Thai Journal of Mathematics Volume 12 (2014) Number 1 : 71–80

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

(ψ, α, β) -Weak Contraction in Partially Ordered G-Metric Spaces

M. Bousselsal †,‡,1 and Z. Mostefaoui †

[†]Laboratoire d'Analyse Non Lineaire et Histoire des Maths, E.N.S B.P. 92 Vieux Kouba 16050 Algiers, Algeria e-mail : bousselsal@ens-kouba.dz

[‡]Department of Mathematics, College of Science, Qassim University 51452 Bouraida, KSA

Abstract : In this paper we have generalized the weak contraction principle to coincidence point and common fixed point results in partially ordered G-metric spaces. We illustrate our results with the help of an example.

Keywords : partially ordered set; G-metric space; coincidence point; fixed point; g-non-decreasing mapping; weak contraction; control functions.
2010 Mathematics Subject Classification : 54H25; 47H10.

1 Introduction

Alber and Guerre-Delabriere in [1] suggested a generalization of the Banach contraction mapping principle by introducing the concept of weak contraction in Hilbert spaces. Rhoades [2] had shown that the result which Alber et al. had proved in Hilbert spaces [1] is also valid in complete metric spaces. Weakly contractive mappings and mappings satisfying other weak contractive inequalities have been discussed in several works, some of which are noted in [3, 4]. Khan et al. [5] introduced the use of a control function in metric fixed point problems. This function was referred to as 'altering distance function' by the authors of [5]. This function and its extensions have been used in several problems of fixed point theory, some of which are noted in [6, 7]. In recent times, fixed point

Copyright c 2014 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

theory has developed rapidly in partially ordered metric spaces, that is, in metric spaces endowed with a partial ordering [8, 9]. Using the control functions the weak contraction principle has been generalized in metric spaces [10] and in partially ordered metric spaces in [11]. In [12], the weak contraction principle has been generalized by using three functions. Compatibility of two mappings introduced by Jungck [13] is an important concept in the context of common fixed point problems in metric spaces. This concept has been weakened to compatibilities of type A, type B, type C and finally to weak compatibility [14, 15]. Note that a lot of authors have proved various fixed-point and coupled point results for one or two self-mappings in the setting of metric, cone metric, ordered metric or G-metric spaces, see for instance [16–23].

Now we give preliminaries and basic definitions which are used throughout the paper.

2 Preliminaries

Definition 2.1 ([24]). Let X be a non-empty set, $G : X \times X \times X \longrightarrow \mathbb{R}^+$ be a function satisfying the following properties:

- (G1) G(x, y, z) = 0 if x = y = z.
- (G2) 0 < G(x, x, y) for all $x, y \in X$ with $x \neq y$.
- (G3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$.
- (G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables).
- (G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).

Then the function G is called a *generalized metric*, or, more specially, a G-metric on X, and the pair (X, G) is called a G-metric space.

Definition 2.2 ([24]). Let (X, G) be a G-metric space, and let (x_n) be a sequence of points of X. We say that (x_n) is *G*-convergent to $x \in X$ if $\lim_{n,m \to +\infty} G(x, x_n, x_m) = 0$, that is, for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $G(x, x_n, x_m) < \varepsilon$, for all $n, m \ge N$. We call x the limit of the sequence and write $x_n \longrightarrow x$ or $\lim_{n \longrightarrow +\infty} x_n = x$.

Proposition 2.3 ([24]). Let (X, G) be a *G*-metric space. The following are equivalent:

- (1) (x_n) is G-convergent to x.
- (2) $G(x_n, x_n, x) \longrightarrow 0 \text{ as } n \longrightarrow +\infty.$
- (3) $G(x_n, x, x) \longrightarrow 0 \text{ as } n \longrightarrow +\infty.$
- (4) $G(x_n, x_m, x) \longrightarrow 0 \text{ as } n, m \longrightarrow +\infty.$

 (ψ, α, β) -Weak Contraction in Partially Ordered G-Metric Spaces

Definition 2.4 ([24]). Let (X, G) be a G-metric space. A sequence (x_n) is called a *G-Cauchy sequence* if, for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $G(x_n, x_m, x_l) < \varepsilon$ for all $m, n, l \ge N$, that is, $G(x_n, x_m, x_l) \longrightarrow 0$ as $n, m, l \longrightarrow +\infty$.

Proposition 2.5 ([25]). Let (X, G) be a G-metric space. Then the following are equivalent

- (1) the sequence (x_n) is G-Cauchy.
- (2) for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \varepsilon$, for all $m, n \geq N$.

Proposition 2.6 ([24]). Let (X, G) be a *G*-metric space. A mapping $f : X \longrightarrow X$ is *G*-continuous at $x \in X$ if and only if it is *G*-sequentially continuous at x, that is, whenever (x_n) is *G*-convergent to x, $(f(x_n))$ is *G*-convergent to f(x).

Proposition 2.7 ([24]). Let (X,G) be a *G*-metric space. Then, the function G(x, y, z) is jointly continuous in all three of its variables.

Definition 2.8 ([24]). A G-metric space (X, G) is called *G-complete* if every G-Cauchy sequence is G-convergent in (X, G).

Definition 2.9 ([14]). (Weakly Compatible Mappings) Two mappings $f, g: X \longrightarrow X$ are weakly compatible if they commute at their coincidence points, that is, if ft = gt for some $t \in X$ implies that fgt = gft.

Lemma 2.10 ([15]). If f and g are either compatible, or compatible of type A (resp. type B or type C), then f and g are weakly compatible.

Definition 2.11 ([15]). (g-Non Decreasing Mapping) Suppose (X, \preceq) is a partially ordered set and $f, g: X \longrightarrow X$ are mappings of X to itself. f is said to be g-non-decreasing if for $x, y \in X$, $gx \preceq gy$ implies $fx \preceq fy$.

3 Main Results

Theorem 3.1. Let (X, \preceq) be a partially ordered set and suppose that (X, G) is a G-complete metric space. Let $f, g: X \longrightarrow X$ be such that $f(X) \subseteq g(X)$, f is g-non-decreasing, g(X) is closed and

$$\psi(G(fx, fy, fz)) \le \alpha(G(gx, gy, gz)) - \beta(G(gx, gy, gz))$$
(3.1)

for all $x, y, z \in X$ such that $gx \leq gy \leq gz$, where $\psi, \alpha, \beta : [0, +\infty) \longrightarrow [0, +\infty)$ are such that, ψ is continuous and monotone non-decreasing, α is continuous, β is lower semi-continuous,

$$\psi(t) = 0$$
 if and only if $t = 0$, $\alpha(0) = \beta(0) = 0$ (3.2)

and

$$\psi(t) - \alpha(t) + \beta(t) > 0 \text{ for all } t > 0.$$
(3.3)

Also, if any nondecreasing sequence (x_n) in X converges to z, then we assume

$$x_n \preceq z \text{ for all } n \ge 0. \tag{3.4}$$

If there exists $x_0 \in X$ such that $gx_0 \preceq fx_0$, then f and g have a coincidence point.

Proof. By the condition of the theorem there exists $x_0 \in X$ such that $gx_0 \leq fx_0$. Since $f(X) \subseteq g(X)$, we can define $x_1 \in X$ such that $gx_1 = fx_0$, then $gx_0 \leq fx_0 = gx_1$. Since f is g-non decreasing, we have $fx_0 \leq fx_1$. In this way we construct the sequence (x_n) recursively as

$$fx_n = gx_{n+1} \quad \text{for all} \quad n \ge 1 \tag{3.5}$$

for which

$$gx_0 \preceq fx_0 = gx_1 \preceq fx_1 = gx_2 \preceq fx_2 \preceq \cdots \preceq fx_{n-1} = gx_n \preceq fx_n = gx_{n+1} \preceq \cdots$$
(3.6)

If any two consecutive terms in the sequence (x_n) are equal, then the conclusion of the theorem follows. So we assume that

$$G(fx_{n-1}, fx_{n-1}, fx_n) \neq 0 \quad \text{for all} \quad n \ge 1.$$
 (3.7)

Let, if possible, for some n

$$G(fx_{n-1}, fx_{n-1}, fx_n) < G(fx_n, fx_n, fx_{n+1}).$$

Substituting $x = y = x_n$ and $z = x_{n+1}$ in (3.1), using (3.5), (3.6) and the monotone property of ψ , we have

$$\psi(G(fx_{n-1}, fx_{n-1}, fx_n)) < \psi(G(fx_n, fx_n, fx_{n+1})) \le \alpha(G(gx_n, gx_n, gx_n + 1)) - \beta(G(gx_n, gx_n, gx_{n+1})) = \alpha(G(fx_{n-1}, fx_{n-1}, fx_n)) - \beta(G(fx_{n-1}, fx_{n-1}, fx_n)).$$
(3.8)

By (3.3), we have that $G(fx_{n-1}, fx_{n-1}, fx_n) = 0$, which contradicts (3.7). Therefore, for all $n \ge 1$

$$G(fx_n, fx_n, fx_{n+1}) \le G(fx_{n-1}, fx_{n-1}, fx_n).$$

It follows that the sequence $(G(fx_n, fx_n, fx_{n+1}))$ is a monotone decreasing sequence of non-negative real numbers and consequently there exists $r \ge 0$ such that

$$\lim_{n \to +\infty} G(fx_n, fx_n, fx_{n+1}) = r.$$
(3.9)

Taking $n \to +\infty$ in (3.8) and using the lower semi continuity of β and the continuities of ψ and α , we obtain $\psi(r) \leq \alpha(r) - \beta(r)$, which, by (3.3), implies that r = 0. Hence

$$\lim_{n \to +\infty} G(fx_n, fx_n, fx_{n+1}) = 0.$$
(3.10)

Next we show that (fx_n) is a Cauchy sequence. If not, then there exists some $\varepsilon > 0$ for which we can find two sequences $(fx_{m(k)})$ and $(fx_{n(k)})$ of (fx_n) , n(k) > m(k) > k, for all $k \ge 0$,

$$G(fx_{m(k)}, fx_{m(k)}, fx_{n(k)}) \ge \varepsilon$$
(3.11)

and

$$G(fx_{m(k)}, fx_{m(k)}, fx_{n(k)-1}) < \varepsilon.$$
 (3.12)

By (3.12) and the rectangle inequality, we have for all $k \ge 0$,

$$\begin{split} \varepsilon &\leq G(fx_{m(k)}, fx_{m(k)}, fx_{n(k)}) \leq G(fx_{m(k)}, fx_{m(k)}, fx_{n(k)-1}) \\ &+ G(fx_{n(k)-1}, fx_{n(k)-1}, fx_{n(k)}) < \varepsilon + G(fx_{n(k)-1}, fx_{n(k)-1}, fx_{n(k)}). \end{split}$$

Taking $k \longrightarrow +\infty$ in the above inequality and using (3.10) we obtain

$$\lim_{k \to +\infty} G(fx_{m(k)}, fx_{m(k)}, fx_{n(k)}) = \varepsilon.$$
(3.13)

Also, by rectangle inequality and using that $G(x, x, y) \leq 2G(x, y, y)$ for any $x, y \in X$, for all $k \geq 0$, we have

$$\begin{aligned} G(fx_{m(k)-1}, fx_{m(k)-1}, fx_{n(k)-1}) \\ &\leq G(fx_{m(k)-1}, fx_{m(k)-1}, fx_{m(k)}) + G(fx_{m(k)}, fx_{m(k)}, fx_{n(k)}) \\ &+ G(fx_{n(k)}, fx_{n(k)}, fx_{n(k)-1}) \\ &\leq G(fx_{m(k)-1}, fx_{m(k)-1}, fx_{m(k)}) + G(fx_{m(k)}, fx_{m(k)}, fx_{n(k)}) \\ &+ 2G(fx_{n(k)-1}, fx_{n(k)-1}, fx_{n(k)}) \end{aligned}$$

and

$$\begin{aligned} G(fx_{m(k)}, fx_{m(k)}, fx_{n(k)}) \\ &\leq G(fx_{m(k)}, fx_{m(k)}, fx_{m(k)-1}) + G(fx_{m(k)-1}, fx_{m(k)-1}, fx_{n(k)-1}) \\ &\quad + G(fx_{n(k)-1}, fx_{n(k)-1}, fx_{n(k)}) \\ &\leq 2G(fx_{m(k)-1}, fx_{m(k)-1}, fx_{m(k)}) + G(fx_{m(k)-1}, fx_{m(k)-1}, fx_{n(k)-1}) \\ &\quad + G(fx_{n(k)-1}, fx_{n(k)-1}, fx_{n(k)}). \end{aligned}$$

Taking limit as $k\longrightarrow +\infty$ in the above two inequalities and using (3.10) and (3.13) we have

$$\lim_{k \to +\infty} G(fx_{m(k)-1}, fx_{m(k)-1}fx_{n(k)-1}) = \varepsilon.$$
(3.14)

Again, by (3.6), we have that the elements $gx_{m(k)}$ and $gx_{n(k)}$ are comparable. Putting $x = y = x_{n(k)}$ and $z = x_{m(k)}$ in (3.1), for all $k \ge 0$, by (3.5), we have

$$\begin{aligned} \psi(G(fx_{m(k)}, fx_{m(k)}, fx_{n(k)})) \\ &\leq \alpha(G(gx_{m(k)}, gx_{m(k)}, gx_{n(k)})) - \beta(G(gx_{m(k)}, gx_{m(k)}, gx_{n(k)}))) \\ &= \alpha(G(fx_{m(k)-1}, fx_{m(k)-1}, fx_{n(k)-1})) - \beta(G(fx_{m(k)-1}, fx_{m(k)-1}, fx_{n(k)-1}))) \end{aligned}$$

Taking $k \to +\infty$ in the above inequality, using (3.14), the continuities of ψ and α and the lower semi continuity of β , we obtain $\psi(\varepsilon) \leq \alpha(\varepsilon) - \beta(\varepsilon)$. Then, by (3.3), we have $\varepsilon = 0$, which is a contradiction. It then follows that (fx_n) is a Cauchy sequence and hence (fx_n) is convergent in the complete G-metric space (X, G). Since g(X) is closed and by (3.5), $fx_n = gx_{n+1}$ for all $n \geq 0$, we have that there exists $z \in X$ for which

$$\lim_{n \longrightarrow +\infty} gx_n = \lim_{n \longrightarrow +\infty} fx_n = gz.$$
(3.15)

Now we prove that z is a coincidence point of f and g. From (3.6), we have (gx_n) is a non-decreasing sequence in X. By (3.15) and a condition of our theorem,

$$gx_n \preceq gz. \tag{3.16}$$

Putting $x = y = x_n$ in (3.1), by the virtue of (3.16), we get

$$\psi(G(fx_n, fx_n, fz)) \le \alpha(G(gx_n, gx_n, gz)) - \beta(G(gx_n, gx_n, gz)).$$

Taking $n \to +\infty$ in the above inequality, using (3.2) and (3.15), we have G(gz, gz, fz) = 0, that is,

$$fz = gz. \tag{3.17}$$

This completes the proof.

Theorem 3.2. If in Theorem 3.1 it is additionally assumed that

$$gz \preceq ggz \tag{3.18}$$

where z is as in (3.4) and f and g are weakly compatible then f and g have a common fixed point in X.

Proof. Following the proof of the Theorem 3.1 we have (3.15), that is, a nondecreasing sequence (gx_n) converging to gz. Then by (3.18) we have $gz \leq ggz$. Since f and g are weakly compatible, by (3.17), we have that fgz = gfz. We set

$$w = gz = fz. \tag{3.19}$$

Therefore, we have

$$gz \preceq ggz = gw. \tag{3.20}$$

Also

$$fw = fgz = gfz = gw. \tag{3.21}$$

If z = w, then z is a common fixed point. If $z \neq w$, then, by (3.1), we have

$$\psi(G(gz,gz,gw)) = \psi(G(fz,fz,fw)) \le \alpha(G(gz,gz,gw)) - \beta(G(gz,gz,gw)).$$

From (3.3), gz = gw. Then, by (3.19) and (3.21), we have w = gw = fw. This completes the proof of Theorem 3.2.

Remark 3.1. Continuity of f is not required in Theorem 3.1. If we assume f to be continuous then (3.4) is no longer required for the theorem and can be omitted.

Remark 3.2. In view of Lemma 2.10, the result of Theorem 3.2 is valid if we assume f and g to be compatible, compatible of type A, type B or type C.

 (ψ, α, β) -Weak Contraction in Partially Ordered G-Metric Spaces

4 Example

Let X = [0, 1]. We define a partial order \preceq on X as $x \preceq y$ if and only if $x \ge y$ for all $x, y \in X$. Define $G : X \times X \times X \longrightarrow \mathbb{R}^+$ by

$$G(x, y, z) = |x - y| + |x - z| + |y - z|$$

for all $x, y, z \in X$. Then (X, G) is a complete G-metric space. Let $f, g: X \longrightarrow X$ be defined as, $fx = x - \frac{5}{6}x^2$ and $gx = x - \frac{1}{3}x^2$ for all $x \in [0, 1]$. Let $\psi, \alpha, \beta : [0, +\infty) \longrightarrow [0, +\infty)$ be defined as $\psi(t) = t$, for $t \in [0, 1]$, $\alpha(t) = t$ for $t \in [0, 1]$ and $\beta(t) = \frac{t^2}{6}$ for $t \in [0, 1]$. Without loss of generality we assume that x > y > zand verify the inequality (3.1). For all $x, y, z \in [0, 1]$ with x > y > z,

$$G(fx, fy, fz) = (x - y) - \frac{5}{6}(x^2 - y^2) + (x - z) - \frac{5}{6}(x^2 - z^2) + (y - z) - \frac{5}{6}(y^2 - z^2)$$

and

$$G(gx, gy, gz) = (x - y) - \frac{1}{3}(x^2 - y^2) + (x - z) - \frac{1}{3}(x^2 - z^2) + (y - z) - \frac{1}{3}(y^2 - z^2).$$

Now,

$$\begin{aligned} \alpha(G(gx,gy,gz)) &- \beta(G(gx,gy,gz)) \\ &= (x-y) - \frac{1}{3}(x^2 - y^2) + (x-z) - \frac{1}{3}(x^2 - z^2) + (y-z) - \frac{1}{3}(y^2 - z^2) \\ &- \frac{\left[(x-y) - \frac{1}{3}(x^2 - y^2) + (x-z) - \frac{1}{3}(x^2 - z^2) + (y-z) - \frac{1}{3}(y^2 - z^2)\right]^2}{6}. \end{aligned}$$

Since $(x - y) - \frac{1}{3}(x^2 - y^2) \le (x - y)$ and x > y > z, we have

$$\begin{split} \left[(x-y) - \frac{1}{3}(x^2 - y^2) + (x-z) - \frac{1}{3}(x^2 - z^2) + (y-z) - \frac{1}{3}(y^2 - z^2) \right]^2 \\ & \leq \left((x-y) + (x-z) + (y-z) \right)^2 = (x-y)^2 + (x-z)^2 + (y-z)^2 \\ & + 2 \Big((x-z)(y-z) + (x-y)(x-z) + (x-y)(y-z) \Big) \\ & \leq (x^2 - y^2) + (x^2 - z^2) + (y^2 - z^2) + 2 \big((x-z)^2 + (x-z)^2 + (x-z)^2 \big) \\ & \leq (x^2 - y^2) + 7(x^2 - z^2) + (y^2 - z^2). \end{split}$$

Therefore,

$$\begin{aligned} &\alpha(G(gx,gy,gz)) - \beta(G(gx,gy,gz)) \\ &\geq (x-y) - \frac{1}{3}(x^2 - y^2) + (x-z) - \frac{1}{3}(x^2 - z^2) + (y-z) - \frac{1}{3}(y^2 - z^2) \\ &- \frac{(x^2 - y^2) + 7(x^2 - z^2) + (y^2 - z^2)}{6} \\ &= (x-y) - \frac{1}{2}(x^2 - y^2) + (x-z) - \frac{5}{6}(x^2 - z^2) + (x-y) - \frac{1}{2}(y^2 - z^2) \\ &\geq (x-y) - \frac{5}{6}(x^2 - y^2) + (x-z) - \frac{5}{6}(x^2 - z^2) + (x-y) - \frac{5}{6}(y^2 - z^2) \\ &= \psi \big(G(fx, fy, fz) \big). \end{aligned}$$

Therefore, the inequality (3.1) is satisfied. Then, with any choice of x_0 in (0, 1), all the conditions of Theorem 3.1 are satisfied. Also f and g are weakly compatible. Further g also satisfies (3.18). Hence Theorem 3.2 is also applicable to this example. Here z = 0 is a coincidence point as well as common fixed point of f and g.

Acknowledgement : The authors would like to express their sincere thanks to the editor and reviewers for their valuable suggestions.

References

- Ya.I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, in: I. Gohberg, Yu. Lyubich (Eds.), New Results in Operator Theory, in: Advances and Appl., Vol. 98, Birkhuser, Basel, (1997) 7–22.
- B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (4) (2001) 2683–2693.
- [3] C.E. Chidume, H. Zegeye, S.J. Aneke, Approximation of fixed points of weakly contractive non self maps in Banach spaces, J. Math. Anal. Appl. 270 (1) (2002) 189–199.
- [4] O. Popescu, Fixed points for (ψ, φ)-weak contractions, Appl. Math. Lett. 24 (2011) 1–4.
- [5] M.S. Khan, M. Swaleh, S. Sessa, Fixed points theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984) 1–9.
- [6] K.P.R. Sastry, G.V.R. Babu, A common fixed point theorem in complete metric spaces by altering distances, Indian J. Pure. Appl. Math. 30 (6) (1999) 641–647.
- [7] D. Mihet, Altering distances in probabilistic Menger spaces, Nonlinear Anal. 71 (7-8) (2009) 2734–2738.

 (ψ, α, β) -Weak Contraction in Partially Ordered G-Metric Spaces

- [8] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435–1443.
- B.S. Choudhury, A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010) 2524–2531.
- [10] P.N. Dutta, B.S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory and Applications, Vol. 2008 (2008), Article ID 406368, 8 pages.
- [11] J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. 72 (2010) 1188–1197.
- [12] M. Eslamian, A. Abkar, A fixed point theorems for generalized weakly contractive mappings in complete metric space, Ital. J. Pure Appl. Math., (in press).
- [13] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986) 771–779.
- [14] G. Jungck, B.E. Rhoades, Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998) 227–238.
- [15] A. Djoudi, L. Nisse, Gregus type fixed points for weakly compatible maps, Bull. Belg. Math. Soc. 10 (2003) 369–378.
- [16] S.B. Choudhurya, A. Kundu, (ψ, α, β) weak contractions in partially ordered metric spaces, Appl. Math. Lett. 25 (2012) 6–10.
- [17] H. Aydi, W. Shatanawi, C. Vetro, On generalized weakly G-contraction mapping in G-metric spaces, Comp. Math. Appl. 62 (2011) 4222–4229.
- [18] Z. Golubović, Z. Kadelburg, S. Radenović, Common fixed points of ordered g-quasicontractions and weak contractions in ordered metric spaces, Fixed Point Theory and Applications (2012), 2012:20.
- [19] M. Abbas, T. Nazir, S. Radenović, Common fixed point of generalized weakly contractive maps in partially ordered G-metric spaces, Appl. Math. Comput. 218 (2012) 9383–9395.
- [20] Z. Kadelburg, H. Kumar Nashine, S. Radenović, Common coupled fixed point results in partially ordered G-metric spaces, Bull. Math. Anal. Appl. 4 (2) (2012) 51–63.
- [21] H.Aydi, E. Karapinar, B.Samet, Remarks on some recent fixed point theorems, Fixed Point Theory and Applications (2012), 2012:76.
- [22] S. Radenović, Z. Kadelburg, D. Jandrlić, A. Jandrlić, Some results on weakly contractive maps, Bull. Iranian Math. J., (in press).

- [23] H. Ding, Z. Kadelburg, E. Karapinar, S. Radenović, Common fixed points of weakly contractions in cone metric spaces, Abstract and Applied Analysis, Vol. 2012 (2012), Article ID 793862, 18 pages.
- [24] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006) 289–297.
- [25] Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, in: Proc. Int. Conf. on Fixed Point Theory and Applications, Valencia, Spain, July (2003), pp. 189–198.

(Received 10 April 2012) (Accepted 30 September 2012)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th