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Abstract : Recently, Adiga and Shivakumar Swamy [1] have introduced the
concept of strongly sum difference quotient (SSDQ) graphs and shown that all
graphs such as cycles, flowers and wheels are SSDQ graphs. They have also derived
an explicit formula for α(n), the maximum number of edges in a SSDQ graphs of
order n in terms of Eulers phi function. In this paper, we show that much studied
families of graphs such as Mycielskian of the path Pn and the cycle Cn, Cn × Pn,
double triangular snake graphs and total graph of Cn are strongly sum difference
quotient graphs.
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1 Introduction

A graph labeling is an assignment of integers to the vertices or edges, or both,
subject to certain conditions. During the past few years, a lot of research work
has been done on graph labeling [1–5] and several labeling techniques have been
studied. Most of these interesting problems have been motivated by practical
problems. In an interesting paper [4], Beineke and Hegde introduced the concept
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of strongly multiplicative graph and shown that all graphs like trees, wheels and
grids are strongly multiplicative. Motivated by this, Adiga and Shivakumar Swamy
[1] have introduced the concept of strongly sum difference quotient (SSDQ) graph
and studied it in detail.

Through out this paper by a graph we mean a finite, undirected, connected
graph without loops or multiple edges. By a labeling f of a graph G(V,E) of order
n we mean an injective mapping

f : V (G) −→ {1, 2, . . . , n}.

Adiga and Shivakumar Swamy [1] have defined the sum difference quotient function

fsdq : E(G) −→ Q

by

fsdq(e) =
|f(v) + f(w)|
|f(v)− f(w)|

if e join v and w.
A graph with n vertices is said to be strongly sum difference quotient (SSDQ)

graph if its vertices can be labeled 1, 2, . . . , n, such that the sum difference quotient
function fsdq is injective, i.e., the values fsdq(e) on the edges are all distinct. For
example, the following graphs are strongly sum difference quotient graphs:
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The main purpose of this paper is to show that some families of graphs like My-
cielskian of the path Pn and the cycle Cn, Cn×Pn, double triangular snake graphs
and total graph of Cn are strongly sum difference quotient graphs.

2 Some Classes of Strongly Sum Difference Quo-
tient Graphs

In this section we show that Mycielskian graph of path Pn and cycle Cn,
Cn × Pn, double triangular snake graphs and total graph of Cn are strongly sum
difference Quotient (SSDQ) graphs.

In search for triangle-free graphs with arbitrary large chromatic numbers,
Mycielski [6] developed an interesting graph transformation as follows. For a graph
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G = (V,E), the Mycielskian of G is the graph µ(G) with vertex set V ∪ U ∪ w,
where U = {u1 : v1 ∈ V } and is disjoint from V, and edge set E ∪ {v1u2 : v1v2 ∈
E} ∪ {u2w : u2 ∈ U}. The vertex u1 is called the twin of the vertex v1 ( and v1
the twin of u1) and the vertex w is the root of µ(G). In recent times, there has
been an increasing interest in the study of Mycielskians, especially in the study
their circular chromatic numbers (see, for instance, [7–10]).

Theorem 2.1. For all n ≥ 2, the Mycielskian graph µ(Pn) of the path Pn is a
SSDQ graph.

Proof. We label the vertices of µ(Pn) as shown in the following Figure 2.1.
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v1 = 3

v2 = 5

v3 = 7

v4 = 9

vn = 2n+ 1

u1 = 2

u2 = 4

u3 = 6

u4 = 8

un = 2n

w = 1t

Figure 2.1

The values of the edges vivi+1 are

2i+ 2, for i = 1, 2, . . . , n− 1, (2.1)

all distinct. The values of the edges viui+1 are

4i+ 3, for i = 1, 2, . . . , n− 1, (2.2)

which are strictly increasing. The values of the edges vi+1ui are

4i+ 3

3
, for i = 1, 2, . . . , n− 1, (2.3)
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all distinct and the values of the edges uiw are

2i+ 1

2i− 1
, for i = 1, 2, . . . , n− 1, n, (2.4)

which are decreasing and hence distinct. Now we show that the edge values in
equation (2.1) and (2.2) are distinct. Otherwise

2i+ 2 = 4j + 3 for some i and j.

i.e., 2i = 4j + 1,

which is not possible. Similarly, we can show that all the edge values of µ(Pn) are
distinct. Hence, µ(Pn) is SSDQ graph.

Theorem 2.2. For all n ≥ 2, the Mycielskian graph µ(Cn) of the cycle Cn is a
SSDQ graph.

Proof. We label the vertices of µ(Cn) as shown in the following Figure 2.2.
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Figure 2.2

The edge value of vnv1 is n+2
n−1 and values of the edges vivi+1 are

2(i+ 1), for i = 1, 2, . . . , n− 1, (2.5)

which are strictly increasing and hence distinct and n+2
n−1 < 2(i+1). The values of

the edges viui+1 are
4i+ 3, for i = 1, 2, . . . , n− 1, (2.6)

which are also strictly increasing. The edge value 2n+3
2n−3 of v1un and values of the

edges vi+1ui are
4i+ 3

3
, for i = 1, 2, . . . , n− 1, (2.7)
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are all distinct and n+2
n−1 < 2n+3

2n−3 < 4k+3
3 and the values of the edges uiw

2i+ 1

2i− 1
, for i = 1, 2, . . . , n− 1, (2.8)

are strictly decreasing and hence distinct. Note that all edge values in equations
(2.5) to (2.8) are all distinct. Hence µ(Cn) is a SSDQ graph.

Definition 2.1. If G1 = (V1, E1) and G2 = (V2, E2) are two graphs then the
cartesian product of G1 and G2 denoted by G1 ×G2 = G(V,E) consists a vertex
set V = V1 × V2 and (x1, y1), (x2, y2) ∈ V1 × V2 are adjacent if x1x2 ∈ E1 and
y1 = y2 or y1y2 ∈ E2 and x1 = x2.

Theorem 2.3. For all n ≥ 3, Cn × P2 is a SSDQ graph.

Proof. We label the vertices of Cn × P2 as shown in the following Figure 2.3.
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Figure 2.3

The edge value n+1
n−1 of u1un and values of the edges uiui+1 are

2i+ 1, for i = 1, 2, . . . , n− 1, (2.9)

are distinct and n+1
n−1 < 2i + 1. The edge values 3n+1

n−1 of vn−1vn, 2n + 3 of vnv1
and values of the edges vivi+1 are

2n+ 3 + 2i, for i = 1, 2, . . . , n− 2, (2.10)

all distinct and n+1
n−1 < 3n+1

n−1 < 2n + 3 < 2n + 2i + 3. The edge value 2n + 1 of
vnun and the values of edges viui are

n+ 1 + 2i

n+ 1
, for i = 1, 2, . . . , n− 1, (2.11)
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which are increasing and hence distinct and n+1+2i
n+1 < 2n+ 1 also n+1

n−1 < 3n+1
n−1 <

2n + 1 < 2n + 3. Note that all edge values in equations (2.9) to (2.11) are all
distinct. Hence Cn × P2 is SSDQ graph.

Definition 2.2. A double triangular snake graph consists of two triangular snakes
that have a common path. That is, a double triangular graph is obtained from a
path v1, v2, . . . , vn by joining vi and vi+1 to a new vertex ui for i = 1, 2, . . . , n− 1
and to a new vertex wi for i = 1, 2, . . . , n− 1.

Theorem 2.4. The double triangular snake graph is a SSDQ graph.

Proof. We label the vertices vi by 3n − 1 − i for i = 1, 2, . . . , n and rest of the
vertices as shown in the following Figure 2.4.

u1 = 1 u2 = 3 u3 = 5 u4 = 7 un = 2n− 3

w1 = 2 w2 = 4 w3 = 6 w4 = 8 wn = 2n− 2

v1 s s s s s ss
s s s s s

s s s s s
v2 v3 v4 v5 vn−1 vns s s

Figure 2.4

The values of the edges vivi+1 are

6n− 3− 2i, for i = 1, 2, . . . , n− 1, n, (2.12)

which are strictly increasing and hence distinct. The values of the edges viui are

3n− 2 + i

3n− 3i
for i = 1, 2, . . . , n− 1, (2.13)

all distinct. Values of the edges vi+1ui are

3n+ i− 3

3n− 1− 3i
, for i = 1, 2, . . . , n− 1, (2.14)

which are strictly increasing. The values of the edges viwi are

3n+ i− 1

3n− 1− 3i
, for i = 1, 2, . . . , n− 1, (2.15)

all are distinct for all i and the values of the edges vi+1wi are

3n+ i− 2

3n− 3i− 2
, for i = 1, 2, . . . , n− 1, (2.16)

which are decreasing and hence distinct. Note that all edge values in equations
(2.12) to (2.16) are all distinct. Hence, the double triangular snake graph is SSDQ
graph.
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Definition 2.3. The total graph T (G) of graph G(V,E) has a point set V (G) ∪
E(G), and two points of T (G) are adjacent whenever they are neighbors in G.

Theorem 2.5. For all n ≥ 3, the total graph T (Cn) of Cn the cycle is a SSDQ
Graph.

Proof. We label the vertices vi by n + 1 + i for i = 1, 2, . . . , n − 1 and rest of
vertices of T (Cn) as shown in the following Figure 2.5.
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The edge value n+3
n−1 of w1wn and values of the edges wiwi+1 are

2i+ 3, for i = 1, 2, . . . , n− 1, (2.17)

all strictly increasing, hence distinct and n+3
n−1 < 2i + 3. The edge value 2n+1

2n−1 of

vn−1vn and n+3
n+1 of vnv1 also values of the edges vivi+1 are

2n+ 3 + 2i, for i = 1, 2, . . . , n− 1, (2.18)

all distinct and 2n+1
2n−1 < n+3

n+1 < 2n+3+2i. The edge value n+2
n of wnvn and values

of the edges wivi are

n+ 2i+ 2

n
, for i = 1, 2, . . . , n− 1, (2.19)

which all are distinct and n+2
n < n+2+2i

n and the edge values n+1
n−1 of wn−1vn, 2n+3

of wnv1 and the values of the edges wivi+1

n+ 3 + 2i

n+ 1
for i = 1, 2, . . . , n− 2, (2.20)

are all distinct and n+1
n−1 < n+3+2i

n+1 < 2n+3. Note that all edge values in equations
(2.17) to (2.20) are all distinct. Hence, T (cn) is a SSDQ graph.
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