beta^{-1} \subseteq E(\alpha, \beta)$ which implies that $v \gamma \in \operatorname{dom} \alpha$ and $v \gamma \alpha=v \gamma \beta$. Thus

$$
v \alpha=v \gamma \beta=v \gamma \alpha=v \gamma \beta \mu=v \alpha \mu
$$

Therefore, $\alpha=\alpha \mu$.
Let \preceq be a partial order on a semigroup S. An element $c \in S$ is said to be left [right] compatible if $c a \preceq c b[a c \preceq b c]$ for each $a, b \in S$ such that $a \preceq b$. Now, we characterize all elements in $P T(V, W)$ which are compatible with respect to \leq. We first prove the following lemma.

We note that a zero partial linear transformation is a zero map having domain as a subspace of V.

Lemma 3.2. Let $\operatorname{dim} W=1$ and $\alpha, \beta \in P T(V, W)$. If $\alpha \leq \beta$, then $\alpha=\beta$ or α is a zero partial linear transformation.

Proof. Suppose that $\alpha \leq \beta$ and α is not a zero partial linear transformation. So $1 \leq \operatorname{dim} V \alpha \leq \operatorname{dim} W=1$, and then $V \alpha=W$. For each $v \in \operatorname{dom} \beta, v \beta \in$ $V \beta \subseteq W=V \alpha$ which implies that $v \in V \alpha \beta^{-1} \subseteq E(\alpha, \beta)$ by Theorem 3.1(3). Hence $v \in \operatorname{dom} \alpha$ and $v \alpha=v \beta$. Thus dom $\beta \subseteq \operatorname{dom} \alpha$. Since $\alpha \leq \beta$, we have $\operatorname{dom} \alpha \subseteq \operatorname{dom} \beta$. Therefore, $\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\alpha=\beta$.

Theorem 5.2 in [7] showed that if $|Y|>1$ and $\emptyset \neq \gamma \in P T(X, Y)$, then
(1) γ is left compatible with \leq if and only if $Y \gamma=Y$;
(2) γ is right compatible with \leq if and only if $\left(Y \subseteq \operatorname{dom} \gamma\right.$ and $\left.\gamma\right|_{Y}$ is injective) or $Y \cap \operatorname{dom} \gamma=\emptyset$.

And Theorem 3.1 in [10] proved that if $\gamma \in P(V)$ has non-zero rank and $\operatorname{dim} V>1$, then
(1) $\gamma \in P(V)$ is left compatible with \leq if and only if γ is surjective;
(2) $\gamma \in P(V)$ is right compatible with \leq if and only if $\gamma \in T(V)$ and γ is injective.

For the semigroup $P T(V, W)$, we have the following result.
Theorem 3.3. Let $\gamma \in P T(V, W)$. The following statements hold.
(1) If $\operatorname{dim} W=1$, then every element in $P T(V, W)$ is always left compatible with \leq.
(2) If $\operatorname{dim} W>1$, then γ is left compatible with \leq if and only if $W \gamma=W$ or γ is a zero partial linear transformation.
(3) If $\operatorname{dim} W \geq 1$, then $\gamma \in P T(V, W)$ is right compatible with \leq if and only if $W \subseteq \operatorname{dom} \gamma$ and $\left.\gamma\right|_{W}$ is injective.

Proof. (1) Assume that $\operatorname{dim} W=1$. Let $\alpha, \beta \in P T(V, W)$ with $\alpha \leq \beta$, and let $\lambda \in P T(V, W)$. By the above lemma, we obtain $\alpha=\beta$ or α is a zero partial linear transformation. If $\alpha=\beta$, then $\lambda \alpha=\lambda \beta$. Now, we consider the case α is a zero partial linear transformation. We obtain $V \lambda \alpha=\langle 0\rangle \subseteq W \lambda \beta$ and dom $\lambda \alpha=$ $(\operatorname{im} \lambda \cap \operatorname{dom} \alpha) \lambda^{-1} \subseteq(\operatorname{im} \lambda \cap \operatorname{dom} \beta) \lambda^{-1}=\operatorname{dom} \lambda \beta$. Let $v \in V(\lambda \alpha)(\lambda \beta)^{-1}$. We
obtain $v \lambda \beta \in V \lambda \alpha \subseteq V \alpha$ which implies that $v \lambda \in V \alpha \beta^{-1} \subseteq E(\alpha, \beta)$ since $\alpha \leq \beta$. Thus $v \lambda \beta=v \lambda \alpha$. So $v \in E(\lambda \alpha, \lambda \beta)$. Therefore, $\lambda \alpha \leq \lambda \beta$.
(2) Assume that $\operatorname{dim} W>1$. Suppose that $W \gamma \subsetneq W$ and γ is not a zero partial linear transformation. If $W \gamma=\langle 0\rangle$, then there is $v \in V \gamma \backslash W \gamma \subseteq V \gamma$ since γ is not a zero partial linear transformation. From $\operatorname{dim} W>1$, there exists $v \neq w \in W \backslash W \gamma$ where $\{v, w\}$ is linearly independent. If $W \gamma \neq\langle 0\rangle$, there are $0 \neq v \in W \gamma \subseteq V \gamma$ and $w \in W \backslash W \gamma$ where $\{v, w\}$ is linearly independent since $W \gamma \subsetneq W$. It is concluded that we can choose $0 \neq w \in W \backslash W \gamma$ and $0 \neq v \in V \gamma$ where $\{v, w\}$ is linearly independent. Define $\alpha, \beta \in P T(V, W)$ by

$$
\alpha=\left(\begin{array}{cc}
v & w \\
w & w
\end{array}\right), \beta=\left(\begin{array}{ll}
v & w \\
v & w
\end{array}\right)
$$

Then $\alpha \leq \beta$. It is clear that $v \in V \gamma \beta$ but $v \notin V \gamma \alpha$, so $\gamma \alpha \neq \gamma \beta$. Since $w \in V \gamma \alpha$ but $w \notin W \gamma \beta$, we conclude that $\gamma \alpha \not \leq \gamma \beta$.

Conversely, it is clear that $\gamma \alpha=\gamma$ for each $\alpha \in P T(V, W)$ if γ is a zero partial linear transformation. In this case, we obtain γ is left compatible. Assume that $W \gamma=W$. Let $\alpha, \beta \in P T(V, W)$ be such that $\alpha \leq \beta$. We have $V \gamma \alpha \subseteq V \alpha \subseteq$ $W \beta=W \gamma \beta$ and

$$
\operatorname{dom} \gamma \alpha=(\operatorname{im} \gamma \cap \operatorname{dom} \alpha) \gamma^{-1} \subseteq(\operatorname{im} \gamma \cap \operatorname{dom} \beta) \gamma^{-1}=\operatorname{dom} \gamma \beta
$$

Let $v \in V(\gamma \alpha)(\gamma \beta)^{-1}$. Then $v \gamma \beta \in V \gamma \alpha \subseteq V \alpha$ which implies that $v \gamma \in V \alpha \beta^{-1} \subseteq$ $E(\alpha, \beta)$. Hence $v \gamma \in \operatorname{dom} \alpha$ and $v \gamma \alpha=v \gamma \beta$, so $v \in E(\gamma \alpha, \gamma \beta)$. Therefore, $\gamma \alpha \leq \gamma \beta$.
(3) Suppose that $\operatorname{dim} W \geq 1$. Assume that $W \subseteq \operatorname{dom} \gamma$ and $\left.\gamma\right|_{W}$ is injective. Let $\alpha, \beta \in P T(V, W)$ be such that $\alpha \leq \beta$. So $V \alpha \subseteq W \beta$ which implies that $V \alpha \gamma \subseteq W \beta \gamma$. Since $W \subseteq \operatorname{dom} \gamma$, we obtain dom $\alpha \gamma=(\operatorname{im} \alpha \cap \operatorname{dom} \gamma) \alpha^{-1} \subseteq$ $(W \cap \operatorname{dom} \gamma) \alpha^{-1}=W \alpha^{-1}=\operatorname{dom} \alpha \subseteq \operatorname{dom} \beta=(\operatorname{im} \beta \cap W) \beta^{-1} \subseteq(\operatorname{im} \beta \cap$ $\operatorname{dom} \gamma) \beta^{-1}=\operatorname{dom} \beta \gamma$. For each $v \in V(\alpha \gamma)(\beta \gamma)^{-1}$, we have $v \beta \gamma=w \alpha \gamma$ for some $w \in V$. Since $\left.\gamma\right|_{W}$ is injective, we have $v \beta=w \alpha \in V \alpha$, thus $v \in \operatorname{dom} \alpha$ and $v \alpha=v \beta$. Hence $v \in \operatorname{dom} \alpha=(\operatorname{im} \alpha \cap W) \alpha^{-1} \subseteq(\operatorname{im} \alpha \cap \operatorname{dom} \gamma) \alpha^{-1}=\operatorname{dom} \alpha \gamma$ and $v \alpha \gamma=v \beta \gamma$ from which it follows that $v \in E(\alpha \gamma, \beta \gamma)$. Therefore, $\alpha \gamma \leq \beta \gamma$.

Conversely, if $\left.\gamma\right|_{W}$ is not injective, then $\left.\operatorname{ker} \gamma\right|_{W} \neq\langle 0\rangle$. Let $0 \neq\left. w \in \operatorname{ker} \gamma\right|_{W}$. Define $\alpha, \beta \in P T(V, W)$ by $\alpha=\binom{0}{0}$ and $\beta=\binom{w}{w}$. So, we obtain $\alpha \leq \beta$ by Theorem 3.1 and $\alpha \gamma \neq \beta \gamma$ since $w \in \operatorname{dom} \beta \gamma$ but $w \notin \operatorname{dom} \alpha \gamma$. We also have $\alpha \gamma \not \leq \beta \gamma$ since $w \beta \gamma=w \gamma=0 \in V \alpha \gamma$ which implies that $w \in V(\alpha \gamma)(\beta \gamma)^{-1}$ but $w \notin \operatorname{dom} \alpha \gamma$. If $W \nsubseteq \operatorname{dom} \gamma$, then there is $w \in W \backslash \operatorname{dom} \gamma$. Define $\alpha, \beta \in P T(V, W)$ by $\alpha=\binom{w}{0}$ and $\beta=\binom{w}{w}$. Thus $\alpha \leq \beta$ and $\alpha \gamma \neq \beta \gamma$. And $\alpha \gamma \not \leq \beta \gamma$ since $\operatorname{dom} \alpha \gamma=\langle w\rangle \nsubseteq\langle 0\rangle=\operatorname{dom} \beta \gamma$. Therefore, γ is not right compatible.

Acknowledgements : The first author thanks the Development and Promotion of Science and Technology Talents Project, Thailand, for its financial support. He also thanks the Graduate School, Chiang Mai University, Chiang Mai, Thailand, for its financial support that he received during the preparation of this paper. The second author thanks Chiang Mai University for its financial support.

References

[1] S. V. Droms, Partial Linear Transformations of a Vector Space, MS Thesis, directed by Janusz Konieczny, University of Mary Washington, Virginia, USA, 2007.
[2] V. H. Fernandes, J. Sanwong, On the ranks of semigroups of transformations on a finite set with restricted range, Algebra Colloq., to appear.
[3] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, USA, 1995.
[4] G. Kowol, H. Mitsch, Naturally ordered transformation semigroups, Monatsh. Math. 102 (1986) 115-138.
[5] M. Paula, O. Marques-Smith and R. P. Sullivan, Partial orders on transformation semigroups, Monatsh. Math. 140 (2003) 103-118.
[6] H. Mitsch, A natural partial order for semigroups, Proc. Amer. Soc. 97 (3) (1986) 384-388.
[7] K. Sangkhanan, J. Sanwong, Partial orders on semigroups of partial transformations with restricted range, Bull. Aust. Math. Soc. 86 (1) (2012), 100-118.
[8] K. Sangkhanan, J. Sanwong, Semigroups of injective partial linear transformations with restricted range: Green's relations and partial orders, Int. J. Pure Appl. Math. 80 (4) (2012), 597-608.
[9] J. Sanwong, W. Sommanee, Regularity and Green's relations on a semigroup of transformation with restricted range, Int. J. Math. Math. Sci. 2008 (2008), Art. ID 794013, 11pp.
[10] R. P. Sullivan, Partial orders on linear transformation semigroups, P. Roy. Soc. Edinb. 135A (2005) 413-437.
[11] R. P. Sullivan, Semigroups of linear transformations with restricted range, Bull. Aust. Math. Soc. 77 (2008) 441-453.
(Received 1 October 2013)
(Accepted 6 November 2013)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2014 by the Mathematical Association of Thailand. All rights reserved.

