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1 Introduction

This paper is concerned with generalizing some results in central separable
algebras over commutative rings. The notion of central separable semialgebras over
commutative semirings has been defined in [1]. Using some new generalizations in
module theory, in this paper we will try to develop this structure theory for central
separable semialgebras further and introduce the Brauer commutative monoid.

By a semiring R we always mean a commutative semiring R with 1. Through-
out the paper we assume all semimodules are unitary semimodules.
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2 Preliminaries

Semirings, additively cancellative semirings, commutative semirings, semimod-
ules, additively cancellative semimodules, ideals, k-ideals (subtractive ideals), ho-
momorphisms, steady homomorphisms are as defined in [2]. Henceforth cancella-
tive semirings (semimodules) mean additively cancellative semirings (semimod-
ules).

Convention: CS denotes cancellative and semisubtractive semialgebras as
defined in [1].

Definition 2.1. A sequence 0—L 4 M % N—0 of R-semimodules and R- homo-

morphisms is short exact if f is one-one, g is onto, g is a steady R-homomorphism
and I'm f = Kerg.

Definition 2.2. A short exact sequence 0—L Jy M % N0 of R-semimodules

and R-homomorphisms splits if there exists a splitting map ¢’: N—M such that
/

99" = ldn.

Proposition 2.3 ([3]). For any R-semimodule K and an ezxact sequence 0—L ER

M % N—0 the induced sequence 0—Hom(K, L) TN Hom(K, M) g, Hom(K,N)
18 exact.

For any R-semimodule M, consider the subset Ir(M) of R consisting of the
elements of the form Y"1, fi(m;) where f; € Hom(M, R) and m; € M. Ir(M) is
a two sided ideal in R and is called the trace ideal of M. A left R-semimodule M
is an R- generator if and only if the trace ideal Ir(M) = R.

Proposition 2.4 ([4]). Let R be a commutative and lattice ordered semiring
and M a finitely generated, projective and cancellative R-semimodule. Then
Ir(M) ® annihr(M) = R.

An R-semimodule M is an R-progenerator if M is a finitely generated,
projective and generator over R.

Proposition 2.5 ([4]). Let R be a commutative and lattice ordered semiring
and M be a cancellative R-semimodule. M is an R-progenerator if and only
if M is a finitely generated, projective and faithful.

The Dual Basis Lemma [1] Let M be an R—semimodule. Then
M is projective if and only if there exists {m;}ic;r € M and {fi}icr C
Hompg(M, R) (I some indexing set) such that

a) for every m € M, f;(m) =0 for all but finitely many i € I, and

b) for every m € M, >, ; film)m; = m.
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The collection {m;, f;} is called dual a basis for M.

Lemma 2.6 ([5]). Let R be any cancellative semiring and M be any can-
cellative R-semimodule. Then O is onto if and only if M is a finitely
generated and projective. Moreover if Or is onto then it is one-one.

Lemma 2.7 ([5]). Let R be any cancellative semiring, M be any cancella-
tive R-semimodule and S = Homp(M, M) be a cancellative semiring. Then
Os is onto if and only if M is a generator. Moreover if Og is onto then it
18 one-one.

Corollary 2.8 ([1]). Let R be a commutative semiring and let M and N
be R-semimodules. Then M ®gr N is an R-progenerator if both M and N
are.

Proposition 2.9 ([1]). (Hom-Tensor Relation) Let R be a commutative
semiring and let A and B be R-semialgebras. Let M be a finitely generated
and projective A-semimodule and N be a finitely generated and projective
B-semimodule. Then Homa(M,M) ® Homp (N,N) =2 Homagp(M ®
N,M & N) where @ = ®pg.

In [4], we have introduced R¢ = {[a,b]/a,b € R}, the ring of differences
of any cancellative semiring R w.r.t. the following well defined operations

[a,b] + [c,d] = [a+c,b+d] and

[a, b][c,d] = [ac + bd, ad + bc].

Let R be any cancellative semiring. If I is a [left, right] ideal of R, then
I¢ = {[a,b]/a,b € I} is a [left, right] ideal of R¢. Conversely, if J is a [left,
right] ideal of R¢, then J¢ = {a € R/[a,0] € J} is a [left, right] ideal of R.

Proposition 2.10 ([4]).

(a) Let R be a cancellative semiring. Then for any k- ideal I of R,I =
(I)°.

(b) Let R be a cancellative semiring and I be a proper k-ideal of R then
1¢ is a proper ideal of R°.

(c) If I,T' are any two k-ideals of a cancellative semiring R and I C I',
then I¢ C I'°.

(d) Let R be a cancellative semiring. Then for any two ideals J and J'
of R®,J C J = JccC Je.
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(e) Let R be a cancellative semiring, I and I' be any two ideals in R,
then (I + I')¢ = I¢ + I'.

Proposition 2.11 ([4]). Let R be a cancellative, semisubtractive semiring.
Then for any ideal J of R¢, J = (J°)°.

Proposition 2.12 ([4]). Let R be a cancellative, semisubtractive and lattice
ordered semiring. If J and J' are ideals of a ring of difference R®, then
(J+J)e=Je+Je.

3 Central Separable Semialgebras

Eventhough some of the statements in this section are more or less
known from [1], but we organize and prove them in some how different way
for our purpose for a semirings which are not necessarily zerosumfree.

For any R-semialgebra A, we shall let A? denote the opposite semi-
algebra of A, whose underlying additive semigroup is A, multiplication is
a’® = (ba)® and the R - semimodule structure coincides with A (to avoid
confusion, for any element a € A, while considering an element in A? we
shall denote it by a®). The enveloping semialgebra is defined by A @ A°.
For convenience we will write A¥ for the enveloping semialgebra A ® A? of

A.
Remark 3.1. A® A° is a cancellative R-semimodule.

The semialgebra A has a structure as a left A¥— semimodule induced
by (a ® %)z = axb. If A is a cancellative R- semialgebra then a map p
from semialgebra A¥ onto A given by u(>", a; @) = >, a;b;, is a left A -
semimodule homomorphism, which in case A is commutative is a semiring
homomorphism.

Definition 3.2. A cancellative R-semialgebra A is said to be R-separable
if 11 splits as an AP-homomorphism or equivalently A is a retract of AF
(i.e. there exists an A”- homomorphism p : A—A¥ such that pup = Id,).

Proposition 3.3 ([1]). Let A be a cancellative R-semialgebra. Then A
is R— separable if and only if there exists an element e in AY satisfying
pue) =1 and (1®a’)e = (a ® 1%)e for any a in A.

The element e in A¥ in the above Proposition is called separability
idempotent of A and is indeed an idempotent.
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An R-semialgebra A is called central if A is faithful as an R-semimodule
and R -1 coinsides with the center of A. We call A is central separable R-
semialgebra if A is both central and separable.

For any cancellative R-semialgebra A, we have seen that A is naturally
a left AP-semimodule. This structure induces an R-semialgebra homomor-
phism ¢: A¥ — Homp(A, A) by associating to any element  in A”, the
element ¢(a) € Homp(A, A) which is scalar multiplication in A by a. If
a=>.a;®b), then ¢(a)(a) =a-a =73, aab;

Corollary 3.4 ([1]). Let A be a cancellative R- semialgebra. Then Hom 4
(A, A) = C(A), the center of A under the correspondence f — f(1).

Lemma 3.5. Let R be a cancellative semiring and let A be a cancellative,
R-semialgebra. If A is central separable then R = Im¢(e) C A.

Proof. Let e be a separability idempotent for A (in AF). Consider the
homomorphism ¢(e) in Hompg(A, A) where ¢ is the map defined just above.

Now, a(é(e)(b)) = (a® 1% (e-b) = (1 ® a’)(e-b) = (¢(e)(b))a, for any
a € A, implies that ¢(e) - (b) € C(A) = R, shows that Im¢(e) = R. Hence
the proof. O

Proposition 3.6 ([1]). Let R be a cancellative semiring and let A and B
be cancellative, R-semialgebras. If A and B are central separable over R,
then A ® B is central separable R-semialgebra.

Lemma 3.7 ([1]). Let R be a cancellative semiring and let A be a CS
R-semialgebra. If A is R-central, then C(A°) = (C(A))°.

Lemma 3.8 ([1]). Let R be a cancellative semiring and let A be a C'S R-
semialgebra. If A is central separable over R, then A® is central separable
over R°.

Lemma 3.9. Let R be a cancellative semiring and let A be a CS R-
semialgebra. If A is an AP -progenerator and R-central, then A is central
separable over R.

Proof. If Ais AP-progenerator, then A is a finitely generated A”-semimodule
which is projective as an A¥-semimodule. Since A is a C'S R-semialgebra,
therefore A is an AP-projective, that implies A is R-separable. Hence A is
central separable over R. O

Lemma 3.10 ([1]). Let R be a cancellative semiring and let A be can-
cellative R-semialgebra. If A is an AF-progenerator and A is R-central
then A is an R-progenerator and the map ¢: A¥ — Hompg(A, A) is an
1somorphism.
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Lemma 3.11. Let R be a cancellative semiring and let A be cancellative R-
semialgebra. If A is an R-progenerator and the map ¢: A¥ — Hompg(A, A)
is an isomorphism, then A is an A¥-progenerator and A is R-central.

Proof. If A is an R-progenerator, then A is an AF-progenerator. Now
AP =~ Hompg(A, A), implies that A is R— central. O
Lemma 3.12. For any mazimal k-ideal m of a central separable R— semi-

algebra A, there exists an k-ideal J¢ of R with J°A = m.

Proof. Let m be any maximal k-ideal of A. Then m® is a maximal ideal in A®
for if here exists an ideal J of A€ such that m¢ C J C A°, then m C J° C A,
this then imply m is not a maximal k-ideal in A. Therefore there exists an
ideal J of R® such that JA® = m*®, implies that J°A = m. O

The above Propositions and Lemmas are needed to prove the extremely
important Theorem.

Theorem 3.13. Let R be a cancellative semiring and let A be a CS R-
semialgebra. Then the following conditions are equivalent

1. A is central separable over R.
2. A is an A¥-progenerator and R-central.

3. A is an R-progenerator and the map ¢ from AF to Hompg(A, A) is
an isomorphism.

Proof. 3. = 1. It is obvious that A is AF-projective and finitely generated
over AP Tt remains to prove that A is an AF-generator, that is, to prove

AT ®Hom , (A, A)=R A = Hom e(A,AF) @ A= AF
under the map f ® a = f(a). But by Corollary 1.4
A* = Hom e (A, AP) =2 (0 : J)

under the map f ~ f(1). Therefore we have to show that (0: J)® A = A
under b® a = (a ® 1)b = (1 ® a)b. But this is equal to AZ(0: J) = AF.
Suppose that AZ(0:.J) # AF

[AP(0: )] # (AF)°
(AP)e(0: )" # (AP)°

= (AE)e — (Ae)E — me

= A =m, a contradiction.

Shows that AF(0:.J) = AF. Hence 3. = 1. O

=
=
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Remark 3.14. When A is a central separable, C'S R-semialgebra where R
s a cancellative semiring, we have seen that A is an R-progenerator and
that Hompg(A, A), being isomorphic to A® A, is a central separable, C'S
R-semialgebra.

Proposition 3.15. Let R be a lattice ordered semiring and let E be any
cancellative R-progenerator. Then A = Homp(E, E) is a central separable
R-semialgebra.

Proof. Note that if E is cancellative, then A = Hompg(E, F) is cancellative.
Now we have to show that A = Hompg(FE, E) is a central separable R-
semialgebra.

Let {x;, fi} be a dual basis of E. Then we have Y fi(x)x; = z for any z
in Fand f; € Homg(E, R). Let g;: E — R, y; in E satisfy ) g;(y;) = 1 as
E is a generator over R. Define E;;, Fj; in A by E;;(z) = gj(x)z;, Fji(x) =
fi()y;.

Lete = ZZ ; Eij®F Joi in A® A°. By easy computation one can verify that
e is the separability idempotent for A and u(e) = 1 and (f®1%)e = (12 f°)e.
Now for any a € A, ea € eA, implies that (ea)b = (1®b°)ea = (b®1%)ea =
b(ea), for any b € A. Hence eA is contained in C'(A). Conversely, suppose
that © € C(A). Therefore ex = p(e)r = x, so © € eA.. Shows that
C(A) = eA = A4 = R. Hence A is R—central. Faithfulness of semimodule
follows by Proposition 2.4 and 2.5.

Alternative Proof: E*® E~ Homp(E,F) = Aand AX E*® E is
finitely generated and projective. Moreover it is clear that A is R-faithful
since F is R-faithful. Therefore A is an R-progenerator by Proposition 2.4
and 2.5. Also by corollary to Morita Theorem it follows that A% is then
isomorphic to Hompg(E, E), implies that R = Homyr(A,A) = C(A). O

4 The Brauer Commutative Monoid

For any commutative lattice ordered semiring R, consider a collection
% (R) of central separable, cancellative R-semialgebras such that every
central separable, cancellative R-semialgebra is isomorphic to exactly one
member of € (R).

We observe that any element A in %(R) is a finitely generated can-
cellative R-semimodule. Thus up to R-semimodule isomorphism € (R) is
only a set of finitely generated cancellative R-semimodules. The semialge-
bra structure of A is determined by the mapping from A ® A% to A and
the collection of all such maps is also a set. Hence for each isomorphism
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class of finitely generated cancellative R-semimodules, %' (R) is only a set of
semialgebra structures which can be given to a representative of that class,
so €(R) is a set.

We can put a commutative, associative binary operation on ¢ (R) by
identifying A® B with the element of %'(R) to which it is isomorphic, where
A and B are any two element of €' (R).

Since %(R) contains an element isomorphic to R, € (R) possesses an
identity for these operations therefore forms a commutative monoid under
K.

For any cancellative R-progenerator E, we have by Proposition 3.13
that Homp(FE, E) is a central separable, cancellative R-semialgebra.

Let €°(R) be the subset of €' (R) consisting of those central separable,
cancellative R-semialgebra A such that A = Homp(E, E) for some can-
cellative R-progenerator F. If Fy and Fs are cancellative R-progenerators,
so is B ® Fs by Corl. 2.8 and by hom-tensor relation 2.9 we then have,

Hompg(Ey ® Ea, By ® Eo) = Hompg(E1, B1) @ Hompg(E2, Ez).

So ¢°(R) is closed with respect to the tensor product. Furthermore if R is
an R-progenerator with R =2 Hompg(R, R), €°(R) contains the identity of
% (R). €°(R) is a submonoid of € (R).

We introduce a relation ~ in @ (R) by specifying that two elements A
and B of ¥(R) are in a relation (written as A ~ B) if and only if there
exists X1 and X» in ¥°(R) such that A ® X; = B ® X, an cancellative R-
semialgebras that is if and only if there exist cancellative R-progenerators
F1 and E5 such that

A®pr Homp(Er, Er) = B ®p Homp(Ey, Es).

Obviously, ~ is an equivalent relation % (R). Thus %' (R) partitions into
disjoint equivalence classes with respect to the equivalence relation ~.

Definition 4.1. Let #(R) denote the equivalence classes of ¢ (R) under
the relation ~ and let [A] denote the class containing A. Define a binary
operation in #(R) by

[A][B] = [A® B].

If A" € [A] and B’ € [B], then by definition there exist Y, Y’ and Z, Z’ in
%°(R) such that A® Y 2 A’ ®Y’' and B® Z = B'® Z'. Thus we obtain,

(AeB)(Ye2)2(AeB)2 (Y ®7),
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where Y ® Z,Y' ® Z' are in €°(R). This shows that the operation is well
defined.
Now,

[AllB] = [A® B]
= [B® A], since R is commutative

= [B]lA].

U:Jh>

Hence commutativity. Associativity is obvious.
Now for any [A] € B(R),

[A][R] = [A® R]
= [R® 4]
— [4].

B(R) is a commutative monoid with identity element [R] with respect to
the binary operation as defined above and is called the Brauer Commutative
Monoid.

For any commutative and lattice ordered semiring R, if we consider
a collection € (R) of C'S R-semialgebras which are central separable with
above assumed conditions, then by Theorem 3.12, we obtain A = A ®
A% = Homp(A, A) in ¥°(R) where A is an R-progenerator which is
R—cancellative and

[
=
=
= [A7

So, B(R) forms an abelian group under the composition of equivalence
classes, and is called the Brauer group of R.
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