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Abstract : Nordahl and Scheiblich [1] considered a unary operation ⋆ on semi-
groups and introduced the concept of regularity on ⋆-semigroups. In this paper
we impose this operation on ordered semigroups under the assumption of order
preserving, i.e. if a ≥ b then a⋆ ≥ b⋆. Then we can characterize intra-regular or-
dered ⋆-semigroups. Indeed since ⋆ can be considered to be the identity mapping
particularly, the results in this paper can be considered to be the extensions of
some properties in ordered semigroups [2-5].
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1 Introduction

Szász [6] has shown that the ideals of a semigroup S are prime if and only if S is
intra-regular and any two ideals are comparable. He also proved that an ideal of a
semigroup S is prime if and only if it is both weakly prime and semiprime; and that
in commutative semigroups the prime and weakly prime ideals coincide. Ordered
semigroups in which the ideals are prime, weakly prime have been considered by
Kehayopulu [2, 3]. Above results, which Szász presented in semigroups, are also
true in case of ordered semigroups [4]. Furthermore a characterization for intra-
regular ordered semigroups was done [4].

In this paper we will present analogous results on ordered ⋆-semigroups. It will
be seen that the ideals requires virtually no changes from that in ordered semi-
groups. However in order to guarantee ideals being able to be ideals after operated
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by ⋆, it is necessary to assume the operator ⋆ preserves ordering. Section 2 will
characterize ordered ⋆-semigroups in which all ideals are (weakly) prime. The final
section is devoted to construct the concept of filters and creates a characterization
on intra-regular ordered ⋆-semigroups in terms of the least filter.

An ordered semigroup S is a partial ordering set at the same semigroup such
that for any a, b, x ∈ S, a ≤ b implies xa ≤ xb and ax ≤ bx. An ordered semigroup
S with a unary operation ⋆ : S −→ S is called an ordered ⋆-semigroup if it satisfies
(x⋆)⋆ = x and (xy)⋆ = y⋆x⋆ for any x, y ∈ S. Such a unary operation ⋆ is called
an involution [1]. If for any a, b with a ≥ b, we have a⋆ ≥ b⋆, then ⋆ is called an
order preserving involution.

Example 1.1. Let S = {a, b, c, d, e} be an ordered semigroup. The multiplication
”·”, the order ”≤” and the corresponding Hasse diagram are given below [4]. Define
the involution ⋆ by a⋆ = e (hence e⋆ = a), b⋆ = c and d⋆ = d. It is easy to check
that S is an ordered ⋆-semigroup with order preserving involution ⋆.

≤:= {(a, a), (a, b), (b, b), (c, c), (d, b), (d, c), (d, d), (e, c), (e, e)}

e

d

c

b

a

·

d

d

d

b

b

a

d

d

d

b

b

b

c

d

c

d

d

c

d

d

d

d

d

d

c

d

c

d

d

e

a
•�

�� @
@@

•
b

•
d

@
@@ �

��
•
c

•
e

2 Characterization of Ordered ⋆-Semigroups in
which all Ideals are (Weakly) Prime

Many of the deepest properties of ordered ⋆-semigroups depend on ideals. We
shall introduce the basic concepts and derive some crucial important properties.
Then they will permit us to characterize ordered ⋆-semigroups.

Let S be an ordered ⋆-semigroup. For H ⊆ S, we denote (H] := {t ∈ S | t ≤ h
for some h ∈ H}. If H = {a}, we write (a] instead of ({a}] for convenience (cf.
[5]). A non-empty subset L (resp. R) of S is called a left (resp. right) ideal of
S if (1) SL ⊆ L (resp. RS ⊆ R), and (2) a ∈ L (resp. R), S ∋ b ≤ a implies
b ∈ L (resp. R). I is called an ideal of S if it is both a left and a right ideal of
S (cf. [5]). We denote by L(a), R(a) and I(a) the left ideal, right ideal and the
ideal of S, respectively, generated by a. Clearly L(a) = (a∪ Sa], R(a) = (a∪ aS],
I(a) = (a ∪ Sa ∪ aS ∪ SaS] (cf. [2, 3]).

Let S be an ordered ⋆-semigroup with order preserving involution ⋆. We will
see that L⋆ is a right ideal for any left ideal L of S, and R⋆ is a left ideal for any
right ideal R of S.

Proposition 2.1 (cf. [5, Lemma 1]). Let S be an ordered ⋆-semigroup.
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1. A ⊆ (A] for any A ⊆ S.
2. (A] ⊆ (B] for any A, B with A ⊆ B ⊆ S.
3. (A](B] ⊆ (AB] for any A,B ⊆ S.
4. ((A]] = (A] for any A ⊆ S.
5. (T ] = T for any ideal T of S.
6. (AB] and A ∩B are ideals for any ideals A, B of S.
7. (SaS] is an ideal for any a ∈ S.

Proposition 2.2. Let S be an ordered ⋆-semigroup with order preserving involu-
tion ⋆.

1. (bSa]⋆ = (a⋆Sb⋆] for any a, b ∈ S.
2. (SaS]⋆ = (Sa⋆S] for any a ∈ S.
3. I⋆ is an ideal for any ideal I of S.

Proof. 1) Let y ∈ (bSa]⋆. Since y⋆ ∈ (bSa], y⋆ ≤ bua for some u ∈ S. This
implies y ≤ (bua)⋆ = a⋆u⋆b⋆ ∈ a⋆Sb⋆ because ⋆ is an order preserving involution.
Therefore y ∈ (a⋆Sb⋆] and we get that (bSa]⋆ ⊆ (a⋆Sb⋆]. On the other hand if
y ∈ (a⋆Sb⋆], then y ≤ a⋆ub⋆ for some u ∈ S. Hence y⋆ ≤ bu⋆a ∈ bSa because
a⋆ub⋆ = (bu⋆a)⋆. This implies y⋆ ∈ (bSa] and y ∈ (bSa]⋆. Therefore (a⋆Sb⋆] ⊆
(bSa]⋆. Consequently (bSa]⋆ = (a⋆Sb⋆].

2) The proof is handled similarly.
3) Let I be an ideal of S. Since SI ⊆ I, we have (SI)⋆ ⊆ (I)⋆. Therefore

I⋆S⋆ ⊆ I⋆. Since ⋆ is an involution on S, (x⋆)⋆ = x for every x ∈ S, whence
S⋆ = S. Thus I⋆S ⊆ I⋆. Similarly since IS ⊆ I we have SI⋆ ⊆ I⋆. Let a ∈ I⋆

and b ≤ a, then b⋆ ≤ a⋆. Observe that a⋆ ∈ I and I is an ideal. Thus b⋆ ∈ I,
whence b ∈ I⋆ and we conclude that I⋆ is an ideal of S.

Definition 2.3. Let S be an ordered ⋆-semigroup and T ⊆ S. T is called prime
if AB ⊆ T , then A⋆ ⊆ T or B⋆ ⊆ T .

Equivalent definition: if ab ∈ T , then a⋆ ∈ T or b⋆ ∈ T .

Definition 2.4. Let S be an ordered ⋆-semigroup and T ⊆ S. T is called weakly
prime if for any ideals A,B of S such that AB ⊆ T we have A⋆ ⊆ T or B⋆ ⊆ T .

Definition 2.5. Let S be an ordered ⋆-semigroup. A subset T of S is called
semiprime if AA ⊆ T , then A⋆ ⊆ T .

Equivalent definition: if aa ∈ T , then a⋆ ∈ T .

Theorem 2.6. Let S be an ordered ⋆-semigroup with order preserving involution
⋆. An ideal of S is prime if and only if it is both weakly prime and semiprime.
Furthermore, if S is commutative, then the prime and weakly prime ideals coincide.

Proof. Suppose that I is a prime ideal of S. It is trivial that I is both weakly
prime and semiprime.

Conversely, suppose that T is an ideal of S which is weakly prime and semiprime.
Let ab ∈ T , we need to show that a⋆ ∈ T or b⋆ ∈ T . First note that by Propo-
sition 2.1 (bSa](bSa] ⊆ (SabS] ⊆ (STS] ⊆ (T ] = T . Then T is semiprime im-
plies that (bSa]⋆ ⊆ T . Therefore (Sa⋆S](Sb⋆S] ⊆ (Sa⋆SSb⋆S] ⊆ (S(a⋆Sb⋆)S] =
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(S((Sb⋆)⋆a)⋆S] = (S(bSa)⋆S] ⊆ (S(bSa]⋆S] ⊆ (STS] ⊆ T . Observe that (Sa⋆S],
(Sb⋆S] are ideals, and T is weakly prime. Thus (Sa⋆S]⋆ ⊆ T or (Sb⋆S]⋆ ⊆ T .
Hence (SaS] ⊆ T or (SbS] ⊆ T by Proposition 2.2. To prove that T is prime,
we just need to show that if (SaS] ⊆ T then a⋆ ∈ T . The other part is proved
similarly.

If (SaS] ⊆ T then (I(a))3 = (a∪ Sa∪ aS ∪ SaS]3 ⊆ ((a∪ Sa∪ aS ∪ SaS)3] ⊆
(S(a ∪ Sa ∪ aS ∪ SaS)S] ⊆ (SaS] ⊆ T . Thus I(a)(I(a)I(a)] = (I(a)](I(a)I(a)] ⊆
((I(a))3] ⊆ (T ] = T by Proposition 2.2. Note that T is weakly prime and I(a),
(I(a)I(a)] are ideals. It follows that (I(a))⋆ ⊆ T or (I(a)I(a)]⋆ ⊆ T . Suppose
(I(a))⋆ ⊆ T . Then a⋆ ∈ (I(a))⋆ ⊆ T and we complete the proof. Suppose
(I(a)I(a)]⋆ ⊆ T . Then a⋆a⋆ ∈ (I(a)I(a))⋆ ⊆ (I(a)I(a)]⋆ ⊆ T because aa ∈
I(a)I(a), whence a = (a⋆)⋆ ∈ T because T is semiprime. Now T is an ideal
implies that aa ∈ T , hence a⋆ ∈ T by T is semiprime.

To prove the second statement, let T be an ideal of S. If T is prime then
obviously T is weakly prime. Conversely, suppose T is weakly prime. Let ab ∈ T .
Since S is commutative, we have I(a)I(b) = (a ∪ Sa ∪ aS ∪ SaS](b ∪ Sb ∪ bS ∪
SbS] ⊆ ((a ∪ Sa ∪ aS ∪ SaS)(b ∪ Sb ∪ bS ∪ SbS)] ⊆ (ab ∪ Sab]. Observe that
(ab ∪ Sab] ⊆ (T ] = T . Hence I(a)I(b) ⊆ T , and conclude that (I(a))⋆ ∈ T or
(I(b))⋆ ∈ T by T is weakly prime. Therefore a⋆ ∈ T or b⋆ ∈ T ; that is, T is
prime.

Proposition 2.7. Let S be an ordered ⋆-semigroup with order preserving involu-
tion ⋆. The following statements are equivalent:

1. (A⋆A⋆] = A for any ideal A of S;
2. A⋆ ∩B⋆ = (AB] for any ideals A, B of S;
3. I(a) ∩ I(b) = ((I(a))⋆(I(b))⋆] for any a, b ∈ S;
4. I(a) = (I(a⋆)I(a⋆)] for any a ∈ S;
5. a ∈ (Sa⋆Sa⋆S] for any a ∈ S.

Proof. 1)=⇒ 2). Since A⋆ and B⋆ are ideals, by hypothesis and Proposition 2.1
we have (AB] ⊆ (AS] ⊆ (A] = ((A⋆A⋆]] = (A⋆A⋆] ⊆ (A⋆] = A⋆. Similarly
(AB] ⊆ (SB] ⊆ (B] = ((B⋆B⋆]] = (B⋆B⋆] ⊆ (B⋆] = B⋆. Thus (AB] ⊆ A⋆ ∩ B⋆.
Furthermore A⋆ ∩B⋆ is an ideal implies that A⋆ ∩B⋆ = ((A⋆ ∩B⋆)⋆(A⋆ ∩B⋆)⋆] =
((A∩B)(A∩B)] ⊆ (AB]. Therefore we have (AB] ⊆ A⋆∩B⋆ and A⋆∩B⋆ ⊆ (AB].
So A⋆ ∩B⋆ = (AB].

2)=⇒ 3). Proposition 2.2 implies that (I(a))⋆ and (I(b))⋆ are ideals. Then
the statement is clear by this fact.

3)=⇒ 4). Since I(a) = ((I(a))⋆(I(a))⋆] by hypothesis, we just need to show
that (I(a))⋆ = I(a⋆). Clearly a⋆ ∈ (I(a))⋆. Hence I(a⋆) ⊆ (I(a))⋆ because (I(a))⋆

is an ideal. Now let x ∈ (I(a))⋆. We have x⋆ ∈ I(a) = (a ∪ aS ∪ Sa ∪ SaS].
This means that x⋆ ≤ a or x⋆ ≤ au or x⋆ ≤ ua or x⋆ ≤ uav for some u, v ∈ S.
Thus x ≤ a⋆ or x ≤ u⋆a⋆ ∈ Sa⋆ or x ≤ a⋆u⋆ ∈ a⋆S or x⋆ ≤ v⋆a⋆u⋆ ∈ Sa⋆S
for some u⋆, v⋆ ∈ S, whence x ∈ (a⋆] or x ∈ (Sa⋆] or x ∈ (a⋆S] or x ∈ (Sa⋆S].
Therefore x ∈ (a⋆] ∪ (Sa⋆] ∪ (a⋆S] ∪ (Sa⋆S] ⊆ (a⋆ ∪ Sa⋆ ∪ a⋆S ∪ Sa⋆S] = I(a⋆).
i.e. (I(a))⋆ ⊆ I(a⋆). Consequently (I(a))⋆ = I(a⋆).
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4)=⇒ 5). It suffices to prove two notions. (i) I(a) = ((I(a⋆)6I(a)]. (ii)
((I(a⋆)6I(a)] ⊆ (Sa⋆Sa⋆S]. Then we can conclude that a ∈ I(a) ⊆ (Sa⋆Sa⋆S]
and complete the proof.

(i) By hypothesis and Proposition 2.1, we have I(a) = (I(a⋆)I(a⋆)] = ((I(a)
I(a)](I(a)I(a)]] ⊆ ((I(a)I(a)I(a)I(a)]] = (I(a)I(a)I(a)I(a)]. Furthermore (I(a)
I(a)I(a)I(a)] = ((I(a⋆)I(a⋆)](I(a⋆)I(a⋆)](I(a⋆)I(a⋆)](I(a)]] ⊆ ((I(a⋆))6I(a)] ⊆
(SI(a)] ⊆ (I(a)] = I(a) so that I(a) ⊆ ((I(a⋆)6I(a)] ⊆ I(a). Thus I(a) =
((I(a⋆)6I(a)].

(ii) Since (I(a))3 ⊆ (SaS] (has shown in Theorem 2.6), we have (I(a))5 =
(I(a))3I(a)I(a) ⊆ (SaS](a∪aS∪Sa∪SaS](S] ⊆ (SaS(a∪aS∪Sa∪SaS)S]. Clearly
S(a∪aS ∪Sa∪SaS)S ⊆ SaS, whence (SaS(a∪aS ∪Sa∪SaS)S] ⊆ (SaSSaS] ⊆
(SaSaS]. Therefore (I(a))5 ⊆ (SaSaS] and hence (I(a⋆))5 ⊆ (Sa⋆Sa⋆S]. Finally
we conclude that ((I(a⋆))6I(a)] ⊆ ((Sa⋆Sa⋆S]I(a⋆)I(a)] ⊆ ((Sa⋆Sa⋆S](S]] ⊆
(Sa⋆Sa⋆SS] ⊆ (Sa⋆Sa⋆S], and hence ((I(a⋆)6I(a)] ⊆ (Sa⋆Sa⋆S].

5)=⇒ 1). If x ∈ (A⋆A⋆], then x ≤ yz for some y, z ∈ A⋆. By hypothesis
y ∈ (Sy⋆Sy⋆S], then y ≤ u1y

⋆u2y
⋆u3 for some ui ∈ S, i = 1, 2, 3. Similarly, z ≤

v1z
⋆v2z

⋆v3 for some vi ∈ S, i = 1, 2, 3. Consequently, yz ≤ u1y
⋆u2y

⋆u3v1z
⋆v2z

⋆v3
∈ Sy⋆S ⊆ SAS ⊆ A. Therefore x ∈ (A] because x ≤ yz, whence (A⋆A⋆] ⊆ (A] =
A. If x ∈ A, then we have x ≤ w1x

⋆w2x
⋆w3 for some wi ∈ S, i = 1, 2, 3 because

x ∈ (Sx⋆Sx⋆S]. Clearly w1x
⋆w2 ∈ A⋆ and x⋆w3 ∈ A⋆ since A⋆ is an ideal of S by

Proposition 2.2. Therefore x ≤ w1x
⋆w2x

⋆w3 ∈ A⋆A⋆, whence A ⊆ (A⋆A⋆]. Hence
A = (A⋆A⋆].

Theorem 2.8. Let S be an ordered ⋆-semigroup with order preserving involution
⋆. The ideals of S are weakly prime if and only if A⋆ = (AA] for any ideal A of S
and any two ideals are comparable under the inclusion relation ⊆.

Proof. Suppose that the ideals of S are weakly prime. Let A,B be any ideals of S.
Note that B⋆ is an ideal and (AB⋆] is weakly prime. Thus AB⋆ ⊆ (AB⋆] implies
that A⋆ ⊆ (AB⋆] or B ⊆ (AB⋆]. If A⋆ ⊆ (AB⋆], then A⋆ ⊆ (SB⋆] ⊆ (B⋆] = B⋆

and hence (A⋆)⋆ ⊆ (B⋆)⋆; that is, A ⊆ B. If B ⊆ (AB⋆], then B ⊆ (AS] ⊆ (A] =
A. The conclusion now follows that A and B are comparable.

Next we claim that A⋆ = (AA]. Since (AA] is weakly prime and AA ⊆ (AA],
we have A⋆ ⊆ (AA]. On the other hand let x ∈ (AA]. Then x ≤ a1a2 ∈ AA for
some a1, a2 ∈ A. Since A⋆ ⊆ (AA], we have a⋆1 ≤ u1v1 ∈ AA and a⋆2 ≤ u2v2 ∈ AA
for some u1, u2, v1, v2 ∈ A. Thus a1 ≤ (u1v1)

⋆ and a2 ≤ (u2v2)
⋆. This implies

that x ≤ a1a2 ≤ (u1v1)
⋆(u2v2)

⋆ ∈ (AA)⋆(AA)⋆ = A⋆A⋆A⋆A⋆ ⊆ A⋆ because A⋆ is
an ideal. Consequently x ∈ (A⋆] = A⋆. Therefore (AA] ⊆ A⋆.

Conversely, let A, B and T be ideals of S with AB ⊆ T . Since A⋆ = (AA], we
have A⋆ ∩ B⋆ = (AB] by Proposition 2.7. Since A and B are comparable, there
are two cases. If A ⊆ B, then A⋆ ⊆ B⋆, whence A⋆ = A⋆ ∩B⋆ = (AB] ⊆ (T ] = T
by Proposition 2.7. On the other hand if B ⊆ A, then B⋆ ⊆ A⋆, whence B⋆ =
A⋆ ∩B⋆ = (AB] ⊆ (T ] = T . Thus T is weakly prime.

Definition 2.9. An ordered ⋆-semigroup S is called intra-regular if a ∈ (Sa⋆a⋆S]
for any a ∈ S.
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Proposition 2.10. Let S be an ordered ⋆-semigroup. Then S is intra-regular if
and only if the ideals of S are semiprime.

Proof. Suppose that I is an ideal of S with aa ∈ I for some a ∈ S. Since S is
intra-regular, we have a⋆ ∈ (SaaS] ⊆ (SIS] ⊆ (I] = I and hence I is semiprime.

Conversely, suppose that a is an element of S. Clearly (Sa⋆a⋆S] is an ideal.
So (Sa⋆a⋆S] is semiprime by hypothesis. This implies aa = (a⋆a⋆)⋆ ∈ (Sa⋆a⋆S]
because (a⋆a⋆)(a⋆a⋆) ∈ Sa⋆a⋆S ⊆ (Sa⋆a⋆S]. Therefore a⋆ ∈ (Sa⋆a⋆S] whence
it follows that a⋆a⋆ ∈ (Sa⋆a⋆S]. Hence a ∈ (Sa⋆a⋆S] and we conclude that S is
intra-regular.

Proposition 2.11. Let S be an ordered ⋆-semigroup. If S is intra-regular, then
(SxyS] = (Sx⋆y⋆S] for any x, y ∈ S.

Proof. Let x, y ∈ S. Since S is intra-regular, we have xy ∈ (S(xy)⋆(xy)⋆S] =
(Sy⋆x⋆y⋆x⋆S] ⊆ (Sx⋆y⋆S]. Thus xy ≤ u1x

⋆y⋆u2 for some u1, u2 ∈ S. Hence
u3xyu4 ≤ u3u1x

⋆y⋆u2u4 ∈ Sx⋆y⋆S ⊆ (Sx⋆y⋆S] for any u3, u4 ∈ S. This implies
SxyS ⊆ (Sx⋆y⋆S], so (SxyS] ⊆ ((Sx⋆y⋆S]] = (Sx⋆y⋆S] by Proposition 2.1. By
symmetry we have (Sx⋆y⋆S] ⊆ (SxyS]. Therefore (SxyS] = (Sx⋆y⋆S].

Proposition 2.12. Let S be an ordered ⋆-semigroup with order preserving invo-
lution ⋆. If the ideals of S are semiprime, then

1. I(x) = (SxS] for any x ∈ S, and
2. I(xy) = I(x) ∩ I(y) for any x, y ∈ S.

Proof. 1) Let x be an element in S. Note that (SxS] is an ideal whence is
semiprime. Applying this fact and x2x2 = x4 ∈ (SxS] yields x⋆x⋆ = (x2)∗ ∈
(SxS]. Similarly x ∈ (SxS] so that I(x) ⊆ (SxS]. Furthermore (SxS] ⊆
(x ∪ xS ∪ Sx ∪ SxS] = I(x). Hence I(x) = (SxS].

2) Since xy ∈ I(x)S ⊆ I(x), we have I(xy) ⊆ I(x). Also I(xy) ⊆ I(y) because
xy ∈ SI(y) ⊆ I(y). Thus I(xy) ⊆ I(x) ∩ I(y).

We now show that I(x) ∩ I(y) ⊆ I(xy). If z ∈ I(x) ∩ I(y), then z ∈ (SxS] ∩
(SyS] by 1), whence z ≤ u1xu2 and z ≤ v1yv2 for some u1, u2, v1, v2 ∈ S. Note
that (yv2u1x)

2 = yv2u1xyv2u1x ∈ (SxyS] = I(xy) and that I(xy) is semiprime.
Thus (yv2u1x)

⋆ ∈ I(xy). Therefore z⋆z⋆ ≤ (u1xu2)
⋆(v1yv2)

⋆ = u⋆
2(yv2u1x)

⋆v⋆1 ∈
I(xy), whence z⋆z⋆ ∈ (I(xy)] = I(xy). It follows that z ∈ I(xy), then I(x)∩I(y) ⊆
I(xy).

Theorem 2.13. Let S be an ordered ⋆-semigroup with order preserving involution
⋆. The ideals of S are prime if and only if S is intra-regular and any two ideals
are comparable under the inclusion relation ⊆.

Proof. If the ideals are prime, then they are weakly prime, and hence Theorem
2.8 implies that any two ideals are comparable. Let a ∈ S. Note that (Sa⋆a⋆S]
is an ideal by Proposition 2.1, whence is prime. Therefore a4 ∈ (Sa⋆a⋆S] because
(a⋆)4(a⋆)4 ∈ (Sa⋆a⋆S]. A similar argument shows (a⋆)2 ∈ (Sa⋆a⋆S] and a ∈
(Sa⋆a⋆S]; that is, S is intra-regular.
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Conversely suppose that S is intra-regular and any two ideals are comparable
under the inclusion relation ⊆. Let T be an ideal of S and ab ∈ T . We claim
that a⋆ ∈ T or b⋆ ∈ T . By virtue of Proposition 2.10, I(a) is semiprime. Thus
aa ∈ I(a) implies a⋆ ∈ I(a). b⋆ ∈ I(b) is proved similarly. Furthermore by
hypothesis we have either I(a) ⊆ I(b) or I(b) ⊆ I(a). If I(a) ⊆ I(b), then
a⋆ ∈ I(a) = I(a) ∩ I(b) = I(ab) ⊆ T by Proposition 2.12. If I(b) ⊆ I(a), then
b⋆ ∈ I(b) = I(a) ∩ I(b) = I(ab) ⊆ T .

3 Characterization of Intra-Regular Ordered ⋆-
Semigroups

In Section 2 we considered ideals. In this section we shall introduce the notion
of filters which will be used to establish some congruence. Once some properties
are well made it is not difficult to establish the characterization. For convenience
we define aIb if and only if I(a) = I(b).

Definition 3.1. Let S be an ordered ⋆-semigroup. A subsemigroup F of S is
called a filter if

1. for any a, b ∈ S, ab ∈ F implies a⋆ ∈ F and b⋆ ∈ F ,

2. for any a ∈ F , c ∈ S, c ≥ a implies c ∈ F .

Let N(x) be the least filter of S containing x and N be defined by N :=
{(x, y) ∈ S × S | N(x) = N(y)}. A congruence on ordered ⋆-semigroup S is
an equivalence relation σ on S which preserves both · and ⋆. In other words, if
(a, b) ∈ σ, then (a⋆, b⋆) ∈ σ [1].

Definition 3.2. A congruence σ on ordered ⋆-semigroup S is called semilattice
congruence if (a⋆a⋆, a) ∈ σ and (ab, ba) ∈ σ for any a, b ∈ S. A semilattice
congruence σ on S is called complete if a ≤ b implies (a, ab) ∈ σ.

Proposition 3.3. Let S be an ordered ⋆-semigroup. Then the relation N is a
complete semilattice congruence on S.

Proof. Trivially N is an equivalence relation on S. Let (a, b) ∈ N . In order to
show that N is a congruence, it suffices to prove that (ac, bc) ∈ N for any c ∈ S
since (ca, cb) ∈ N can be proved similarly. If N(ac) = N(ab), N(bc) = N(ba) and
N(ab) = N(ba) for any c ∈ S, then N(ac) = N(bc), whence (ac, bc) ∈ N .

We first show that N(ac) = N(ab). Obviously ac ∈ N(ac). Thus a⋆ ∈ N(ac)
and hence a⋆a⋆ ∈ N(ac). It follows that a ∈ N(ac), whence N(a) ⊆ N(ac).
Therefore b ∈ N(b) = N(a) ⊆ N(ac) because (a, b) ∈ N . Consequently ab ∈ N(ac)
and N(ab) ⊆ N(ac). N(ac) ⊆ N(ab) is proved similarly.

N(bc) = N(ba) is completed by similar arguments.
Next we show that N(ab) = N(ba). Since ab ∈ N(ab), we have a⋆, b⋆ ∈ N(ab)

by Definition 3.1. Then a⋆a⋆, b⋆b⋆ ∈ N(ab) because N(ab) is a subsemigroup.
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Again a, b ∈ N(ab) follows directly from Definition 3.1. Hence ba ∈ N(ab) and
N(ba) ⊆ N(ab). Similarly N(ab) ⊆ N(ba).

Now we turn to prove that N is a semilattice congruence. In addition to
the fact that N(ab) = N(ba) we shall need to show that (a, a⋆a⋆) ∈ N . Clearly
aa ∈ N(a) , and hence a⋆ ∈ N(a). Therefore N(a⋆a⋆) ⊆ N(a) because a⋆a⋆ ∈
N(a). On the other hand a⋆a⋆ ∈ N(a⋆a⋆), whence a ∈ N(a⋆a⋆). This implies
N(a) ⊆ N(a⋆a⋆). Consequently N(a) = N(a⋆a⋆); that is, (a, a⋆a⋆) ∈ N .

To complete the proof we claim that a ≤ b implies (a, ab) ∈ N . Observe that
ab ∈ N(ab), whence a⋆, b⋆ ∈ N(ab) and a⋆a⋆ ∈ N(ab). Therefore a ∈ N(ab),
whence N(a) ⊆ N(ab). Furthermore since a ≤ b and a ∈ N(a), this implies that
b ∈ N(a) by Definition 3.1. Thus ab ∈ N(a), whence N(ab) ⊆ N(a). We conclude
that N(a) = N(ab), and (a, ab) ∈ N .

Proposition 3.4. Let S be an ordered ⋆-semigroup with order preserving involu-
tion ⋆. Then S is intra-regular if and only if N(x) = {y ∈ S | x ∈ (Sy⋆S]}.

Proof. Suppose S is intra-regular. Let Tx = {y ∈ S | x ∈ (Sy⋆S]} for any x ∈ S.
We shall show that Tx is a filter, then claim that Tx ⊆ F for any filter F containing
x. To show that Tx is a filter, we first prove that Tx is a subsemigroup. Let a,
b ∈ Tx. Then x ∈ (Sx⋆x⋆S] since S is intra-regular. Thus x ≤ v1x

⋆x⋆v2 for some
v1, v2 ∈ S, and x ∈ (Sx⋆S]. By definition x ∈ Tx, whence Tx ̸= Ø. Let a, b ∈ Tx.
Then x ∈ (Sa⋆S] and x ∈ (Sb⋆S], hence x ≤ u1a

⋆u2 and x ≤ u3b
⋆u4 for some

ui ∈ S, i = 1, . . . , 4. This implies that x⋆ ≤ u⋆
2au

⋆
1 and x⋆ ≤ u⋆

4bu
⋆
3 because ⋆ is an

order preserving involution. Note that x ∈ (Sx⋆x⋆S] and therefore x ≤ u5x
⋆x⋆u6

for some u5, u6 ∈ S. Consequently x ≤ u5(u
⋆
2au

⋆
1)(u

⋆
4bu

⋆
3)u6 = u5u

⋆
2(au

⋆
1u

⋆
4b)u

⋆
3u6.

Furthermore S is intra-regular implies that au⋆
1u

⋆
4b ≤ u7(au

⋆
1u

⋆
4b)

⋆(au⋆
1u

⋆
4b)

⋆u8 =
u7(b

⋆u4u1a
⋆)(b⋆u4u1a

⋆)u8 = u7b
⋆u4u1(ba)

⋆u4u1a
⋆u8 for some u7, u8 ∈ S. We

finally obtain that x ≤ u5u
⋆
2(u7b

⋆u4u1(ba)
⋆u4u1a

⋆u8)u
⋆
3u6 = u5u

⋆
2u7b

⋆u4u1(ba)
⋆u4

u1a
⋆u8u

⋆
3u6 ∈ S(ba)⋆S. This means that x ∈ (S(ba)⋆S], and ba ∈ Tx. The similar

proof shows that ab ∈ Tx.
To complete the proof that Tx is a filter, we prove (i) for any a, b ∈ S, ab ∈ Tx

implies a⋆ ∈ Tx and b⋆ ∈ Tx, (ii) for any a ∈ Tx, c ∈ S, c ≥ a implies c ∈ Tx.
(i) Since ab ∈ Tx, then x ∈ (S(ab)⋆S] = (Sb⋆a⋆S], so x ≤ u1b

⋆a⋆u2 for some
u1, u2 ∈ S. Also b⋆ ≤ u3bbu4 for some u3, u4 ∈ S because b⋆ ∈ S and S is intra-
regular. Hence x ≤ u1(u3bbu4)a

⋆u2 = u1u3bbu4a
⋆u2 ∈ SbS = S(b⋆)⋆S. So x ∈

(S(b⋆)⋆S]. Thus b⋆ ∈ Tx. Similarly a⋆ ∈ Tx. (ii) Since a ∈ Tx, we have x ∈ (Sa⋆S].
Thus x ≤ u1a

⋆u2 for some u1, u2 ∈ S. Therefore x ≤ u1a
⋆u2 ≤ u1b

⋆u2 ∈ Sb⋆S
because a⋆ ≤ b⋆. So x ∈ (Sb⋆S], and b ∈ Tx.

Now we claim that Tx is the least filter containing x, i.e. Tx = N(x). Let F be
a filter of S containing x and t be an element of Tx. By definition x ∈ (St⋆S], then
x ≤ u1t

⋆u2 for some u1, u2 ∈ S. Since S is intra-regular, this implies t ≤ u3t
⋆t⋆u4

for some u3, u4 ∈ S. Thus t⋆ ≤ u⋆
4t

2u⋆
3 and x ≤ u1t

⋆u2 ≤ u1(u
⋆
4t

2u⋆
3)u2 =

u1u
⋆
4t

2u⋆
3u2. Therefore u1u

⋆
4t

2u⋆
3u2 = (u1u

⋆
4t

2)(u⋆
3u2) ∈ F because F is a filter

containing x. Definition 3.1 implies (u1u
⋆
4t

2)⋆ = t⋆t⋆u4u
⋆
1 = (t⋆)(t⋆u4u

⋆
1) ∈ F .

Again t = (t⋆)⋆ ∈ F by the same reason. We conclude that Tx ⊆ F , whence Tx is
the filter generated by x.
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Conversely, suppose N(x) = {y ∈ S | x ∈ (Sy⋆S]}. Let x ∈ S. Observe that
N(x) is a subsemigroup and x ∈ N(x). Thus x2 ∈ {y ∈ S | x ∈ (Sy⋆S]}. This
implies x ∈ (S(x2)⋆S] = (Sx⋆x⋆S], i.e. S is intra-regular.

Theorem 3.5. Let S be an ordered ⋆-semigroup with order preserving involution
⋆. Then S is intra-regular if and only if N = I.

Proof. Suppose that S is intra-regular. To show that I ⊆ N we let (a, b) ∈ I
and x ∈ N(a). Since I(a) = I(b), we have a ≤ u1x

⋆u2 for some u1, u2 ∈ S by
Proposition 3.4. Furthermore b ∈ (a ∪ aS ∪ Sa ∪ SaS] because b ∈ I(b). Thus
b ≤ a or b ≤ au3 or b ≤ u3a or b ≤ u3au4 for some u3, u4 ∈ S. This implies that
b ≤ u1x

⋆u2 ∈ Sx⋆S or b ≤ u1x
⋆u2u3 ∈ Sx⋆S or b ≤ u3u1x

⋆u2 ∈ Sx⋆S or b ≤
u3u1x

⋆u2u4 ∈ Sx⋆S. Hence b ∈ (Sx⋆S], whence x ∈ {y ∈ S | b ∈ (Sy⋆S]} = N(b)
by Proposition 3.4. We conclude that N(a) ⊆ N(b). Similarly N(b) ⊆ N(a). This
means that N(a) = N(b), hence (a, b) ∈ N .

To show that N ⊆ I we let (a, b) ∈ N and x ∈ I(a). Note that N(a) = N(b)
and I(a) = (a ∪ aS ∪ Sa ∪ SaS]. Then x ≤ a or x ≤ au1 or x ≤ u1a or x ≤ u1au2

for some u1, u2 ∈ S. Since b ∈ N(b) = N(a) = {y ∈ S | a ∈ (Sy⋆S]}, we get
a ≤ u3b

⋆u4 for some u3, u4 ∈ S. This implies that x ≤ u3b
⋆u4 or x ≤ u3b

⋆u4u1 or
x ≤ u1u3b

⋆u4 or x ≤ u1u3b
⋆u4u2. Also b⋆ ≤ u5b

2u6 for some u5, u6 ∈ S because S
is intra-regular. Therefore x ≤ u3(u5b

2u6)u4 ∈ SbS or x ≤ u3(u5b
2u6)u4u1 ∈ SbS

or x ≤ u1u3(u5b
2u6)u4 ∈ SbS or x ≤ u1u3(u5b

2u6)u4u2 ∈ SbS. Thus x ∈ (SbS] ⊆
I(b), hence I(a) ⊆ I(b). Similarly I(b) ⊆ I(a). We conclude that I(a) = I(b) and
(a, b) ∈ I.

To prove the converse let a ∈ S. Observe that (a, a⋆a⋆) ∈ N by Definition 3.2
and Proposition 3.3. Thus N = I implies that (a, a⋆a⋆) ∈ I. Therefore a ∈ I(a) =
I(a⋆a⋆), hence a ∈ (a⋆a⋆ ∪ a⋆a⋆S ∪ Sa⋆a⋆ ∪ Sa⋆a⋆S]. We now consider the four
possibilities: (i) a ≤ a⋆a⋆; (ii) a ≤ a⋆a⋆u1; (iii) a ≤ u1a

⋆a⋆; (iv) a ≤ u1a
⋆a⋆u2 for

some u1, u2 ∈ S. In case (i) clearly a ≤ a⋆a⋆ ≤ a⋆(a⋆a⋆)⋆ ≤ a⋆(a⋆a⋆)a ∈ Sa⋆a⋆S.
In case (ii) a ≤ a⋆a⋆u1 ≤ a⋆(a⋆a⋆u1)

⋆u1 = a⋆u⋆
1aau1 ≤ a⋆u⋆

1(a
⋆a⋆u1)au1 ∈

Sa⋆a⋆S. In case (iii) it is easy to see that a ≤ u1a
⋆a⋆ ≤ u1a

⋆(u1a
⋆a⋆)⋆ =

u1a
⋆aau⋆

1 ≤ u1a
⋆(u1a

⋆a⋆)au⋆
1 ∈ Sa⋆a⋆S. In case (iv) a ≤ u1a

⋆a⋆u2 ∈ Sa⋆a⋆S
trivially. Therefore a ∈ (Sa⋆a⋆S]; that is, S is intra-regular.

Example 3.6. Let S = {a, b, c} be an ordered semigroup. The multiplication “·”,
the order “ ≤” and the corresponding Hasse diagram are given below. Define the
involution ⋆ by a⋆ = a and b⋆ = c (hence c⋆ = b). It is easy to check that S is an
ordered ⋆-semigroup with order preserving involution ⋆.

≤:= {(a, a), (b, a), (b, b), (c, a), (c, c)}
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By Definition 2.9, S is intra-regular because (Sa⋆a⋆S] = (Sb⋆b⋆S] = (Sc⋆c⋆S]
= S. Also, by Definition 3.1, N(a) = N(b) = N(c) = S, thus N := {(a, a), (b, b),
(c, c), (a, b), (b, c), (a, c)}. Furthermore I(a) = (a∪Sa∪aS∪SaS] implies I(a) = S.
Similarly, I(b) = I(c) = S. Therefore I := {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)},
whence N = I.
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