Thai Journal of Mathematics Volume 12 (2014) Number 1 : 25-32
http://thaijmath.in.cmu.ac.th

A Note on Strongly Sum Difference Quotient Graphs

C.S. Shivakumar Swamy ${ }^{1}$, A.S. Shrikanth and M.A. Sriraj
Department of Studies in Mathematics, University of Mysore
Mysore - 570006, India
e-mail : cskswamy@gmail.com (C.S. Shivakumar Swamy)
shrikanth.ait@gmail.com (A.S. Shrikanth)
srinivasa_sriraj@yahoo.co.in (M.A. Sriraj)

Abstract

Recently, Adiga and Shivakumar Swamy [1] have introduced the concept of strongly sum difference quotient (SSDQ) graphs and shown that all graphs such as cycles, flowers and wheels are SSDQ graphs. They have also derived an explicit formula for $\alpha(n)$, the maximum number of edges in a SSDQ graphs of order n in terms of Eulers phi function. In this paper, we show that much studied families of graphs such as Mycielskian of the path P_{n} and the cycle $C_{n}, C_{n} \times P_{n}$, double triangular snake graphs and total graph of C_{n} are strongly sum difference quotient graphs.

Keywords : graph labeling; strongly sum difference quotient graphs; Mycielskian of the graph.
2010 Mathematics Subject Classification : 05C78; 05C22.

1 Introduction

A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions. During the past few years, a lot of research work has been done on graph labeling $[1-5]$ and several labeling techniques have been studied. Most of these interesting problems have been motivated by practical problems. In an interesting paper [4], Beineke and Hegde introduced the concept

[^0]of strongly multiplicative graph and shown that all graphs like trees, wheels and grids are strongly multiplicative. Motivated by this, Adiga and Shivakumar Swamy [1] have introduced the concept of strongly sum difference quotient (SSDQ) graph and studied it in detail.

Through out this paper by a graph we mean a finite, undirected, connected graph without loops or multiple edges. By a labeling f of a graph $G(V, E)$ of order n we mean an injective mapping

$$
f: V(G) \longrightarrow\{1,2, \ldots, n\}
$$

Adiga and Shivakumar Swamy [1] have defined the sum difference quotient function

$$
f_{s d q}: E(G) \longrightarrow Q
$$

by

$$
f_{s d q}(e)=\frac{|f(v)+f(w)|}{|f(v)-f(w)|}
$$

if e join v and w.
A graph with n vertices is said to be strongly sum difference quotient (SSDQ) graph if its vertices can be labeled $1,2, \ldots, n$, such that the sum difference quotient function $f_{s d q}$ is injective, i.e., the values $f_{s d q}(e)$ on the edges are all distinct. For example, the following graphs are strongly sum difference quotient graphs:

The main purpose of this paper is to show that some families of graphs like Mycielskian of the path P_{n} and the cycle $C_{n}, C_{n} \times P_{n}$, double triangular snake graphs and total graph of C_{n} are strongly sum difference quotient graphs.

2 Some Classes of Strongly Sum Difference Quotient Graphs

In this section we show that Mycielskian graph of path P_{n} and cycle C_{n}, $C_{n} \times P_{n}$, double triangular snake graphs and total graph of C_{n} are strongly sum difference Quotient (SSDQ) graphs.

In search for triangle-free graphs with arbitrary large chromatic numbers, Mycielski [6] developed an interesting graph transformation as follows. For a graph
$G=(V, E)$, the Mycielskian of G is the graph $\mu(G)$ with vertex set $V \cup U \cup w$, where $U=\left\{u_{1}: v_{1} \in V\right\}$ and is disjoint from V, and edge set $E \cup\left\{v_{1} u_{2}: v_{1} v_{2} \in\right.$ $E\} \cup\left\{u_{2} w: u_{2} \in U\right\}$. The vertex u_{1} is called the twin of the vertex v_{1} (and v_{1} the twin of u_{1}) and the vertex w is the root of $\mu(G)$. In recent times, there has been an increasing interest in the study of Mycielskians, especially in the study their circular chromatic numbers (see, for instance, $[7-10]$).

Theorem 2.1. For all $n \geq 2$, the Mycielskian graph $\mu\left(P_{n}\right)$ of the path P_{n} is a SSDQ graph.

Proof. We label the vertices of $\mu\left(P_{n}\right)$ as shown in the following Figure 2.1.

Figure 2.1
The values of the edges $v_{i} v_{i+1}$ are

$$
\begin{equation*}
2 i+2, \quad \text { for } i=1,2, \ldots, n-1 \tag{2.1}
\end{equation*}
$$

all distinct. The values of the edges $v_{i} u_{i+1}$ are

$$
\begin{equation*}
4 i+3, \quad \text { for } i=1,2, \ldots, n-1 \tag{2.2}
\end{equation*}
$$

which are strictly increasing. The values of the edges $v_{i+1} u_{i}$ are

$$
\begin{equation*}
\frac{4 i+3}{3}, \quad \text { for } i=1,2, \ldots, n-1 \tag{2.3}
\end{equation*}
$$

all distinct and the values of the edges $u_{i} w$ are

$$
\begin{equation*}
\frac{2 i+1}{2 i-1}, \quad \text { for } i=1,2, \ldots, n-1, n \tag{2.4}
\end{equation*}
$$

which are decreasing and hence distinct. Now we show that the edge values in equation (2.1) and (2.2) are distinct. Otherwise

$$
\begin{aligned}
& 2 i+2=4 j+3 \quad \text { for some } i \text { and } j . \\
& \text { i.e., } 2 i=4 j+1,
\end{aligned}
$$

which is not possible. Similarly, we can show that all the edge values of $\mu\left(P_{n}\right)$ are distinct. Hence, $\mu\left(P_{n}\right)$ is SSDQ graph.

Theorem 2.2. For all $n \geq 2$, the Mycielskian graph $\mu\left(C_{n}\right)$ of the cycle C_{n} is a SSDQ graph.

Proof. We label the vertices of $\mu\left(C_{n}\right)$ as shown in the following Figure 2.2.

Figure 2.2
The edge value of $v_{n} v_{1}$ is $\frac{n+2}{n-1}$ and values of the edges $v_{i} v_{i+1}$ are

$$
\begin{equation*}
2(i+1), \quad \text { for } i=1,2, \ldots, n-1, \tag{2.5}
\end{equation*}
$$

which are strictly increasing and hence distinct and $\frac{n+2}{n-1}<2(i+1)$. The values of the edges $v_{i} u_{i+1}$ are

$$
\begin{equation*}
4 i+3, \quad \text { for } i=1,2, \ldots, n-1, \tag{2.6}
\end{equation*}
$$

which are also strictly increasing. The edge value $\frac{2 n+3}{2 n-3}$ of $v_{1} u_{n}$ and values of the edges $v_{i+1} u_{i}$ are

$$
\begin{equation*}
\frac{4 i+3}{3}, \quad \text { for } i=1,2, \ldots, n-1, \tag{2.7}
\end{equation*}
$$

are all distinct and $\frac{n+2}{n-1}<\frac{2 n+3}{2 n-3}<\frac{4 k+3}{3}$ and the values of the edges $u_{i} w$

$$
\begin{equation*}
\frac{2 i+1}{2 i-1}, \quad \text { for } i=1,2, \ldots, n-1 \tag{2.8}
\end{equation*}
$$

are strictly decreasing and hence distinct. Note that all edge values in equations (2.5) to (2.8) are all distinct. Hence $\mu\left(C_{n}\right)$ is a SSDQ graph.

Definition 2.1. If $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are two graphs then the cartesian product of G_{1} and G_{2} denoted by $G_{1} \times G_{2}=G(V, E)$ consists a vertex set $V=V_{1} \times V_{2}$ and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in V_{1} \times V_{2}$ are adjacent if $x_{1} x_{2} \in E_{1}$ and $y_{1}=y_{2}$ or $y_{1} y_{2} \in E_{2}$ and $x_{1}=x_{2}$.

Theorem 2.3. For all $n \geq 3, C_{n} \times P_{2}$ is a $S S D Q$ graph.
Proof. We label the vertices of $C_{n} \times P_{2}$ as shown in the following Figure 2.3.

Figure 2.3
The edge value $\frac{n+1}{n-1}$ of $u_{1} u_{n}$ and values of the edges $u_{i} u_{i+1}$ are

$$
\begin{equation*}
2 i+1, \quad \text { for } i=1,2, \ldots, n-1 \tag{2.9}
\end{equation*}
$$

are distinct and $\frac{n+1}{n-1}<2 i+1$. The edge values $\frac{3 n+1}{n-1}$ of $v_{n-1} v_{n}, 2 n+3$ of $v_{n} v_{1}$ and values of the edges $v_{i} v_{i+1}$ are

$$
\begin{equation*}
2 n+3+2 i, \quad \text { for } i=1,2, \ldots, n-2 \tag{2.10}
\end{equation*}
$$

all distinct and $\frac{n+1}{n-1}<\frac{3 n+1}{n-1}<2 n+3<2 n+2 i+3$. The edge value $2 n+1$ of $v_{n} u_{n}$ and the values of edges $v_{i} u_{i}$ are

$$
\begin{equation*}
\frac{n+1+2 i}{n+1}, \quad \text { for } i=1,2, \ldots, n-1 \tag{2.11}
\end{equation*}
$$

which are increasing and hence distinct and $\frac{n+1+2 i}{n+1}<2 n+1$ also $\frac{n+1}{n-1}<\frac{3 n+1}{n-1}<$ $2 n+1<2 n+3$. Note that all edge values in equations (2.9) to (2.11) are all distinct. Hence $C_{n} \times P_{2}$ is SSDQ graph.

Definition 2.2. A double triangular snake graph consists of two triangular snakes that have a common path. That is, a double triangular graph is obtained from a path $v_{1}, v_{2}, \ldots, v_{n}$ by joining v_{i} and v_{i+1} to a new vertex u_{i} for $i=1,2, \ldots, n-1$ and to a new vertex w_{i} for $i=1,2, \ldots, n-1$.
Theorem 2.4. The double triangular snake graph is a SSDQ graph.
Proof. We label the vertices v_{i} by $3 n-1-i$ for $i=1,2, \ldots, n$ and rest of the vertices as shown in the following Figure 2.4.

Figure 2.4
The values of the edges $v_{i} v_{i+1}$ are

$$
\begin{equation*}
6 n-3-2 i, \quad \text { for } i=1,2, \ldots, n-1, n, \tag{2.12}
\end{equation*}
$$

which are strictly increasing and hence distinct. The values of the edges $v_{i} u_{i}$ are

$$
\begin{equation*}
\frac{3 n-2+i}{3 n-3 i} \quad \text { for } i=1,2, \ldots, n-1, \tag{2.13}
\end{equation*}
$$

all distinct. Values of the edges $v_{i+1} u_{i}$ are

$$
\begin{equation*}
\frac{3 n+i-3}{3 n-1-3 i}, \quad \text { for } i=1,2, \ldots, n-1, \tag{2.14}
\end{equation*}
$$

which are strictly increasing. The values of the edges $v_{i} w_{i}$ are

$$
\begin{equation*}
\frac{3 n+i-1}{3 n-1-3 i}, \quad \text { for } i=1,2, \ldots, n-1, \tag{2.15}
\end{equation*}
$$

all are distinct for all i and the values of the edges $v_{i+1} w_{i}$ are

$$
\begin{equation*}
\frac{3 n+i-2}{3 n-3 i-2}, \quad \text { for } i=1,2, \ldots, n-1 \tag{2.16}
\end{equation*}
$$

which are decreasing and hence distinct. Note that all edge values in equations (2.12) to (2.16) are all distinct. Hence, the double triangular snake graph is SSDQ graph.

Definition 2.3. The total graph $T(G)$ of graph $G(V, E)$ has a point set $V(G) \cup$ $E(G)$, and two points of $T(G)$ are adjacent whenever they are neighbors in G.
Theorem 2.5. For all $n \geq 3$, the total graph $T\left(C_{n}\right)$ of C_{n} the cycle is a $S S D Q$ Graph.

Proof. We label the vertices v_{i} by $n+1+i$ for $i=1,2, \ldots, n-1$ and rest of vertices of $T\left(C_{n}\right)$ as shown in the following Figure 2.5.

Figure 2.5
The edge value $\frac{n+3}{n-1}$ of $w_{1} w_{n}$ and values of the edges $w_{i} w_{i+1}$ are

$$
\begin{equation*}
2 i+3, \quad \text { for } i=1,2, \ldots, n-1 \tag{2.17}
\end{equation*}
$$

all strictly increasing, hence distinct and $\frac{n+3}{n-1}<2 i+3$. The edge value $\frac{2 n+1}{2 n-1}$ of $v_{n-1} v_{n}$ and $\frac{n+3}{n+1}$ of $v_{n} v_{1}$ also values of the edges $v_{i} v_{i+1}$ are

$$
\begin{equation*}
2 n+3+2 i, \quad \text { for } i=1,2, \ldots, n-1 \tag{2.18}
\end{equation*}
$$

all distinct and $\frac{2 n+1}{2 n-1}<\frac{n+3}{n+1}<2 n+3+2 i$. The edge value $\frac{n+2}{n}$ of $w_{n} v_{n}$ and values of the edges $w_{i} v_{i}$ are

$$
\begin{equation*}
\frac{n+2 i+2}{n}, \quad \text { for } i=1,2, \ldots, n-1 \tag{2.19}
\end{equation*}
$$

which all are distinct and $\frac{n+2}{n}<\frac{n+2+2 i}{n}$ and the edge values $\frac{n+1}{n-1}$ of $w_{n-1} v_{n}, 2 n+3$ of $w_{n} v_{1}$ and the values of the edges $w_{i} v_{i+1}$

$$
\begin{equation*}
\frac{n+3+2 i}{n+1} \quad \text { for } i=1,2, \ldots, n-2 \tag{2.20}
\end{equation*}
$$

are all distinct and $\frac{n+1}{n-1}<\frac{n+3+2 i}{n+1}<2 n+3$. Note that all edge values in equations (2.17) to (2.20) are all distinct. Hence, $T\left(c_{n}\right)$ is a SSDQ graph.

Acknowledgement : The authors are thankful to Prof. Chandrashekar Adiga for his encouragement and suggestions.

References

[1] C. Adiga, C.S.Shivakumar Swamy, On strongly sum difference quotient graphs, Advanced Studies in Contemporary Mathematics 19 (2009) 31-38.
[2] C. Adiga, H.N. Ramaswamy, D.D. Somashekara, On strongly multiplicative graphs, South East Asian J. Math. Math. Sci. 2 (2003) 45-47.
[3] C. Adiga, R.K. Zaferani, M. Smitha, Strongly quotient graphs, South East Asian J. Math Math. Sci. 5 (2007) 119-127.
[4] L.W. Beineke, S.M. Hegde, Strongly multiplicative graphs, Discuss. Math. Graph Theory 21 (2001) 63-76.
[5] A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs, Intenat. Symposium, Rome, July 1966, Gordon, New York, Breach and Dunod Paris, 1967.
[6] J.Mycieiski, Sur le colouriage des graphes, Colloq. Math. 3 (1955) 161-162.
[7] D.D. Liu, Circular Chromatic Number for iterated Mycielski graphs, Disc. Math. 285 (2004) 335-340.
[8] G.J. Chang, L. Huang, X. Zhu, Circular chromatic number of Mycielski's graphs, Disc. Math. 205 (1999) 23-37.
[9] D. Hajibolhassan, X. Zhu, The circular chromatic number and Mycielski construction, J. Graph Theory 44 (2003) 106-115.
[10] L. Hongmei, The circular chromaticnumber and Mycielski graphs, Acta Mathematica Scientia 26B (2) (2006) 314-320.
(Received 4 June 2011)
(Accepted 8 September 2012)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2014 by the Mathematical Association of Thailand. All rights reserved.

