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Abstract : The notion of separable semialgebras over a commutative semirings
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1 Introduction

This paper is concerned with generalizing some results in central separable
algebras over commutative rings. The notion of central separable semialgebras over
commutative semirings has been defined in [1]. Using some new generalizations in
module theory, in this paper we will try to develop this structure theory for central
separable semialgebras further and introduce the Brauer commutative monoid.

By a semiring R we always mean a commutative semiring R with 1. Through-
out the paper we assume all semimodules are unitary semimodules.
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2 Preliminaries

Semirings, additively cancellative semirings, commutative semirings, semimod-
ules, additively cancellative semimodules, ideals, k-ideals (subtractive ideals), ho-
momorphisms, steady homomorphisms are as defined in [2]. Henceforth cancella-
tive semirings (semimodules) mean additively cancellative semirings (semimod-
ules).

Convention: CS denotes cancellative and semisubtractive semialgebras as
defined in [1].

Definition 2.1. A sequence 0→L
f→ M

g→ N→0 of R-semimodules and R- homo-
morphisms is short exact if f is one-one, g is onto, g is a steady R-homomorphism
and Im f = Kerg.

Definition 2.2. A short exact sequence 0→L
f→ M

g→ N→0 of R-semimodules
and R-homomorphisms splits if there exists a splitting map g′ : N→M such that
gg′ = IdN .

Proposition 2.3 ([3]). For any R-semimodule K and an exact sequence 0→L
f→

M
g→ N→0 the induced sequence 0→Hom(K,L)

f∗

→ Hom(K,M)
g∗

→ Hom(K,N)
is exact.

For any R-semimodule M , consider the subset IR(M) of R consisting of the

elements of the form
∑n

i=1 fi(mi) where fi ∈ Hom(M,R) and mi ∈ M . IR(M) is

a two sided ideal in R and is called the trace ideal of M . A left R-semimodule M

is an R- generator if and only if the trace ideal IR(M) = R.

Proposition 2.4 ([4]). Let R be a commutative and lattice ordered semiring
and M a finitely generated, projective and cancellative R-semimodule. Then
IR(M)⊕ annihR(M) = R.

An R-semimodule M is an R-progenerator if M is a finitely generated,
projective and generator over R.

Proposition 2.5 ([4]). Let R be a commutative and lattice ordered semiring
and M be a cancellative R-semimodule. M is an R-progenerator if and only
if M is a finitely generated, projective and faithful.

The Dual Basis Lemma [1] Let M be an R−semimodule. Then
M is projective if and only if there exists {mi}i∈I ⊂ M and {fi}i∈I ⊂
HomR(M,R) (I some indexing set) such that

a) for every m ∈ M, fi(m) = 0 for all but finitely many i ∈ I, and

b) for every m ∈ M,
∑

i∈I fi(m)mi = m.
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The collection {mi, fi} is called dual a basis for M .

Lemma 2.6 ([5]). Let R be any cancellative semiring and M be any can-
cellative R-semimodule. Then θR is onto if and only if M is a finitely
generated and projective. Moreover if θR is onto then it is one-one.

Lemma 2.7 ([5]). Let R be any cancellative semiring, M be any cancella-
tive R-semimodule and S = HomR(M,M) be a cancellative semiring. Then
θS is onto if and only if M is a generator. Moreover if θS is onto then it
is one-one.

Corollary 2.8 ([1]). Let R be a commutative semiring and let M and N
be R-semimodules. Then M ⊗R N is an R-progenerator if both M and N
are.

Proposition 2.9 ([1]). (Hom-Tensor Relation) Let R be a commutative
semiring and let A and B be R-semialgebras. Let M be a finitely generated
and projective A-semimodule and N be a finitely generated and projective
B-semimodule. Then HomA(M,M) ⊗ HomB (N,N) ∼= HomA⊗B(M ⊗
N,M ⊗N) where ⊗ = ⊗R.

In [4], we have introduced Re = {[a, b]/a, b ∈ R}, the ring of differences
of any cancellative semiring R w.r.t. the following well defined operations

[a, b] + [c, d] = [a+ c, b+ d] and

[a, b][c, d] = [ac+ bd, ad+ bc].

Let R be any cancellative semiring. If I is a [left, right] ideal of R, then
Ie = {[a, b]/a, b ∈ I} is a [left, right] ideal of Re. Conversely, if J is a [left,
right] ideal of Re, then Jc = {a ∈ R/[a, 0] ∈ J} is a [left, right] ideal of R.

Proposition 2.10 ([4]).

(a) Let R be a cancellative semiring. Then for any k- ideal I of R, I =
(Ie)c.

(b) Let R be a cancellative semiring and I be a proper k-ideal of R then
Ie is a proper ideal of Re.

(c) If I, I ′ are any two k-ideals of a cancellative semiring R and I ⊂ I ′,
then Ie ⊂ I ′e.

(d) Let R be a cancellative semiring. Then for any two ideals J and J ′

of Re, J ⊂ J ′ ⇒ Jc ⊂ J ′c.
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(e) Let R be a cancellative semiring, I and I ′ be any two ideals in R,
then (I + I ′)e = Ie + I ′e.

Proposition 2.11 ([4]). Let R be a cancellative, semisubtractive semiring.
Then for any ideal J of Re, J = (Jc)e.

Proposition 2.12 ([4]). Let R be a cancellative, semisubtractive and lattice
ordered semiring. If J and J ′ are ideals of a ring of difference Re, then
(J + J ′)c = Jc + J ′c.

3 Central Separable Semialgebras

Eventhough some of the statements in this section are more or less
known from [1], but we organize and prove them in some how different way
for our purpose for a semirings which are not necessarily zerosumfree.

For any R-semialgebra A, we shall let A0 denote the opposite semi-
algebra of A, whose underlying additive semigroup is A, multiplication is
a0b0 = (ba)0 and the R - semimodule structure coincides with A (to avoid
confusion, for any element a ∈ A, while considering an element in A0 we
shall denote it by a0). The enveloping semialgebra is defined by A ⊗ A0.
For convenience we will write AE for the enveloping semialgebra A⊗A0 of
A.

Remark 3.1. A⊗A0 is a cancellative R-semimodule.

The semialgebra A has a structure as a left AE− semimodule induced
by (a ⊗ b0)x = axb. If A is a cancellative R- semialgebra then a map µ
from semialgebra AE onto A given by µ(

∑
i ai⊗b0i ) =

∑
i aibi, is a left AE -

semimodule homomorphism, which in case A is commutative is a semiring
homomorphism.

Definition 3.2. A cancellative R-semialgebra A is said to be R-separable
if µ splits as an AE-homomorphism or equivalently A is a retract of AE

(i.e. there exists an AE- homomorphism ρ : A→AE such that µρ = IdA).

Proposition 3.3 ([1]). Let A be a cancellative R-semialgebra. Then A
is R− separable if and only if there exists an element e in AE satisfying
µ(e) = 1 and (1⊗ a0)e = (a⊗ 10)e for any a in A.

The element e in AE in the above Proposition is called separability
idempotent of A and is indeed an idempotent.
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An R-semialgebra A is called central if A is faithful as an R-semimodule
and R · 1 coinsides with the center of A. We call A is central separable R-
semialgebra if A is both central and separable.

For any cancellative R-semialgebra A, we have seen that A is naturally
a left AE-semimodule. This structure induces an R-semialgebra homomor-
phism ϕ : AE → HomR(A,A) by associating to any element α in AE , the
element ϕ(α) ∈ HomR(A,A) which is scalar multiplication in A by α. If
α =

∑
i ai ⊗ b0i , then ϕ(α)(a) = α · a =

∑
i aiabi

Corollary 3.4 ([1]). Let A be a cancellative R- semialgebra. Then HomAE

(A, A) ∼= C(A), the center of A under the correspondence f → f(1).

Lemma 3.5. Let R be a cancellative semiring and let A be a cancellative,
R-semialgebra. If A is central separable then R = Imϕ(e) ⊆ A.

Proof. Let e be a separability idempotent for A (in AE). Consider the
homomorphism ϕ(e) in HomR(A,A) where ϕ is the map defined just above.

Now, a(ϕ(e)(b)) = (a⊗ 10)(e · b) = (1⊗ a0)(e · b) = (ϕ(e)(b))a, for any
a ∈ A, implies that ϕ(e) · (b) ∈ C(A) = R, shows that Imϕ(e) = R. Hence
the proof.

Proposition 3.6 ([1]). Let R be a cancellative semiring and let A and B
be cancellative, R-semialgebras. If A and B are central separable over R,
then A⊗B is central separable R-semialgebra.

Lemma 3.7 ([1]). Let R be a cancellative semiring and let A be a CS
R-semialgebra. If A is R-central, then C(Ae) = (C(A))e.

Lemma 3.8 ([1]). Let R be a cancellative semiring and let A be a CS R-
semialgebra. If A is central separable over R, then Ae is central separable
over Re.

Lemma 3.9. Let R be a cancellative semiring and let A be a CS R-
semialgebra. If A is an AE-progenerator and R-central, then A is central
separable over R.

Proof. IfA isAE-progenerator, thenA is a finitely generatedAE-semimodule
which is projective as an AE-semimodule. Since A is a CS R-semialgebra,
therefore A is an AE-projective, that implies A is R-separable. Hence A is
central separable over R.

Lemma 3.10 ([1]). Let R be a cancellative semiring and let A be can-
cellative R-semialgebra. If A is an AE-progenerator and A is R-central
then A is an R-progenerator and the map ϕ : AE → HomR(A, A) is an
isomorphism.
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Lemma 3.11. Let R be a cancellative semiring and let A be cancellative R-
semialgebra. If A is an R-progenerator and the map ϕ : AE → HomR(A,A)
is an isomorphism, then A is an AE-progenerator and A is R-central.

Proof. If A is an R-progenerator, then A is an AE-progenerator. Now
AE ∼= HomR(A,A), implies that A is R− central.

Lemma 3.12. For any maximal k-ideal m of a central separable R− semi-
algebra A, there exists an k-ideal Jc of R with JcA = m.

Proof. Letm be any maximal k-ideal of A. Thenme is a maximal ideal in Ae

for if here exists an ideal J of Ae such that me ⊂ J ⊂ Ae, then m ⊂ Jc ⊂ A,
this then imply m is not a maximal k-ideal in A. Therefore there exists an
ideal J of Re such that JAe = me, implies that JcA = m.

The above Propositions and Lemmas are needed to prove the extremely
important Theorem.

Theorem 3.13. Let R be a cancellative semiring and let A be a CS R-
semialgebra. Then the following conditions are equivalent

1. A is central separable over R.

2. A is an AE-progenerator and R-central.

3. A is an R-progenerator and the map ϕ from AE to HomR(A, A) is
an isomorphism.

Proof. 3. ⇒ 1. It is obvious that A is AE-projective and finitely generated
over AE . It remains to prove that A is an AE-generator, that is, to prove

A∗ ⊗Hom
AE (A, A)=R A ∼= HomAE (A,AE)⊗A ∼= AE

under the map f ⊗ a = f(a). But by Corollary 1.4

A∗ ∼= HomAE (A,AE) ∼= (0 : J)

under the map f 7→ f(1). Therefore we have to show that (0 : J)⊗A ∼= AE

under b⊗ a = (a⊗ 1)b = (1⊗ a)b. But this is equal to AE(0 : J) = AE .
Suppose that AE(0 : J) ̸= AE

⇒ [AE(0 : J)]e ̸= (AE)e

⇒ (AE)e(0 : J)e ̸= (AE)e

⇒ (AE)e = (Ae)E = me

⇒ AE = m, a contradiction.

Shows that AE(0 : J) = AE . Hence 3. ⇒ 1.
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Remark 3.14. When A is a central separable, CS R-semialgebra where R
is a cancellative semiring, we have seen that A is an R-progenerator and
that HomR(A, A), being isomorphic to A⊗A0, is a central separable, CS
R-semialgebra.

Proposition 3.15. Let R be a lattice ordered semiring and let E be any
cancellative R-progenerator. Then A = HomR(E,E) is a central separable
R-semialgebra.

Proof. Note that if E is cancellative, then A = HomR(E,E) is cancellative.
Now we have to show that A = HomR(E,E) is a central separable R-
semialgebra.

Let {xi, fi} be a dual basis of E. Then we have
∑

fi(x)xi = x for any x
in E and fi ∈ HomR(E,R). Let gj : E → R, yj in E satisfy

∑
gj(yj) = 1 as

E is a generator over R. Define Eij , Fji in A by Eij(x) = gj(x)xi, Fji(x) =
fi(x)yj .

Let e =
∑

i,j Eij⊗F 0
ji in A⊗A0. By easy computation one can verify that

e is the separability idempotent for A and µ(e) = 1 and (f⊗10)e = (1⊗f0)e.
Now for any a ∈ A, ea ∈ eA, implies that (ea)b = (1⊗ b0)ea = (b⊗10)ea =
b(ea), for any b ∈ A. Hence eA is contained in C(A). Conversely, suppose
that x ∈ C(A). Therefore ex = µ(e)x = x, so x ∈ eA.. Shows that
C(A) = eA = AA = R. Hence A is R−central. Faithfulness of semimodule
follows by Proposition 2.4 and 2.5.

Alternative Proof: E∗ ⊗ E ∼= HomR(E,E) = A and A ∼= E∗ ⊗ E is
finitely generated and projective. Moreover it is clear that A is R-faithful
since E is R-faithful. Therefore A is an R-progenerator by Proposition 2.4
and 2.5. Also by corollary to Morita Theorem it follows that AE is then
isomorphic to HomR(E,E), implies that R = HomAE (A,A) = C(A).

4 The Brauer Commutative Monoid

For any commutative lattice ordered semiring R, consider a collection
C (R) of central separable, cancellative R-semialgebras such that every
central separable, cancellative R-semialgebra is isomorphic to exactly one
member of C (R).

We observe that any element A in C (R) is a finitely generated can-
cellative R-semimodule. Thus up to R-semimodule isomorphism C (R) is
only a set of finitely generated cancellative R-semimodules. The semialge-
bra structure of A is determined by the mapping from A ⊗ A0 to A and
the collection of all such maps is also a set. Hence for each isomorphism
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class of finitely generated cancellative R-semimodules, C (R) is only a set of
semialgebra structures which can be given to a representative of that class,
so C (R) is a set.

We can put a commutative, associative binary operation on C (R) by
identifying A⊗B with the element of C (R) to which it is isomorphic, where
A and B are any two element of C (R).

Since C (R) contains an element isomorphic to R, C (R) possesses an
identity for these operations therefore forms a commutative monoid under
⊗.

For any cancellative R-progenerator E, we have by Proposition 3.13
that HomR(E,E) is a central separable, cancellative R-semialgebra.

Let C 0(R) be the subset of C (R) consisting of those central separable,
cancellative R-semialgebra A such that A ∼= HomR(E,E) for some can-
cellative R-progenerator E. If E1 and E2 are cancellative R-progenerators,
so is E1 ⊗ E2 by Corl. 2.8 and by hom-tensor relation 2.9 we then have,

HomR(E1 ⊗ E2, E1 ⊗ E2) ∼= HomR(E1, E1)⊗HomR(E2, E2).

So C 0(R) is closed with respect to the tensor product. Furthermore if R is
an R-progenerator with R ∼= HomR(R,R), C 0(R) contains the identity of
C (R). C 0(R) is a submonoid of C (R).

We introduce a relation ∼ in C (R) by specifying that two elements A
and B of C (R) are in a relation (written as A ∼ B) if and only if there
exists X1 and X2 in C 0(R) such that A⊗X1

∼= B ⊗X2 an cancellative R-
semialgebras that is if and only if there exist cancellative R-progenerators
E1 and E2 such that

A⊗R HomR(E1, E1) ∼= B ⊗R HomR(E2, E2).

Obviously, ∼ is an equivalent relation C (R). Thus C (R) partitions into
disjoint equivalence classes with respect to the equivalence relation ∼.

Definition 4.1. Let B(R) denote the equivalence classes of C (R) under
the relation ∼ and let [A] denote the class containing A. Define a binary
operation in B(R) by

[A][B] = [A⊗B].

If A′ ∈ [A] and B′ ∈ [B], then by definition there exist Y, Y ′ and Z, Z ′ in
C 0(R) such that A⊗ Y ∼= A′ ⊗ Y ′ and B ⊗ Z ∼= B′ ⊗ Z ′. Thus we obtain,

(A⊗B)⊗ (Y ⊗ Z) ∼= (A′ ⊗B′)⊗ (Y ′ ⊗ Z ′),
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where Y ⊗ Z, Y ′ ⊗ Z ′ are in C 0(R). This shows that the operation is well
defined.
Now,

[A][B] = [A⊗B]

= [B ⊗A], since R is commutative

= [B][A].

Hence commutativity. Associativity is obvious.
Now for any [A] ∈ B(R),

[A][R] = [A⊗R]

= [R⊗A]

= [A].

B(R) is a commutative monoid with identity element [R] with respect to
the binary operation as defined above and is called the Brauer Commutative
Monoid.

For any commutative and lattice ordered semiring R, if we consider
a collection C (R) of CS R-semialgebras which are central separable with
above assumed conditions, then by Theorem 3.12, we obtain AE = A ⊗
A0 ∼= HomR(A, A) in C 0(R) where A is an R-progenerator which is
R−cancellative and

[A][A0] = [A⊗A0]

= [HomR(A,A)]

= [R]

⇒ [A0] = [A−1].

So, B(R) forms an abelian group under the composition of equivalence
classes, and is called the Brauer group of R.
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