Thai Journal of Mathematics Volume 12 (2014) Number 1 : 45–54

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

A Note on Brauer Commutative Monoid

Rajendra Deore †,1 and Pritam Gujarathi ‡

[†]Department of Mathematics, University of Mumbai Mumbai 400098, M.S., India e-mail : rpdeore@gmail.com [‡]Department of Mathematics, North Maharashtra University Jalgaon 425001, M.S., India e-mail : pritam.gujarathi@gmail.com

Abstract : The notion of separable semialgebras over a commutative semirings has been defined in [1]. Here we give some new characterisation about central separable semialgebras and introduce the Brauer commutative monoid.

Keywords : semirings; semimodules; semialgebras; ideals; k-ideals.2010 Mathematics Subject Classification : 16Y60.

1 Introduction

This paper is concerned with generalizing some results in central separable algebras over commutative rings. The notion of central separable semialgebras over commutative semirings has been defined in [1]. Using some new generalizations in module theory, in this paper we will try to develop this structure theory for central separable semialgebras further and introduce the Brauer commutative monoid.

By a semiring R we always mean a commutative semiring R with 1. Throughout the paper we assume all semimodules are unitary semimodules.

Copyright \bigodot 2014 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

2 Preliminaries

Semirings, additively cancellative semirings, commutative semirings, semimodules, additively cancellative semimodules, ideals, k-ideals (subtractive ideals), homomorphisms, steady homomorphisms are as defined in [2]. Henceforth cancellative semirings (semimodules) mean additively cancellative semirings (semimodules).

Convention: CS denotes cancellative and semisubtractive semialgebras as defined in [1].

Definition 2.1. A sequence $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ of *R*-semimodules and *R*-homomorphisms is short exact if *f* is one-one, *g* is onto, *g* is a steady *R*-homomorphism and Im f = Kerg.

Definition 2.2. A short exact sequence $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ of *R*-semimodules and *R*-homomorphisms splits if there exists a splitting map $g': N \rightarrow M$ such that $gg' = Id_N$.

Proposition 2.3 ([3]). For any *R*-semimodule *K* and an exact sequence $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ the induced sequence $0 \rightarrow Hom(K, L) \xrightarrow{f^*} Hom(K, M) \xrightarrow{g^*} Hom(K, N)$ is exact.

For any *R*-semimodule *M*, consider the subset $I_R(M)$ of *R* consisting of the elements of the form $\sum_{i=1}^n f_i(m_i)$ where $f_i \in Hom(M, R)$ and $m_i \in M$. $I_R(M)$ is a two sided ideal in *R* and is called the *trace ideal* of *M*. A left *R*-semimodule *M* is an *R*-generator if and only if the trace ideal $I_R(M) = R$.

Proposition 2.4 ([4]). Let R be a commutative and lattice ordered semiring and M a finitely generated, projective and cancellative R-semimodule. Then $I_R(M) \oplus annih_R(M) = R.$

An R-semimodule M is an R-progenerator if M is a finitely generated, projective and generator over R.

Proposition 2.5 ([4]). Let R be a commutative and lattice ordered semiring and M be a cancellative R-semimodule. M is an R-progenerator if and only if M is a finitely generated, projective and faithful.

The Dual Basis Lemma [1] Let M be an R-semimodule. Then M is projective if and only if there exists $\{m_i\}_{i \in I} \subset M$ and $\{f_i\}_{i \in I} \subset Hom_R(M, R)$ (I some indexing set) such that

- a) for every $m \in M$, $f_i(m) = 0$ for all but finitely many $i \in I$, and
- b) for every $m \in M$, $\sum_{i \in I} f_i(m)m_i = m$.

A Note on Brauer Commutative Monoid

The collection $\{m_i, f_i\}$ is called dual a basis for M.

Lemma 2.6 ([5]). Let R be any cancellative semiring and M be any cancellative R-semimodule. Then θ_R is onto if and only if M is a finitely generated and projective. Moreover if θ_R is onto then it is one-one.

Lemma 2.7 ([5]). Let R be any cancellative semiring, M be any cancellative R-semimodule and $S = Hom_R(M, M)$ be a cancellative semiring. Then θ_S is onto if and only if M is a generator. Moreover if θ_S is onto then it is one-one.

Corollary 2.8 ([1]). Let R be a commutative semiring and let M and N be R-semimodules. Then $M \otimes_R N$ is an R-progenerator if both M and N are.

Proposition 2.9 ([1]). (Hom-Tensor Relation) Let R be a commutative semiring and let A and B be R-semialgebras. Let M be a finitely generated and projective A-semimodule and N be a finitely generated and projective B-semimodule. Then $Hom_A(M, M) \otimes Hom_B$ $(N, N) \cong Hom_{A \otimes B}(M \otimes N, M \otimes N)$ where $\otimes = \otimes_R$.

In [4], we have introduced $R^e = \{[a, b]/a, b \in R\}$, the ring of differences of any cancellative semiring R w.r.t. the following well defined operations

$$[a, b] + [c, d] = [a + c, b + d]$$
 and
 $[a, b][c, d] = [ac + bd, ad + bc].$

Let R be any cancellative semiring. If I is a [left, right] ideal of R, then $I^e = \{[a,b]/a, b \in I\}$ is a [left, right] ideal of R^e . Conversely, if J is a [left, right] ideal of R^e , then $J^c = \{a \in R/[a,0] \in J\}$ is a [left, right] ideal of R.

Proposition 2.10 ([4]).

- (a) Let R be a cancellative semiring. Then for any k- ideal I of $R, I = (I^e)^c$.
- (b) Let R be a cancellative semiring and I be a proper k-ideal of R then I^e is a proper ideal of R^e .
- (c) If I, I' are any two k-ideals of a cancellative semiring R and $I \subset I'$, then $I^e \subset I'^e$.
- (d) Let R be a cancellative semiring. Then for any two ideals J and J' of $R^e, J \subset J' \Rightarrow J^c \subset J'^c$.

(e) Let R be a cancellative semiring, I and I' be any two ideals in R, then $(I + I')^e = I^e + I'^e$.

Proposition 2.11 ([4]). Let R be a cancellative, semisubtractive semiring. Then for any ideal J of R^e , $J = (J^c)^e$.

Proposition 2.12 ([4]). Let R be a cancellative, semisubtractive and lattice ordered semiring. If J and J' are ideals of a ring of difference R^e , then $(J + J')^c = J^c + J'^c$.

3 Central Separable Semialgebras

Eventhough some of the statements in this section are more or less known from [1], but we organize and prove them in some how different way for our purpose for a semirings which are not necessarily zerosumfree.

For any *R*-semialgebra *A*, we shall let A^0 denote the *opposite semi*algebra of *A*, whose underlying additive semigroup is *A*, multiplication is $a^0b^0 = (ba)^0$ and the *R* - semimodule structure coincides with *A* (to avoid confusion, for any element $a \in A$, while considering an element in A^0 we shall denote it by a^0). The enveloping semialgebra is defined by $A \otimes A^0$. For convenience we will write A^E for the enveloping semialgebra $A \otimes A^0$ of *A*.

Remark 3.1. $A \otimes A^0$ is a cancellative *R*-semimodule.

The semialgebra A has a structure as a left A^E – semimodule induced by $(a \otimes b^0)x = axb$. If A is a cancellative R- semialgebra then a map μ from semialgebra A^E onto A given by $\mu(\sum_i a_i \otimes b_i^0) = \sum_i a_i b_i$, is a left A^E semimodule homomorphism, which in case A is commutative is a semiring homomorphism.

Definition 3.2. A cancellative *R*-semialgebra *A* is said to be *R*-separable if μ splits as an A^E -homomorphism or equivalently *A* is a retract of A^E (i.e. there exists an A^E -homomorphism $\rho: A \to A^E$ such that $\mu \rho = Id_A$).

Proposition 3.3 ([1]). Let A be a cancellative R-semialgebra. Then A is R- separable if and only if there exists an element e in A^E satisfying $\mu(e) = 1$ and $(1 \otimes a^0)e = (a \otimes 1^0)e$ for any a in A.

The element e in A^E in the above Proposition is called *separability idempotent* of A and is indeed an idempotent.

48

An *R*-semialgebra *A* is called *central* if *A* is faithful as an *R*-semimodule and $R \cdot 1$ coinsides with the center of *A*. We call *A* is central separable *R*semialgebra if *A* is both central and separable.

For any cancellative *R*-semialgebra *A*, we have seen that *A* is naturally a left A^E -semimodule. This structure induces an *R*-semialgebra homomorphism $\phi: A^E \to Hom_R(A, A)$ by associating to any element α in A^E , the element $\phi(\alpha) \in Hom_R(A, A)$ which is scalar multiplication in *A* by α . If $\alpha = \sum_i a_i \otimes b_i^0$, then $\phi(\alpha)(a) = \alpha \cdot a = \sum_i a_i ab_i$

Corollary 3.4 ([1]). Let A be a cancellative R- semialgebra. Then Hom_{A^E} (A, A) $\cong C(A)$, the center of A under the correspondence $f \to f(1)$.

Lemma 3.5. Let R be a cancellative semiring and let A be a cancellative, R-semialgebra. If A is central separable then $R = Im\phi(e) \subseteq A$.

Proof. Let e be a separability idempotent for A (in A^E). Consider the homomorphism $\phi(e)$ in $Hom_R(A, A)$ where ϕ is the map defined just above.

Now, $a(\phi(e)(b)) = (a \otimes 1^0)(e \cdot b) = (1 \otimes a^0)(e \cdot b) = (\phi(e)(b))a$, for any $a \in A$, implies that $\phi(e) \cdot (b) \in C(A) = R$, shows that $Im\phi(e) = R$. Hence the proof.

Proposition 3.6 ([1]). Let R be a cancellative semiring and let A and B be cancellative, R-semialgebras. If A and B are central separable over R, then $A \otimes B$ is central separable R-semialgebra.

Lemma 3.7 ([1]). Let R be a cancellative semiring and let A be a CS R-semialgebra. If A is R-central, then $C(A^e) = (C(A))^e$.

Lemma 3.8 ([1]). Let R be a cancellative semiring and let A be a CS Rsemialgebra. If A is central separable over R, then A^e is central separable over R^e .

Lemma 3.9. Let R be a cancellative semiring and let A be a CS Rsemialgebra. If A is an A^E -progenerator and R-central, then A is central separable over R.

Proof. If A is A^E -progenerator, then A is a finitely generated A^E -semimodule which is projective as an A^E -semimodule. Since A is a CS R-semialgebra, therefore A is an A^E -projective, that implies A is R-separable. Hence A is central separable over R.

Lemma 3.10 ([1]). Let R be a cancellative semiring and let A be cancellative R-semialgebra. If A is an A^E -progenerator and A is R-central then A is an R-progenerator and the map $\phi: A^E \to Hom_R(A, A)$ is an isomorphism.

Lemma 3.11. Let R be a cancellative semiring and let A be cancellative Rsemialgebra. If A is an R-progenerator and the map $\phi: A^E \to Hom_R(A, A)$ is an isomorphism, then A is an A^E -progenerator and A is R-central.

Proof. If A is an R-progenerator, then A is an A^E -progenerator. Now $A^E \cong Hom_R(A, A)$, implies that A is R- central.

Lemma 3.12. For any maximal k-ideal m of a central separable R- semialgebra A, there exists an k-ideal J^c of R with $J^cA = m$.

Proof. Let m be any maximal k-ideal of A. Then m^e is a maximal ideal in A^e for if here exists an ideal J of A^e such that $m^e \subset J \subset A^e$, then $m \subset J^c \subset A$, this then imply m is not a maximal k-ideal in A. Therefore there exists an ideal J of R^e such that $JA^e = m^e$, implies that $J^cA = m$.

The above Propositions and Lemmas are needed to prove the extremely important Theorem.

Theorem 3.13. Let R be a cancellative semiring and let A be a CS R-semialgebra. Then the following conditions are equivalent

- 1. A is central separable over R.
- 2. A is an A^E -progenerator and R-central.
- 3. A is an R-progenerator and the map ϕ from A^E to $Hom_R(A, A)$ is an isomorphism.

Proof. 3. \Rightarrow 1. It is obvious that A is A^E -projective and finitely generated over A^E . It remains to prove that A is an A^E -generator, that is, to prove

$$A^* \otimes_{Hom_{AE}(A, A)=R} A \cong Hom_{AE}(A, A^E) \otimes A \cong A^E$$

under the map $f \otimes a = f(a)$. But by Corollary 1.4

$$A^* \cong Hom_{A^E}(A, A^E) \cong (0:J)$$

under the map $f \mapsto f(1)$. Therefore we have to show that $(0:J) \otimes A \cong A^E$ under $b \otimes a = (a \otimes 1)b = (1 \otimes a)b$. But this is equal to $A^E(0:J) = A^E$.

Suppose that $A^E(0:J) \neq A^E$

$$\Rightarrow [A^{E}(0:J)]^{e} \neq (A^{E})^{e}$$

$$\Rightarrow (A^{E})^{e}(0:J)^{e} \neq (A^{E})^{e}$$

$$\Rightarrow (A^{E})^{e} = (A^{e})^{E} = m^{e}$$

$$\Rightarrow A^{E} = m, \quad a \ contradiction.$$

Shows that $A^E(0:J) = A^E$. Hence $3 \Rightarrow 1$.

A Note on Brauer Commutative Monoid

Remark 3.14. When A is a central separable, CS R-semialgebra where R is a cancellative semiring, we have seen that A is an R-progenerator and that $Hom_R(A, A)$, being isomorphic to $A \otimes A^0$, is a central separable, CS R-semialgebra.

Proposition 3.15. Let R be a lattice ordered semiring and let E be any cancellative R-progenerator. Then $A = Hom_R(E, E)$ is a central separable R-semialgebra.

Proof. Note that if E is cancellative, then $A = Hom_R(E, E)$ is cancellative. Now we have to show that $A = Hom_R(E, E)$ is a central separable R-semialgebra.

Let $\{x_i, f_i\}$ be a dual basis of E. Then we have $\sum f_i(x)x_i = x$ for any x in E and $f_i \in Hom_R(E, R)$. Let $g_j \colon E \to R$, y_j in E satisfy $\sum g_j(y_j) = 1$ as E is a generator over R. Define E_{ij}, F_{ji} in A by $E_{ij}(x) = g_j(x)x_i, F_{ji}(x) = f_i(x)y_j$.

Let $e = \sum_{i,j} E_{ij} \otimes F_{ji}^0$ in $A \otimes A^0$. By easy computation one can verify that *e* is the separability idempotent for *A* and $\mu(e) = 1$ and $(f \otimes 1^0)e = (1 \otimes f^0)e$. Now for any $a \in A$, $ea \in eA$, implies that $(ea)b = (1 \otimes b^0)ea = (b \otimes 1^0)ea = b(ea)$, for any $b \in A$. Hence eA is contained in C(A). Conversely, suppose that $x \in C(A)$. Therefore $ex = \mu(e)x = x$, so $x \in eA$. Shows that $C(A) = eA = A^A = R$. Hence *A* is *R*-central. Faithfulness of semimodule follows by Proposition 2.4 and 2.5.

Alternative Proof: $E^* \otimes E \cong Hom_R(E, E) = A$ and $A \cong E^* \otimes E$ is finitely generated and projective. Moreover it is clear that A is R-faithful since E is R-faithful. Therefore A is an R-progenerator by Proposition 2.4 and 2.5. Also by corollary to Morita Theorem it follows that A^E is then isomorphic to $Hom_R(E, E)$, implies that $R = Hom_{A^E}(A, A) = C(A)$. \Box

4 The Brauer Commutative Monoid

For any commutative lattice ordered semiring R, consider a collection $\mathscr{C}(R)$ of central separable, cancellative R-semialgebras such that every central separable, cancellative R-semialgebra is isomorphic to exactly one member of $\mathscr{C}(R)$.

We observe that any element A in $\mathscr{C}(R)$ is a finitely generated cancellative R-semimodule. Thus up to R-semimodule isomorphism $\mathscr{C}(R)$ is only a set of finitely generated cancellative R-semimodules. The semialgebra structure of A is determined by the mapping from $A \otimes A^0$ to A and the collection of all such maps is also a set. Hence for each isomorphism class of finitely generated cancellative R-semimodules, $\mathscr{C}(R)$ is only a set of semialgebra structures which can be given to a representative of that class, so $\mathscr{C}(R)$ is a set.

We can put a commutative, associative binary operation on $\mathscr{C}(R)$ by identifying $A \otimes B$ with the element of $\mathscr{C}(R)$ to which it is isomorphic, where A and B are any two element of $\mathscr{C}(R)$.

Since $\mathscr{C}(R)$ contains an element isomorphic to R, $\mathscr{C}(R)$ possesses an identity for these operations therefore forms a *commutative monoid* under \otimes .

For any cancellative *R*-progenerator *E*, we have by Proposition 3.13 that $Hom_R(E, E)$ is a central separable, cancellative *R*-semialgebra.

Let $\mathscr{C}^0(R)$ be the subset of $\mathscr{C}(R)$ consisting of those central separable, cancellative *R*-semialgebra *A* such that $A \cong Hom_R(E, E)$ for some cancellative *R*-progenerator *E*. If E_1 and E_2 are cancellative *R*-progenerators, so is $E_1 \otimes E_2$ by Corl. 2.8 and by hom-tensor relation 2.9 we then have,

 $Hom_R(E_1 \otimes E_2, E_1 \otimes E_2) \cong Hom_R(E_1, E_1) \otimes Hom_R(E_2, E_2).$

So $\mathscr{C}^0(R)$ is closed with respect to the tensor product. Furthermore if R is an R-progenerator with $R \cong Hom_R(R, R)$, $\mathscr{C}^0(R)$ contains the identity of $\mathscr{C}(R)$. $\mathscr{C}^0(R)$ is a submonoid of $\mathscr{C}(R)$.

We introduce a relation \sim in $\mathscr{C}(R)$ by specifying that two elements Aand B of $\mathscr{C}(R)$ are in a relation (written as $A \sim B$) if and only if there exists X_1 and X_2 in $\mathscr{C}^0(R)$ such that $A \otimes X_1 \cong B \otimes X_2$ an cancellative Rsemialgebras that is if and only if there exist cancellative R-progenerators E_1 and E_2 such that

$$A \otimes_R Hom_R(E_1, E_1) \cong B \otimes_R Hom_R(E_2, E_2).$$

Obviously, \sim is an equivalent relation $\mathscr{C}(R)$. Thus $\mathscr{C}(R)$ partitions into disjoint equivalence classes with respect to the equivalence relation \sim .

Definition 4.1. Let $\mathscr{B}(R)$ denote the equivalence classes of $\mathscr{C}(R)$ under the relation \sim and let [A] denote the class containing A. Define a binary operation in $\mathscr{B}(R)$ by

$$[A][B] = [A \otimes B].$$

If $A' \in [A]$ and $B' \in [B]$, then by definition there exist Y, Y' and Z, Z' in $\mathscr{C}^0(R)$ such that $A \otimes Y \cong A' \otimes Y'$ and $B \otimes Z \cong B' \otimes Z'$. Thus we obtain,

$$(A \otimes B) \otimes (Y \otimes Z) \cong (A' \otimes B') \otimes (Y' \otimes Z'),$$

A Note on Brauer Commutative Monoid

where $Y\otimes Z, Y'\otimes Z'$ are in $\mathscr{C}^0(R)$. This shows that the operation is well defined.

Now,

$$[A][B] = [A \otimes B]$$

= [B \otimes A], since R is commutative
= [B][A].

Hence commutativity. Associativity is obvious. Now for any $[A] \in B(R)$,

$$[A][R] = [A \otimes R]$$
$$= [R \otimes A]$$
$$= [A].$$

B(R) is a commutative monoid with identity element [R] with respect to the binary operation as defined above and is called the *Brauer Commutative Monoid*.

For any commutative and lattice ordered semiring R, if we consider a collection $\mathscr{C}(R)$ of CS R-semialgebras which are central separable with above assumed conditions, then by Theorem 3.12, we obtain $A^E = A \otimes$ $A^0 \cong Hom_R(A, A)$ in $\mathscr{C}^0(R)$ where A is an R-progenerator which is R-cancellative and

$$[A][A^0] = [A \otimes A^0]$$
$$= [Hom_R(A, A)]$$
$$= [R]$$
$$\Rightarrow [A^0] = [A^{-1}].$$

So, B(R) forms an abelian group under the composition of equivalence classes, and is called the *Brauer group* of R.

Acknowledgement : The Authors would like to thank the referees for valuable suggestions for the improvement of this article.

References

[1] R.P. Deore, K.B. Patil, A note on central separable cancellative semialgebra, Kyungpook Math. J. 45 (2005) 595–602.

- [2] J.S. Golan, Semirings and their Applications, Kluwer Academic Publisher, 1999.
- [3] R.P. Deore, Characterization of semimodules, Southeast Asian Bull. Maths. 36 (2012) 187–196.
- [4] R.P. Deore, K.B. Patil, On ideals in semirings, Southeast Asian Bull. Math. 32 (2008) 417–424.
- [5] R.P. Deore, K.B. Patil, On the dual basis lemma for projective semimodules and applications, Sarajevo J. Math. 1 (14) (2005) 161–169.

(Received 29 November 2011) (Accepted 30 October 2012)

 $\mathbf{T}_{HAI}~\mathbf{J.}~\mathbf{M}_{ATH}.~Online @ http://thaijmath.in.cmu.ac.th$