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Abstract : In this paper, we study the global character of the solutions of higher-
order rational difference equation of the form:

xN+1 =
Axn

N +BxN−1x
n
N−K

Cxn
N +DxN−1xn

N−K

,

where n is some strictly positive integer, parameters A, B, C, D and initial
conditions x−K , . . . , x−1, x0 are positive real numbers. We prove local stability,
persistence, periodicity nature of solutions and global attractivity of equilibrium
point of this equation. Some numerical examples are given to verify our theoretical
results.

Keywords : stability; periodic solutions; global character.
2010 Mathematics Subject Classification : 39A10; 40A05.

1 Introduction

The theory of difference equations occupies a central position in applicable
Analysis. There is no doubt that the theory of difference equations will continue
to play an important role in mathematics as a whole. For basic theory of difference
equations see [1–3]. Nonlinear difference equations of order greater than one are
of paramount importance in applications. Such equations also appear naturally as
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discrete analogues and as numerical solutions of differential and delay differential
equations which model various diverse phenomena in biology, ecology, physiology,
physics, engineering and economics. Our aim in this paper is study the stability
and global behavior of solutions of nonlinear rational difference equations of order
greater than one. Our primary concern is to study the global asymptotic stability
of the equilibrium solution. We also discuss the boundedness of solutions and the
existence of periodic solutions. For more detail one can see [4–6].

Recently there has been a lot of interest in studying the global attractivity,
boundedness character and the periodic nature of nonlinear difference equations.
For some results in this area, see for example [7–11]. In the paper we study
boundedness nature of solutions, the stability of the equilibrium points and the
periodic character of the difference equation:

xN+1 =
Axn

N +BxN−1x
n
N−K

Cxn
N +DxN−1xn

N−K

, N = 0, 1, . . . , (1.1)

where n is some strictly positive integer, parameters A,B,C,D and initial condi-
tions x−K , . . . , x−1, x0 are positive real numbers.

2 Preliminaries

A difference equation of order (K + 1) is an equation of the form:

xN+1 = F (xN , xN−1, . . . , xN−K), N = 0, 1, . . . , (2.1)

where F is a continuously differentiable function which maps some set IK+1 into
I. The set I is usually an interval of real numbers.

A solution of Equation (2.1) is a sequence {xN}∞N=−K which satisfies Equation
(2.1) for all N ≥ 0.

Definition 2.1. A solution {xN}∞N=−K of Equation (2.1) which is constant for
all N ≥ −K is called an equilibrium solution of Equation (2.1). If xN = x̄ for all
N ≥ −K is an equilibrium solution of Equation (2.1), then x̄ is an equilibrium
point of Equation (2.1), or equivalently a point x̄ ∈ I is an equilibrium point of
Equation (2.1) if

x̄ = F (x̄, x̄, . . . , x̄).

Definition 2.2. A solution {xN}∞N=−K of difference Equation (2.1) is bounded
and persists if there exist numbers m and M with 0 < m ≤ M < ∞ such that for
any initial conditions x−K , . . . , x−1, x0 there exists a positive integer N̄ such that
m ≤ xN ≤ M for all N ≥ N̄ .

Definition 2.3 (Stability).

(i) An equilibrium point x̄ of Equation (2.1) is locally stable if for every ε > 0,
there exists δ > 0 such that if {xN}∞N=−K is a solution of Equation (2.1)
with |x−K − x̄|+ |x1−K − x̄|+ · · ·+ |x0 − x̄| < δ, then |xN − x̄| < ε for all
N ≥ −K.
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(ii) An equilibrium point x̄ of Equation (2.1) is locally asymptotically stable if it
is locally stable, and if in addition there exists γ > 0 such that if {xN}∞N=−K

is a solution of Equation (2.1) with |x−K−x̄|+|x1−K−x̄|+· · ·+|x0−x̄| < γ,
then limN→∞ xN = x̄.

(iii) An equilibrium point x̄ of Equation (2.1) is a global attractor if for every
solution {xN}∞N=−K of Equation (2.1), we have limN→∞ xN = x̄.

(iv) An equilibrium point x̄ of Equation (2.1) is globally asymptotically stable
if it is locally stable, and x̄ is also global attractor of Equation (2.1).

(v) An equilibrium point x̄ of Equation (2.1) is unstable if x̄ is not locally stable.

Definition 2.4. A solution {xN}∞N=−K is periodic with period p if there exists
an integer p ≥ 1 such that

xN+p = xN for all N ≥ −K. (2.2)

A solution is periodic with prime period p if p is the smallest positive integer for
which (2.2) holds.

2.1 Linearized Stability Analysis

Suppose F is continuously differentiable in some open neighborhood of x̄.
Let pi = ∂F

∂ui
(x̄, x̄, . . . , x̄) for i = 0, 1, . . . ,K denote the partial derivatives of

F (u0, u1, . . . , uK) with respect to ui evaluated at x̄. The equation

zN+1 = p0zN + p1zN−1 + · · ·+ pKzN−K , N = 0, 1, . . . (2.3)

is called linearized equation of (2.1) about x̄, and the equation

λK+1 − p0λ
K − · · · − pK−1λ− pK = 0 (2.4)

is called characteristic equation of (2.3) about x̄.
The following result is known as the Linearized Stability Theorem, is very use-

ful in determining the local stability character of the equilibrium point of Equation
(2.1).

Theorem 2.5. Assume that F is continuously differentiable function defined on
some open neighborhood of an equilibrium point x̄ and if all roots of Equation (2.4)
have absolute value less than one, then the equilibrium point of Equation (2.1) is
locally asymptotically stable.

The following result is a sufficient condition for all roots of an equation of any
order to lie inside the unit disk.

Theorem 2.6. Assume that p0, p1, . . . , pK are real numbers such that |p0|+ |p1|+
· · · + |pK | < 1. Then all roots of Equation (2.4) lie inside the open unit disk
|λ| < 1.
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3 Main Results

To study the local stability character of the solutions of Equation (1.1), we let
f : (0,∞)3 → (0,∞) be a continuously differentiable function defined by:

f(x, y, z) :=
Axn +Byzn

Cxn +Dyzn
. (3.1)

Let x̄ be an equilibrium point of Equation (1.1), then

x̄ = f(x̄, x̄, x̄)

=
Ax̄n +Bx̄n+1

Cx̄n +Dx̄n+1

=
A+Bx̄

C +Dx̄
.

This implies that x̄ =
B−C±

√
(B−C)2+4AD

2D .
Moreover,

∂f

∂x
(x, y, z) =

nxn−1yzn(AD −BC)

(Cxn +Dyzn)2
,

∂f

∂y
(x, y, z) =

xnzn(BC −AD)

(Cxn +Dyzn)2
,

and
∂f

∂x
(x, y, z) =

nxnyzn−1(BC −AD)

(Cxn +Dyzn)2
.

Furthermore, it is easy to check that

p2 =
∂f

∂x
(x̄, x̄, x̄) =

n(AD −BC)

(C +Dx̄)2
,

p1 =
∂f

∂y
(x̄, x̄, x̄) =

(BC −AD)

(C +Dx̄)2
,

and

p0 =
∂f

∂z
(x̄, x̄, x̄) =

n(BC −AD)

(C +Dx̄)2
.

At x̄ =
B−C+

√
(B−C)2+4AD

2D , one has (C+Dx̄)2 = 1
4 (B+C+

√
(B − C)2 + 4AD)2.

Thus

p2 =
4n(AD −BC)

(B + C +
√
(B − C)2 + 4AD)2

,

p1 =
4(BC −AD)

(B + C +
√
(B − C)2 + 4AD)2

,
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and

p0 =
4n(BC −AD)

(B + C +
√
(B − C)2 + 4AD)2

.

The linearized equation of Equation (1.1) about x̄ =
B−C+

√
(B−C)2+4AD

2D is

zN+1 = p0zN + p1zN−1 + p2zN−K (3.2)

and
λK+1 − p0λ

K − p1λ
K−1 − p2 = 0 (3.3)

is its characteristic equation.

Remark 3.1. From above calculations it is easy to see that

p2 + np1 = 0, np1 − p0 = 0, p2 + p0 = 0.

Theorem 3.2. The equilibrium point x̄ =
B−C+

√
(B−C)2+4AD

2D of Equation (1.1)

is locally asymptotically stable if 4(2n+1)|AD−BC| < B+C+
√
(B − C)2 + 4AD.

Proof. From Theorem 2.6 it follows that all roots of Equation (3.3) lie in an open
disc |λ| < 1, if

|p2|+ |p1|+ |p0| < 1.

This implies that

4n|AD −BC|
B + C +

√
(B − C)2 + 4AD)2

+
4|BC −AD|

B + C +
√
(B − C)2 + 4AD

+
4n|BC −AD|

B + C +
√

(B − C)2 + 4AD
< 1.

Thus one has

4(2n+ 1)|AD −BC| < B + C +
√
(B − C)2 + 4AD.

Theorem 3.3. Every solution of Equation (1.1) is bounded and persists.

Proof. Let {xN}∞N=−K be a solution of Equation (1.1), then

xN+1 =
Axn

N +BxN−1x
n
N−K

Cxn
N +DxN−1xn

N−K

=
Axn

N

Cxn
N +DxN−1xn

N−K

+
BxN−1x

n
N−K

Cxn
N +DxN−1xn

N−K

≤ Axn
N

Cxn
N

+
BxN−1x

n
N−K

DxN−1xn
N−K

=
A

C
+

B

D
.
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Thus xN ≤ A
C + B

D = M for all N ≥ 1.
Let there exists m > 0 such that xN ≥ m for all N ≥ 1. Taking xN = 1

yN
,

then one has

yN+1 =
CynN +DyN−1x

n
N−K

AynN +ByN−1xn
N−K

=
CynN

AynN +ByN−1ynN−K

+
DyN−1y

n
N−K

AynN +ByN−1ynN−K

≤ CynN
AynN

+
DyN−1y

n
N−K

ByN−1ynN−K

=
C

A
+

D

B
.

Thus xN = 1
yN

≥ 1
H = AB

AD+BC = m for all N ≥ 1. Hence, m ≤ xN ≤ M for all
N ≥ 1.

Theorem 3.4. The local asymptotic stability of equilibrium point of Equation
(1.1) is independent of exponent n.

Proof. From Remark 3.1, we have the following linear homogeneous system in
p0, p1 and p2:  1 n 0

0 n −1
1 0 1

 p2
p1
p0

 =

 0
0
0

 .

Let A =

 1 n 0
0 n −1
1 0 1

, then detA = 0 for all values of n. Hence, local

asymptotic stability of equilibrium point of Equation (1.1) does not depend on
n.

Next we prove that Equation (1.1) has prime period two solutions.

Theorem 3.5. Let K be even, then Equation (1.1) has prime period two solutions
for all A, B, C, D ∈ R+.

Proof. Suppose that . . . , p, q, p, q, . . . be a prime period two solution of Equation
(1.1). If K is even, then xN = xN−K and xN+1 = xN−1. From Equation (1.1)
one has:

p =
Aqn +Bpqn

Cqn +Dpqn
=

A+Bp

C +Dp
,

and

q =
Apn +Bqpn

Cpn +Dqpn
=

A+Bq

C +Dq
.
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Then, it is easy to see that p + q = B−C
D and pq = −A

D . It is clear that p and q
are two real distinct roots of quadratic equation given by:

Dt2 − (B − C)t−A = 0,

for all A, B, C, D ∈ R+.
Second suppose that A, B, C, D ∈ R+. We will show that Equation (1.1)

has prime period two solutions. Assume that

p =
(B − C) +

√
(B − C)2 + 4AD

2D
,

and

q =
(B − C)−

√
(B − C)2 + 4AD

2D
.

Then, it is easy to see that p and q are distinct real numbers with q < p. Let K be
even and x−K = p, x−K+1 = q, . . . , x0. We want to show that x1 = q and x2 = p.
To this end, we deduce from the original difference Equation (1.1) that

x1 =
Axn

0 +Bx−1x
n
−K

Cxn
0 +Dx−1xn

−K

=
A+Bq

C +Dq
. (3.4)

Furthermore,

x1 − q =
A+Bq

C +Dq
−

(B − C)−
√
(B − C)2 + 4AD

2D
. (3.5)

Taking q =
(B−C)−

√
(B−C)2+4AD

2D in right hand side of Equation (3.5), one has x1−
q = 0, i.e., x1 = q. Similarly one can show that x2 = p. Hence, by mathematical
induction one can easily prove that xN = q and xN+1 = p for all N ≥ −K. Hence,
if K is even and for all A, B, C, D ∈ R+, we have a prime period two solution of
(1.1) and the proof is completed.

Theorem 3.6. Let K be odd, then Equation (1.1) has no prime period two solu-
tions for all A, B, C, D ∈ R+.

Proof. Assume that there exists a distinct solution

. . . , p, q, p, q, . . .

of prime order two of Equation (1.1). If K is odd, then xN+1 = xN−K . It follows
from Equation (1.1) that

p =
Aqn +Bqpn

Cqn +Dqpn
=

Aqn−1 +Bpn

Cqn−1 +Dpn
,

and

q =
Apn +Bpqn

Cpn +Dpqn
=

Apn−1 +Bqn

Cpn−1 +Dqn
.
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Hence, one has
Cpqn−1 +Dpn+1 = Aqn−1 +Bpn, (3.6)

and
Cqpn−1 +Dqn+1 = Apn−1 +Bqn. (3.7)

From (3.6) and (3.7), one has C(p−q) = 0. Hence, p = q, which is a contradiction.

Lemma 3.7. For any values of quotients A
C and B

D the function f(x, y, z) =
Axn+Byzn

Cxn+Dyzn is monotonic in each of its three arguments.

Theorem 3.8. The equilibrium point x̄ is a global attractor of Equation (1.1) if
one of the following statements holds:

(i) AD ≥ BC and 2nC(BD )2n − 2nA(BD )2n−1 > −(B + C)(AC )2n.

(ii) AD ≤ BC and (2n+ 1)D(AC )2n − 2nB(AC )2n−1 > −A(BD )2n−2.

Proof. Let {xN}∞N=−K be a solution of Equation (1.1). In case of (i), when AD ≥
BC, the function f(x, y, z) = Axn+Byzn

Cxn+Dyzn is non-decreasing in x and non-increasing

in y and z. Thus we have B
D ≤ xN ≤ A

C for all N ≥ 1. Let {xN}∞N=0 be a solution
of Equation (1.1) with L = lim

N→∞
inf xN and U = lim

N→∞
supxN . We want to show

that L = U .
According to Lemma 3.7, L ≥ f(L,U,U) and U ≤ f(U,L, L), which implies

that
AL2n +BLnUn+1 − CL2n+1 ≤ DLn+1Un+1, (3.8)

and
AU2n +BUnLn+1 − CL2n+1 ≥ DLn+1Un+1. (3.9)

Combining (3.8) and (3.9), one has

AL2n +BLnUn+1 − CL2n+1 ≤ AU2n +BUnLn+1 − CL2n+1. (3.10)

Inequality (3.10) can be written as:

(L− U)[C(L2n + L2n−1U + · · ·+ U2n) +BLnUn

−A(Ln + Un)(Ln−1 + Ln−2U + · · ·+ Un−1)] ≥ 0. (3.11)

Now L− U > 0, if

C(L2n+L2n−1U+· · ·+U2n)+BLnUn−A(Ln+Un)(Ln−1+Ln−2U+· · ·+Un−1) ≥ 0.
(3.12)

Inequality (3.12) can be written as:

C(L2n+L2n−1U + · · ·+ Ln+1Un−1 + Ln−1Un+1 + · · ·+ U2n)

+ (B + C)LnUn −A(Ln + Un)(Ln−1 + Ln−2U + · · ·+ Un−1) ≥ 0.
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To prove Inequality (3.12), let us consider

Ω = C(L2n + L2n−1U + · · ·+ Ln+1Un−1 + Ln−1Un+1 + · · ·+ U2n)

−A(Ln + Un)(Ln−1 + Ln−2U + · · ·+ Un−1).

Then, one has

Ω ≥ 2nC

(
B

D

)2n

− 2nA

(
B

D

)2n−1

≥ −(B + C)

(
A

C

)2n

≥ −(B + C)LnUn.

Now assume that AD ≤ BC, then the function f(x, y, z) = Axn+Byzn

Cxn+Dyzn is non-

increasing in x and non-decreasing in y and z. In this case, one has A
C ≤ xN ≤ B

D
for all N ≥ 1. Furthermore, in this case L ≥ f(U,L, L) and U ≤ f(L,U,U). It
is easy to see that instead of inequalities (3.8) and (3.9), one has following two
inequalities:

ALn−1Un +BL2n −DL2n+1 ≤ CLnUn, (3.13)

and
ALnUn−1 +BU2n −DU2n+1 ≥ CLnUn. (3.14)

Combining (3.13) and (3.14), one has

ALn−1Un +BL2n −DL2n+1 ≤ ALnUn−1 +BU2n −DU2n+1. (3.15)

Inequality (3.15) can be written as:

(L−U)[ALn−1Un−1−B(Ln+Un)(Ln−1+ · · ·+Un−1)+D(L2n+ · · ·+U2n)] ≥ 0.
(3.16)

In Inequality (3.16) L− U ≥ 0, if

ALn−1Un−1−B(Ln+Un)(Ln−1+ · · ·+Un−1)+D(L2n+ · · ·+U2n) ≥ 0. (3.17)

To prove Inequality (3.17), we let

Υ = D(L2n + · · ·+ U2n)−B(Ln + Un)(Ln−1 + · · ·+ Un−1).

Then, one has

Υ ≥ D(2n+ 1)

(
A

C

)2n

− 2nB

(
A

C

)2n−1

≥ −A

(
B

D

)2n−2

≥ −ALn−1Un−1.

Hence, L = U and the proof is therefore completed.
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4 Examples

In order to verify our theoretical results and to support our theoretical discus-
sions, we consider several interesting numerical examples in this section. These
examples represent different types of qualitative behavior of solutions to the nonlin-
ear difference Equation (1.1). In this section we consider some numerical examples
and discuss local stability points with their plots.

Example 4.1. Consider the Equation (1.1) with A = 5, B = 34.8, C = 1, D =
400, n = 1, K = 2. Then,

xN+1 =
5xN + 34.8xN−1xN−2

xN + 400xN−1xN−2
.

Figure 1 shows stability of equilibrium point

x̄ =
B − C +

√
(B − C)2 + 4AD

2D
= 0.16177013428707315

of the Equation (1.1) with initial conditions x0 = 0.11, x−1 = 0.17, x−2 = 0.16.

Figure 1: Plot of xN+1 =
5xN+34.8xN−1xN−2

xN+400xN−1xN−2
.

Example 4.2. Consider the Equation (1.1) with A = 2, B = 7, C = 3, D =
1, n = 2, K = 2. Then,

xN+1 =
2x2

N + 7xN−1x
2
N−2

3x2
N + xN−1x2

N−2

.

Figure 2 shows stability of equilibrium point x̄ =
B−C+

√
(B−C)2+4AD

2D = 4.44949
of the Equation (1.1) with initial conditions x0 = 0.001, x−1 = 0.07, x−2 = 0.09.
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Figure 2: Plot of xN+1 =
2x2

N+7xN−1x
2
N−2

3x2
N+xN−1x

2
N−2

.

Example 4.3. Consider the Equation (1.1) with A = 1, B = 1, C = 3, D =
1, n = 3, K = 2. Then,

xN+1 =
x3
N + xN−1x

3
N−2

3x3
N + xN−1x3

N−2

.

Figure 3 shows stability of equilibrium point x̄ =
B−C+

√
(B−C)2+4AD

2D = 0.414214
of the Equation (1.1) with initial conditions x0 = 0.11, x−1 = 0.127, x−2 = 0.46.

Figure 3: Plot of xN+1 =
x3
N+xN−1x

3
N−2

3x3
N+xN−1x

3
N−2

.
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Example 4.4. Consider the Equation (1.1) with A = 2, B = 8, C = 2, D =
4.5, n = 7, K = 2. Then,

xN+1 =
2x7

N + 8xN−1x
7
N−2

2x7
N + 4.5xN−1x7

N−2

.

Figure 4 shows stability of equilibrium point x̄ =
B−C+

√
(B−C)2+4AD

2D = 1.60948
of the Equation (1.1) with initial conditions x0 = 1, x−1 = 0.57, x−2 = 0.69.

Figure 4: Plot of xN+1 =
2x7

N+8xN−1x
7
N−2

2x7
N+4.5xN−1x

7
N−2

.

Example 4.5. Consider the Equation (1.1) with A = 2, B = 8, C = 2, D =
4.5, n = 30, K = 3. Then,

xN+1 =
x30
N + 2.3xN−1x

30
N−3

2x30
N + 4.4xN−1x30

N−3

.

Figure 5 shows stability of equilibrium point x̄ =
B−C+

√
(B−C)2+4AD

2D = 0.51204 of
the Equation (1.1) with initial conditions x0 = 0.5, x−1 = 0.7, x−2 = 0.9, x−3 =
0.3.

Example 4.6. Consider the Equation (1.1) with A = 0.5, B = 0.008, C =
6.8, D = 0.9, n = 50, K = 5. Then,

xN+1 =
0.5x50

N + 0.008xN−1x
50
N−5

6.8x50
N + 0.9xN−1x50

N−5

.

Figure 6 shows stability of equilibrium point x̄ =
B−C+

√
(B−C)2+4AD

2D = 0.0729116
of the Equation (1.1) with initial conditions x0 = 0.35, x−1 = 0.67, x−2 =
0.19, x−3 = 0.13, x−4 = 0.62, x−5 = 0.93.
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Figure 5: Plot of xN+1 =
x30
N +2.3xN−1x

30
N−3

2x30
N +4.4xN−1x

30
N−3

.

Figure 6: Plot of xN+1 =
0.5x50

N +0.008xN−1x
50
N−5

6.8x50
N +0.9xN−1x

50
N−5

.
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Figure 7: Plot of xN+1 =
5x13

N +12.5xN−1x
13
N−4

2x13
N +7xN−1x

13
N−4

.

Example 4.7. Consider the Equation (1.1) with A = 5, B = 12.5, C = 2, D =
7, n = 13, K = 4. Then,

xN+1 =
5x13

N + 12.5xN−1x
13
N−4

2x13
N + 7xN−1x13

N−4

.

Figure 7 shows stability of equilibrium point x̄ =
B−C+

√
(B−C)2+4AD

2D = 1.87995 of
the Equation (1.1) with initial conditions x0 = 0.5, x−1 = 0.7, x−2 = 0.9, x−3 =
0.3, x−4 = 0.2.

Figure 8: Plot of
4x8

N+9xN−1x
8
N−6

1.9x8
N+3.3xN−1x

8
N−6

.
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Example 4.8. Consider the Equation (1.1) with A = 4, B = 9, C = 1.9, D =
3.3, n = 8, K = 6. Then,

xN+1 =
4x8

N + 9xN−1x
8
N−6

1.9x8
N + 3.3xN−1x8

N−6

.

Figure 8 shows stability of equilibrium point x̄ =
B−C+

√
(B−C)2+4AD

2D = 2.61504 of
the Equation (1.1) with initial conditions x0 = 1.5, x−1 = 1.7, x−2 = 1.9, x−3 =
1.3, x−4 = 1.2, x−5 = 1.1, x−6 = 1.6.

Acknowledgements : I would like to thank the referees for their comments and
suggestions on the manuscript. This work was supported by the Higher Education
Commission of Pakistan.

References

[1] R.P. Agarwal, P. Wong, Advanced Topics in Difference Equations, Kluwer
Academic Publishers, 1997.

[2] R.P. Agarwal, Difference Equations and Inequalities, 1st edition, Marcel
Dekker, New York, (1992), 2nd edition, (2000).

[3] S. Elaydi, An Introduction to Difference Equations, 3rd ed., Springer-Verlag,
New York, 2005.

[4] E.A. Grove, G. Ladas, Periodicities in Nonlinear Difference Equations,
Chapman and Hall/CRC Press, Boca Raton, 2004.
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