
Thai Journal of Mathematics
Volume 12 (2014) Number 1 : 1–14

http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

Coupled Common Fixed Point Theorems

under Weak Contractions in
Cone Metric Type Spaces

Hamidreza Rahimi†, Ghasem Soleimani Rad†,1, and Poom Kumam‡

†Department of Mathematics, Faculty of Science
Islamic Azad University, Central Tehran Branch

P.O. Box 13185/768, Tehran, Iran
e-mail : rahimi@iauctb.ac.ir (H. Rahimi)

gha.soleimani.sci@iauctb.ac.ir (Gh. Soleimani Rad)
‡Department of Mathematics, Faculty of Science

King Mongkut’s University of Technology Thonburi
Bangkok 10140, Thailand

e-mail : poom.kum@kmutt.ac.th

Abstract : In this paper we define the concept of a coupled common fixed point
for contractive conditions in a cone metric type space and prove some coupled
common fixed point theorems. In the sequel, we obtain a general approach for our
theorems. These results extend, unify and generalize several well known compa-
rable results in the existing literature.

Keywords : cone metric type space; coupled common fixed point; w-compatible
mapping; coupled coincidence point.
2010 Mathematics Subject Classification : 47H10; 54H25.

1 Introduction and Preliminaries

The symmetric space, as metric-like spaces lacking the triangle inequality was
introduced in 1931 by Wilson [1]. In the sequel, a new type of spaces which they

1Corresponding author.

Copyright c⃝ 2014 by the Mathematical Association of Thailand.
All rights reserved.



2 Thai J. Math. 12 (2014)/ Rahimi et al.

called metric type spaces are defined by Boriceanu [2] and Khamsi and Hussain
[3]. Also, Jovanović et al. [4], Rahimi and Soleimani Rad [5, 6], Bota et al. [7],
Pavlović et al. [8], Singh et al. [9] and Hussain et al. [10] generalized and unified
some fixed point theorems of metric spaces by considering metric type spaces.

On the other hand, the cone metric space was introduced in 2007 by Huang
and Zhang [11] and several fixed and common fixed point results in cone metric
spaces were proved in [5, 12–24] and the references contained therein. Recently,
analogously with definition of metric type space, Radenović and Kadelburg [25],
Ćvetković et al. [26], Rahimi et al. [27] considered cone metric type spaces and
proved several fixed and common fixed point theorems.

In 2006, Bhaskar and Lakshmikantham [28] considered the concept of coupled
fixed point theorems in partially ordered metric spaces. Afterward, some other
authors generalized this concept and proved several common coupled fixed and
coupled fixed point theorems in ordered metric and ordered cone metric spaces
(see [29–42] and the references contained therein).

In this paper we introduce the concept of coupled fixed point in a cone metric
type space and prove some coupled fixed point theorems. Our results extend well
known comparable results in the literature.

Let us start by defining some important definitions.

Definition 1.1 (See [1]). Let X be a nonempty set and the mapping D : X×X →
[0,∞) satisfies

(S1) D(x, y) = 0 ⇐⇒ x = y;

(S2) D(x, y) = D(y, x),

for all x, y ∈ X. Then D is called a symmetric on X and (X,D) is called a
symmetric space.

Definition 1.2 (See [11, 43]). Let E be a real Banach space and P be a subset
of E. Then P is called a cone if and only if

(a) P is closed, non-empty and P ̸= {θ};

(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax+ by ∈ P ;

(c) if x ∈ P and −x ∈ P , then x = θ.

Given a cone P ⊂ E, we define a partial ordering ≼ with respect to P by

x ≼ y ⇐⇒ y − x ∈ P.

We shall write x ≺ y if x ≼ y and x ̸= y. Also, we write x ≪ y if and only if
y − x ∈ intP (where intP is the interior of P ). The cone P is named normal if
there is a number K > 0 such that for all x, y ∈ E, we have

θ ≼ x ≼ y =⇒ ∥x∥ ≤ K∥y∥.

The least positive number satisfying the above is called the normal constant of P .
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Definition 1.3 (See [11]). LetX be a nonempty set and the mapping d : X×X →
E satisfies

(d1) θ ≼ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, z) ≼ d(x, y) + d(y, z) for all x, y, z ∈ X.

Then, d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.4 (See [3]). Let X be a nonempty set, and K ≥ 1 be a real number.
Suppose the mapping Dm : X ×X → [0,∞) satisfies

(D1) Dm(x, y) = 0 if and only if x = y;

(D2) Dm(x, y) = Dm(y, x) for all x, y ∈ X;

(D3) Dm(x, z) ≤ K(Dm(x, y) +Dm(y, z)) for all x, y, z ∈ X.

(X,Dm,K) is called metric type space. Obviously, for K = 1, metric type space
is a metric space.

Definition 1.5 (See [25, 26]). Let X be a nonempty set, K ≥ 1 be a real number
and E a real Banach space with cone P . Suppose that the mapping d : X×X → E
satisfies

(cd1) θ ≼ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(cd2) d(x, y) = d(y, x) for all x, y ∈ X;

(cd3) d(x, z) ≼ K(d(x, y) + d(y, z)) for all x, y, z ∈ X.

(X, d,K) is called cone metric type space. Obviously, for K = 1, cone metric type
space is a cone metric space.

Example 1.6 (See [26]). Let B = {ei|i = 1, . . . , n} be orthonormal basis of Rn

with inner product (·, ·) and p > 0. Define

Xp =
{
[x]|x : [0, 1] → Rn,

∫ 1

0

|(x(t), ej)|pdt ∈ R, j = 1, 2, . . . , n
}
,

where [x] represents class of element x with respect to equivalence relation of func-
tions equal almost everywhere. Let E = Rn and

PB =
{
y ∈ Rn|(y, ei) ≥ 0, i = 1, 2, . . . , n

}
be a solid cone. Define d : Xp ×Xp → PB ⊂ Rn by

d(f, g) =
n∑

i=1

ei

∫ 1

0

|((f − g)(t), ei)|pdt, f, g ∈ Xp.

Then (Xp, d,K) is cone metric type space with K = 2p−1.
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Similarly, we define convergence in cone metric type spaces.

Definition 1.7 (See [25, 26]). Let (X, d,K) be a cone metric type space, {xn} a
sequence in X and x ∈ X.

(i) {xn} converges to x if for every c ∈ E with θ ≪ c there exist n0 ∈ N such
that d(xn, x) ≪ c for all n > n0, and we write limn→∞ xn = x.

(ii) {xn} is called a Cauchy sequence if for every c ∈ E with θ ≪ c there exist
n0 ∈ N such that d(xn, xm) ≪ c for all m,n > n0.

Lemma 1.8 (See [25, 26]). Let (X, d,K) be a cone metric type space over ordered
real Banach space E. Then the following properties are often used, particularly
when dealing with cone metric type spaces in which the cone need not be normal.

(P1) If u ≼ v and v ≪ w, then u ≪ w.

(P2) If θ ≼ u ≪ c for each c ∈ intP , then u = θ.

(P3) If u ≼ λu where u ∈ P and 0 ≤ λ < 1, then u = θ.

(P4) Let xn → θ in E and θ ≪ c. Then there exists positive integer n0 such that
xn ≪ c for each n > n0.

2 Main Results

At the first, we define the concept of the coupled common fixed point under
contractive conditions in a cone metric type space for w-compatible mappings.
Then, we prove some coupled common fixed point theorems as generalization of
Abbas et al.’s works in [29], Sabetghadam et al.’s theorems in [42] and Bhaskar
and Lakshmikantham’s results in [28].

Definition 2.1. Let (X, d,K) be a cone metric type space with constant K ≥ 1.

(i) An element (x, y) ∈ X×X is said to be a coupled fixed point of the mapping
F : X ×X → X if F (x, y) = x and F (y, x) = y;

(ii) An element (x, y) ∈ X ×X is said to be a coupled coincidence fixed point
of the mappings F : X × X → X and g : X → X if F (x, y) = g(x) and
F (y, x) = g(y), and (gx, gy) is called coupled point of coincidence;

(iii) An element (x, y) ∈ X ×X is said to be a coupled common fixed point of
the mappings F : X ×X → X and g : X → X if F (x, y) = g(x) = x and
F (y, x) = g(y) = y;

(iv) The mappings F : X ×X → X and g : X → X are called w-compatible if
g(F (x, y)) = F (gx, gy) whenever g(x) = F (x, y) and g(y) = F (y, x).

Note that if (x, y) is a coupled common fixed point of F then (y, x) is coupled
common fixed point of F too.
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Theorem 2.2. Let (X, d,K) be a cone metric type space with constant K ≥ 1
and P a solid cone. Suppose F : X ×X → X and g : X → X satisfy the following
contractive condition for all x, y, x∗, y∗ ∈ X:

d(F (x, y), F (x∗, y∗)) ≼ α1d(gx, gx
∗) + α2d(F (x, y), gx) + α3d(gy, gy

∗)

+ α4d(F (x∗, y∗), gx∗) + α5d(F (x, y), gx∗)

+ α6d(F (x∗, y∗), gx), (2.1)

where αi for i = 1, 2, . . . , 6 are nonnegative constants with

2K(α1 + α3) + (K + 1)(α2 + α4) + (K2 +K)(α5 + α6) < 2. (2.2)

If F (X × X) ⊂ g(X) and g(X) is complete subset of X, then F and g have a
coupled coincidence point in X.

Proof. Let x0, y0 ∈ X and set

g(x1) = F (x0, y0), g(y1) = F (y0, x0), . . . , g(xn+1) = F (xn, yn), g(yn+1) = F (yn, xn).

This can be done because F (X ×X) ⊂ g(X). From (2.1), we have

d(gxn+1, gxn) = d(F (xn, yn), F (xn−1, yn−1))

≼ α1d(gxn, gxn−1) + α2d(F (xn, yn), gxn) + α3d(gyn, gyn−1)

+ α4d(F (xn−1, yn−1), gxn−1) + α5d(F (xn, yn), gxn−1)+

+ α6d(F (xn−1, yn−1), gxn)

≼ α1d(gxn, gxn−1) + α2d(gxn+1, gxn) + α3d(gyn, gyn−1)

+ α4d(gxn, gxn−1) + α5d(gxn+1, gxn−1) + α6d(gxn, gxn)

≼ α1d(gxn, gxn−1) + α2d(gxn+1, gxn) + α3d(gyn, gyn−1)

+ α4d(gxn, gxn−1) +Kα5[d(gxn+1, gxn) + d(gxn, gxn−1)].

(2.3)

It follows

(1−α2 −Kα5)d(gxn+1, gxn) ≼ (α1 +α4 +Kα5)d(gxn, gxn−1)+α3d(gyn, gyn−1).
(2.4)

Similarly,

(1−α2 −Kα5)d(gyn+1, gyn) ≼ (α1 +α4 +Kα5)d(gyn, gyn−1) +α3d(gxn, gxn−1).
(2.5)
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Because of the symmetry in (2.1), we get

d(gxn, gxn+1) = d(F (xn−1, yn−1), F (xn, yn))

≼ α1d(gxn−1, gxn) + α2d(F (xn−1, yn−1), gxn−1)

+ α3d(gyn−1, gyn) + α4d(F (xn, yn), gxn)

+ α5d(F (xn−1, yn−1), gxn) + α6d(F (xn, yn), gxn−1)

≼ α1d(gxn−1, gxn) + α2d(gxn, gxn−1) + α3d(gyn−1, gyn)

+ α4d(gxn+1, gxn) + α5d(gxn, gxn) + α6d(gxn+1, gxn−1)

≼ α1d(gxn−1, gxn) + α2d(gxn, gxn−1) + α3d(gyn−1, gyn)

+ α4d(gxn+1, gxn) +Kα6[d(gxn+1, gxn) + d(gxn, gxn−1)].

(2.6)

It follows

(1−α4 −Kα6)d(gxn, gxn+1) ≼ (α1 +α2 +Kα6)d(gxn−1, gxn)+α3d(gyn−1, gyn).
(2.7)

Similarly,

(1−α4 −Kα6)d(gyn, gyn+1) ≼ (α1 +α2 +Kα6)d(gyn−1, gyn) +α3d(gxn−1, gxn).
(2.8)

Now, adding up (2.4) and (2.5), we get

(1− α2 −Kα5)[d(gxn+1, gxn) + d(gyn+1, gyn)]

≼ (α1 + α3 + α4 +Kα5)[d(gxn, gxn−1) + d(gyn, gyn−1)]. (2.9)

Similarly, adding up (2.7) and (2.8), we get

(1− α4 −Kα6)[d(gxn+1, gxn) + d(gyn+1, gyn)]

≼ (α1 + α2 + α3 +Kα6)[d(gxn, gxn−1) + d(gyn, gyn−1)]. (2.10)

Let Dn = d(gxn, gxn+1) + d(gyn, gyn+1). Then, adding up (2.9) and (2.10), we
have

(2−α2−α4−K(α5+α6))Dn ≼ (2α1+α2+2α3+α4+K(α5+α6))Dn−1. (2.11)

Thus, for all n,

θ ≼ Dn ≼ λDn−1 ≼ λ2Dn−2 ≼ · · · ≼ λnD0, (2.12)

where

λ =
2α1 + α2 + 2α3 + α4 +K(α5 + α6)

2− α2 − α4 −K(α5 + α6)
<

1

K
. (2.13)

If D0 = θ then (x0, y0) is a coupled fixed point of F . Now, let D0 > θ. If m > n,
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we have

d(gxn, gxm) ≼ K[d(gxn, gxn+1) + d(gxn+1, gxm)]

≼ Kd(gxn, gxn+1) +K2[d(gxn+1, gxn+2) + d(gxn+2, gxm)]

...

≼ Kd(gxn, gxn+1) +K2d(gxn+1, gxn+2) + · · ·
+Km−n−1d(gxm−2, gxm−1) +Km−nd(gxm−1, gxm), (2.14)

and similarly,

d(gyn, gym) ≼ Kd(gyn, gyn+1) +K2d(gyn+1, gyn+2) + · · ·
+Km−n−1d(gym−2, gym−1) +Km−nd(gym−1, gym). (2.15)

Adding up (2.14) and (2.15) and using (2.12). Since λ < 1/K, we have

d(gxn, gxm) + d(gyn, gym) ≼ KDn +K2Dn+1 + · · ·+Km−nDm−1

≼ (Kλn +K2λn+1 + · · ·+Km−nλm−1)D0

≼ Kλn

1−Kλ
D0 → θ as n → ∞.

Now, by (P1) and (P4), it follows that for every c ∈ intP there exist positive
integer N such that d(gxn, gxm) + d(gyn, gym) ≪ c for every m > n > N , so
{gxn} and {gyn} are Cauchy sequences in X. Since g(X) is complete subset of
cone metric type space X, there exist x, y ∈ X such that gxn → gx and gyn → gy
as n → ∞. Now, we prove that F (x, y) = gx and F (y, x) = gy. From (cd3) and
(2.1), we have

d(F (x, y), gx) ≼ K[d(F (x, y), gxn+1) + d(gxn+1, gx)]

= K[d(F (x, y), F (xn, yn)) + d(gxn+1, gx)]

≼ K[α1d(gx, gxn) + α2d(F (x, y), gx) + α3d(gy, gyn)

+Kα4[d(gxn+1, gx) + d(gx, gxn)]

+Kα5[d(F (x, y), gx) + d(gx, gxn)]

+ α6d(gxn+1, gx) + d(gxn+1, gx)]. (2.16)

Therefore,

d(F (x, y), gx) ≼ Kα1 +K2(α4 + α5)

1−Kα2 −K2α5
d(gxn, gx)

+
K +K2α4 +Kα6

1−Kα2 −K2α5
d(gxn+1, gx)

+
Kα3

1−Kα2 −K2α5
d(gyn, gy). (2.17)
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Since gxn → gx and gyn → gy, by using Lemma 1.8 we have d(F (x, y), gx) = θ;
that is, F (x, y) = gx. Similarly, we can get d(F (y, x), gy) = θ; that is, F (y, x) =
gy. Therefore, (x, y) coupled coincidence point of the mappings F and g. This
completes the proof.

Theorem 2.3. Let F : X × X → X and g : X → X be two mappings which
satisfy all the conditions of Theorem 2.2. If F and g are w-compatible, then F and
g have a unique coupled common fixed point. Moreover, common fixed point of F
and g is of the form (z, z) for some z ∈ X.

Proof. At the first, we prove that coupled point of coincidence is unique. Suppose
that (x, y), (x′, y′) ∈ X ×X with g(x) = F (x, y), g(y) = F (y, x), g(x′) = F (x′, y′)
and g(y′) = F (y′, x′). From (2.1), we have

d(gx, gx′) = d(F (x, y), F (x′, y′))

≼ (α1 + α5 + α6)d(gx, gx
′) + α3d(gy, gy

′). (2.18)

Similarly

d(gy, gy′) = d(F (y, x), F (y′, x′))

≼ (α1 + α5 + α6)d(gy, gy
′) + α3d(gx, gx

′). (2.19)

Adding up (2.18) and (2.19), we get

d(gx, gx′) + d(gy, gy′) ≼ (α1 + α3 + α5 + α6)[d(gx, gx
′) + d(gy, gy′)]. (2.20)

Since 2K(α1 +α3)+ (K +1)(α2 +α4)+ (K2 +K)(α5 +α6) < 2, by using Lemma
1.8, we have d(gx, gx′) + d(gy, gy′) = θ. It follows that gx = gx′ and gy = gy′.
Similarly, we can prove gx = gy′ and gy = gx′. Thus gx = gy and (gx, gx) is
unique coupled point of coincidence of F and g. Now, let g(x) = z. Then we have
z = g(x) = F (x, x). By w-compatibility of F and g, we have

g(z) = g(g(x)) = g(F (x, x)) = F (gx, gx) = F (z, z).

Thus (gz, gz) is coupled point of coincidence of F and g. Therefore z = gz =
F (z, z). Consequently (z, z) is unique coupled common fixed point of F and g.

Corollary 2.4. Let (X, d,K) be a cone metric type space with constant K ≥ 1
and P a solid cone. Suppose F : X ×X → X and g : X → X satisfy the following
contractive condition for all x, y, x∗, y∗ ∈ X:

d(F (x, y), F (x∗, y∗)) ≼ α[d(gx, gx∗) + d(F (x, y), gx)]

+ β[d(gy, gy∗) + d(F (x∗, y∗), gx∗)]

+ γ[d(F (x, y), gx∗) + d(F (x∗, y∗), gx)], (2.21)

where α, β and γ are nonnegative constants with

(3K + 1)(α+ β) + 2(K2 +K)γ < 2. (2.22)
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If F (X × X) ⊂ g(X) and g(X) is complete subset of X, then F and g have a
coupled coincidence point in X. Also, if F and g are w-compatible, then F and
g have a unique coupled common fixed point. Moreover, common fixed point of F
and g is of the form (z, z) for some z ∈ X.

Proof. Corollary 2.4 follows from Theorems 2.2 and 2.3 by setting α1 = α2 = α,
α3 = α4 = β and α5 = α6 = γ.

Corollary 2.5. Let (X, d,K) be a cone metric type space with constant K ≥ 1
and P a solid cone. Suppose F : X ×X → X and g : X → X satisfy the following
contractive condition for all x, y, x∗, y∗ ∈ X:

d(F (x, y), F (x∗, y∗)) ≼ αd(gx, gx∗) + βd(gy, gy∗), (2.23)

where α, β are nonnegative constants with α+β < 1/K. If F (X×X) ⊂ g(X) and
g(X) is complete subset of X, then F and g have a coupled coincidence point in X.
Also, if F and g are w-compatible, then F and g have a unique coupled common
fixed point. Moreover, common fixed point of F and g is of the form (z, z) for
some z ∈ X.

Proof. Corollary 2.5 follows from Theorems 2.2 and 2.3 by setting α1 = α, α3 = β
and α2 = α4 = α5 = α6 = 0.

Corollary 2.6. Let (X, d,K) be a cone metric type space with constant K ≥ 1
and P a solid cone. Suppose F : X ×X → X and g : X → X satisfy the following
contractive condition for all x, y, x∗, y∗ ∈ X:

d(F (x, y), F (x∗, y∗)) ≼ αd(F (x, y), gx∗) + βd(F (x∗, y∗), gx), (2.24)

where α, β are nonnegative constants with α + β < 2/(K2 +K). If F (X ×X) ⊂
g(X) and g(X) is complete subset of X, then F and g have a coupled coincidence
point in X. Also, if F and g are w-compatible, then F and g have a unique coupled
common fixed point. Moreover, common fixed point of F and g is of the form (z, z)
for some z ∈ X.

Proof. Corollary 2.5 follows from Theorems 2.2 and 2.3 by setting αi = 0 for
i = 1, . . . , 4, α5 = α and α6 = β.

Remark 2.7.

(i) The Theorems 2.2 and 2.3, and the Corollary 2.4 generalized some common
fixed point theorems of cone metric spaces of Abbas et al.’s works in [29] by
considering cone metric type spaces.

(ii) In Corollaries 2.5 and 2.6, set K = 1 and g = ix. Also, suppose X is a
complete cone metric space. Then, we get the results of Sabetghadam et al.’s
work in [42]. Also, our corollaries extend and unify the results of Bhaskar
and Lakshmikantham’s theorems on a cone metric space in [28].
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Example 2.8. Let E = R, P = [0,∞), X = [0, 1] and d : X × X → [0,∞)
be defined by d(x, y) = |x − y|2. Then (X, d) is a cone metric type space, but it
is not a cone metric space since the triangle inequality is not satisfied. Starting
with Minkowski inequality, we get |x − z|2 ≤ 2(|x − y|2 + |y − z|2). Here K = 2.
Define the mappings F : X × X → X by F (x, y) = (x + y)/4 and g : X → X
by g = iX , where iX is a identity mapping. Therefore, F and g satisfies the
contractive condition (2.23) for α = β = 1/8 with α + β = 1/4 ∈ [0, 1/K) with
K = 2 ≥ 1; that is,

d(F (x, y), F (x∗, y∗)) ≼ 1

8
[d(x, x∗) + d(y, y∗)].

According to Corollary 2.5, F has a unique coupled fixed point with g = iX . (0, 0)
is a unique coupled fixed point of F .

Remark 2.9. Similar to previous example, one can get many examples of other
coupled fixed point theorems in cone metric type spaces.

3 General Approach

We start with following Lemma.

Lemma 3.1.

(1) Suppose that (X, d,K) is a cone metric type space with K ≥ 1. Then,
(X2, d1,K) is a cone metric type space with

d1((x, y), (u, v)) = d(x, u) + d(y, v). (3.1)

Further, (X, d,K) is complete if and only if (X2, d1,K).

(2) Mappings F : X2 → X and g : X → X have a coupled fixed point if and
only if mapping TF : X2 → X2 defined by TF (x, y) = (F (x, y), F (y, x)) and
g : X → X have a coupled common fixed point in X2.

Proof. The proof of the Lemma is easy and left to reader.

Totally, there exists a method of reducing some coupled fixed point results
to the respective results for mappings with one variable, even obtaining (in some
cases) more general theorems. Now, we prove a general version of our theorems
and corollaries in previous section.

Theorem 3.2. Let (X, d,K) be a cone metric type space with constant K ≥ 1
and P a solid cone. Suppose F : X ×X → X and g : X → X satisfy the following
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contractive condition for all x, y, x∗, y∗ ∈ X:

d(F (x, y),F (x∗, y∗)) + d(F (y, x), F (y∗, x∗))

≼ a1[d(gx, gx
∗) + d(gy, gy∗)] + a2[d(F (x, y), gx) + d(F (y, x), gy)]

+ a3[d(F (x∗, y∗), gx∗) + d(F (y∗, x∗), gy∗)]

+ a4[d(F (x, y), gx∗) + d(F (y, x), gy∗)]

+ a5[d(F (x∗, y∗), gx) + d(F (y∗, x∗), gy)], (3.2)

where ai for i = 1, 2, . . . , 5 are nonnegative constants with

2Ka1 + (K + 1)(a2 + a3) + (K2 +K)(a4 + a5) < 2. (3.3)

If F (X × X) ⊂ g(X) and g(X) is complete subset of X, then F and g have a
coupled coincidence point in X. If F and g are w-compatible, then F and g have
a unique coupled common fixed point. Moreover, common fixed point of F and g
is of the form (z, z) for some z ∈ X.

Proof. According to (3.1) and Lemma 3.1(2), the contractive condition (3.2) for
all Y = (x, y), V = (x∗, y∗), g(Y ) = (gx, gy), g(V ) = (gx∗, gy∗) ∈ X2 become

d1(TF (Y ), TF (V )) ≼ a1d1(g(Y ), g(V )) + a2d1(TF (Y ), g(Y )) + a3d1(TF (V ), g(V ))

+ a4d1(TF (Y ), g(V )) + a5d1(TF (V ), g(Y )).

Since 2Ka1 + (K +1)(a2 + a3) + (K2 +K)(a4 + a5) < 2, the proof further follows
by [4, Theorem 3.7].
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