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Abstract : This paper aims at studying the volatility and dependence structure
among the main agricultural commodity markets. It also investigates the impact
of the trading activity of agricultural commodities and the ethanol listing on the
volatility transmission for the corn, soybean, and wheat markets. The C– and
D–vine copula based GARCH model was used to explain the interdependence of
corn, soybean, and wheat prices. We discovered that the listing of ethanol and
the trading activity had an impact on the price volatility of corn, soybean, and
wheat. The results support the argument that the roles of financialization and of
the biofuel increase volatility in the agricultural commodity markets. Moreover,
the dependencies between the corn and the wheat returns, and between the corn
and the soybean returns have significant variability over time and have higher
variations of dependence with symmetrical tail dependences. The higher dynamic
dependence and symmetric tail dependence indicate that opportunities to use the
related agricultural commodities for portfolio diversification are reduced, particu-
larly during a downturn in the markets.
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1 Introduction

From the past recent years the rising trend in the agricultural commodity
prices has shown a significant increase. The recent spikes of agricultural prices
during 2007/08 and 2010/11, and the high price fluctuation in the major grains
commodities have led to increased concerns about the world food supply and
security. These developments coincide with a growing faster demand in emerging
economies and bad harvesting in North America, Russia, and Eastern Europe;
these events have been deemed as the culprits behind the rising trend in grain
prices.

In addition, growth in the demand for grain production from the biofuels
industry is the one major factor that has led to the increase in the agricultural
prices. During 2008–2011, the global productions of coarse grains and sugar were
around 11% and 21%, respectively; they were used to produce ethanol, and 11% of
the global production of vegetable oil was used to produce biodiesel[1]. An upward
shift in ethanol based corn may cause spikes in soybean and/or wheat prices since
all of these grains share a planted acreage and are also close as substitutes in animal
fodder. Moreover, the role played by financialization in the commodity markets is
another major factor which partly provides an explanation for the recent spike in
the commodity prices. During the period from 2005 to 2010, the exchange–traded
agricultural derivatives were growing by up to 29 percent per year. By 2010, the
number of contracts traded in the exchange–traded agricultural derivatives was up
to 1,436 million contracts [2]. A rise in trading activities tends to drive agricultural
prices away from the levels that are justified by market fundamentals; this affects
both the producers and the consumers.

The following phenomenon has caused an exacerbated the increase in volatility
of the prices of the main agricultural commodities, especially the prices of corn.
It has also caused volatility spillovers from the corn market to other related agri-
cultural markets. Moreover, the price volatility co–move on futures markets is
often motivated by herd behavior, and this also leads to increased volatility. It is
important, therefore, to understand the volatility and dependence structure be-
tween different agricultural commodities, as it provides various benefits for market
participants that are often impacted by uncertainty and risks in the commodity
markets.

The presence of co–movement between food and energy prices, mostly in prac-
tice, has been constantly researched; various studies have attempted to explain
this relationship by using different means and techniques. Chang and Su[3] re-
ports that the substitutive effect can be represented in the period of high crude
oil price, and they found out that there are significant price spillover effects of
crude oil futures on corn and soybean futures. Similarly, Ciaian and Kancs[4] also
discovered a cointegration between the prices of crude oil and food commodities,
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and found that the interdependencies keep rising over time. In another other
study done by Nazlioglu and Soytas[5], Natanelov et al.[6], and Boonyanuphong
et al.[7], it was discovered that the agricultural commodities have been in coin-
tegration with crude oil, especially in the recent years. Moreover, the results
from Boonyanuphong et al.[7] show that there exists an extreme tail dependence
between agricultural commodity prices and crude oil prices.

With regard to the role of trading activity on the agricultural price level and
volatility, Mattos and Garica[8] investigated the relationship between cash and
futures prices in Brazilian agricultural market by focusing on the effects of trading
activity on the price discovery. They found that higher trading activity, especially
in coffee and live cattle, is related to the existence of co–movement between cash
and futures prices. In more lightly traded markets, however, it was observed by
them that neither long–run relationships nor short–run leads and lags could be
found. In a subsequent work, Gilbert[9] also found that the index–based invest-
ment in the agricultural markets had a significant impact to changing food prices
during the year 2007–2008. Sari et al.[10] discovered that the grain trading volume
shows a significant effect across oil and gasoline in the short run than in the long
run. Although the results for open interest show that money flows out from the
ethanol market, there has been no evidence suggesting across–market inflows or
outflows to the other grain markets. Demirer et al.[11] tested the impact of listing
ethanol futures on spot and futures prices for corn. The empirical finding revealed
that the listing of ethanol futures has a positive effect on both price and volatility
in the corn market as well as on its interaction with the trading volume in the
corn market.

Concerning with literature reviews on this matter, however, we have had to
come to the conclusion that there is hardly any literature that deals with the expla-
nation of the interrelation that exists between the prices of the various agricultural
commodities. Zhao and Goodwin[12] investigated the relationships and the trans-
mission between implied volatilities in the corn and soybean markets. Their work
reported that there exists a volatility spillover effect from the corn market to the
soybean market, but there is no volatility spillover effect vice versa. A research
done by Du et al.[13] also found evidence of volatility spillover effect from the corn
market to the wheat market before 2006, and vice versa after 2006. Gardebroek et
al.[14] examined the volatility transmission between the corn, wheat, and soybean
markets in the U.S. In general, they found that there is a weak interdependence
between the corn, wheat, and soybean markets at the mean level; however, they
also discovered significant volatility spillovers between these three markets.

Most of the methods that have been employed to study a price link and a
price volatility interaction consist of cointegration analysis, VECM, BEKK, and
GARCHtype models[15]. However, they are based on some strong assumptions
that were not conforming to the data in the empirical studies. For example, VAR
and multivariate GARCH models were assumed to have a linear relationship with
a multivariate normal or a Student–t distribution. But the copulas were able to
overcome this problem. The copula models separate the joint distributions of the
random variables into two components, namely, the marginal distributions and
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the dependence structure. Hence, the marginal time series are modeled with the
GARCH–type models, which effectively capture the main observed characteristics
in the financial markets, while copulas are applied for the dependence structure.
Moreover, in a multivariate case, the vine copulas, first proposed by Joe[16] and de-
veloped further by Bedford and Cooke[17], provide a very flexible way for modeling
multivariate distributions. The vine copulas can be constructed using a cascade
of bivariate copulas; they produce large collections of bivariate copulas that are
available in the cases of multivariate distributions.

Therefore, in this paper, we attempt to fill this gap by re–examining the price
link and price volatility among agricultural commodity markets by employing vine
copula based GARCH models. The main purpose of this paper is to analyze the
roles of the U.S. biofuel and the financialization of commodities which impact the
price and the volatility in the corn, soybean, and wheat markets. Moreover, we
also focus on the dependence structure between the corn, soybean, and wheat
markets. In order to illustrate the trading activity in the agricultural markets, we
used the trading volume and the open interest as a reflection for our study. It is
useful to examine how the ethanol markets and the trading activity have affected
the price level and the volatility in the agricultural markets.

In the next section, we describe our methodology. In section 3, we present the
data used. The empirical results and the discussion are presented in section 4 and
section 5, respectively. The last section provides the conclusion of this paper.

2 Methodology

The vine copula based GARCH method was chosen for this study because it
is considered to be a flexible way for modeling the interdependence among the
univariate time series in multivariate distributions. We can separately construct
the marginal distributions of the copulas for any asset returns by first using the
exponential generalized autoregressive conditional heteroskedasticity (EGARCH)
model and then the vine copula to construct the dependence structure of the
multivariate distributions via a cascade of bivariate copulas functioning as the
building blocks.

2.1 Marginal distribution models

In order to consider the important characteristics of the agricultural commod-
ity returns such as fat tails or leverage effects, we constructed the marginal distri-
butions of each returns series by using an exponential generalized autoregressive
conditional heteroskedasticity (EGARCH) model.

By following the method propounded by Nelson[18], the EGARCH, or the
exponential GARCH, model can be written as follows:

rt = φ0 +

p∑
i=1

φirt−i −
q∑
i=1

θiεt−i + εi, (2.1)
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where rt is the log–difference of the agricultural commodity prices, and φ and θ
are the autoregressive (AR) and moving average (MA) parameters, respectively.
The error term εt follows a Student–t distribution and ht = σ2

t is the conditional
variance of εt, which is given by

log(ht) = α0 + α1 log(σ2
t−1) + α2|

εt−1
σt−1

|+ α3
εt−1
σt−1

, (2.2)

where α0 is a constant term, σ2
t−1 is the previous periods forecast error variance,

εt−1 is the news about volatility from the previous periods, and α3 captures the
leverage effects. For α3 < 0, the future conditional variance will proportionally
increase more following a negative shock than following a positive shock of the
same magnitude.

2.2 Copula models

Recently, copula models have been widely applied for measuring the depen-
dence structure of joint probability distributions. The copula concept was first
developed by Sklar[19]. Consider a vector X = (X1, X2, · · · , Xn) of random vari-
ables with marginal distributions Fi, i = 1, · · · , n; there exists a unique function
C, called copula, for which

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)) (2.3)

For an absolutely continuous function F with strictly increasing and continuous
marginal densities F1, F2, · · · , Fn, the density function can be written as

f(x1, · · · , xn) =

n∏
i=1

fi(xi)× c(F (x1), · · · , F (xn)), (2.4)

where c is the copula density function. In other words, copulas can be separately
decomposed in the modeling of the marginal densities and the dependency part in
terms of the copula density.

A very useful property of the copula is the tail dependence, which is the amount
of dependence in the upper (right) or lower (left) joint tail of a bivariate distri-
bution. It is crucially applied to study the dependence of the extreme situation,
which becomes helpful in managing the risk of portfolio management. The up-
per (right) and lower (left) tail dependence coefficients are defined by Joe[20] as
follows:

λU = lim
u→1

Pr[X ≥ F−1X (u)|Y ≥ F−1Y (u)] = lim
u→1

1− 2u+ C(u, u)

1− u
, (2.5)

λL = lim
u→0

Pr[X ≤ F−1X (u)|Y ≤ F−1Y (u)] = lim
u→0

C(u, u)

u
, (2.6)

where λU and λL ∈ [0, 1]. If λU or λL is positive, then X and Y are said to have
upper (right) or lower (left) tail dependence; otherwise there is said to be upper
or lower tail independence.
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In this paper, the Gaussian copula, the t–copula, and the Archimedean copula
family, such as the Clayton copula, Gumbel copula, Joe copula, BB1 copula, BB7
copula, and rotated copula, have been used to analyze the dependence structure.
Two of the most commonly used copulas in the financial field are the Gaussian cop-
ula and the t–copula[21]. The Gaussian copula has zero tail dependence, whereas
the t–copula has symmetric non–zero tail dependence. The Archimedean Clayton
copula and Gumbel copula are non–symmetric[22, 23]. The Clayton copula pro-
vides strong lower tail dependence and the Gumbel copula exhibits strong upper
tail dependence. Likewise, the Joe copula has a higher dependence in the upper
tail than in the lower tail, where it is zero. Moreover, Joe[20] employed two bi-
variate copula families, namely BB1 and BB7, that provide non–zero upper and
lower tail dependences.

2.3 Vine copulas

Although, there exists a large collection of bivariate copula families, the mul-
tivariate distributions carry many restrictions on the dependence relationships
between the random variables. Vine copula is helpful in constructing multivariate
distributions by incorporating the bivariate copula into the dependence structure
under the specified marginal conditional distributions. For the n–dimensional, the
density corresponding to a C–vine (canonical vine) and a D–vine are given by Aas
et al.[24] as

f(x1, .., xn) =

n∏
k=1

f(xk)·
n−1∏
j=1

n−j∏
i=1

cj,j+i|1,..,j−1(F (xj |x1, .., xj−1), F (xj+i|x1, .., xj−1))

(2.7)

f(x1, .., xn) =

n∏
k=1

f(xk) ·
n−1∏
j=1

n−j∏
i=1

ci,j+i|i+1,..,i+j−1

× (F (xi|xi+1, .., xi+j−1), F (xi+j |xi+1, .., xi+j−1))

(2.8)

For example, the 3–dimensional version of C–vine density (2.7) can be written as

f(x1, .., x3) =

3∏
i=1

f(xi) · c12(F (x1), F (x2)) · c13(F (x1), F (x3))

· c23|1(F (x2|x1), F (x3|x1)).

(2.9)

The 3–dimensional version of D–vine density (2.8), in our case, can be written as

f(x1, .., x3) =

3∏
i=1

f(xi) · c12(F (x1), F (x2)) · c23(F (x2), F (x3))

· c13|2(F (x1|x2), F (x3|x2)).

(2.10)



Volatility Transmission and Interdependence among Agricultural Commodity... 217

The vine copula requires marginal conditional distributions of the form F (x|ν).
Joe[16] showed that for every υj in the vector ν, we can write F (x|ν) as

F (x|ν) =
∂Cx,υj |ν−j

{F (x|ν−j), F (υj |ν−j)}
∂F (υj |ν−j)

(2.11)

where Cx,υj |ν−j
is an arbitrary bivariate copula distribution function. If ν is uni-

variate, the marginal conditional distribution becomes a special case that can
defined as

F (x2|x1) =
∂C1,2{F (x2), F (x1)}

∂F (x1)
(2.12)

Hence, each of the marginal conditional distributions can be calculated from bi-
variate copulas and marginal distributions.

2.4 Dynamic vine copula

The vine copula used in our study is flexible in a multivariate setting. How-
ever, the afore–mentioned models assume that the dependence structures remain
constant over time. By following Heinen and Valdesogo[25] and Patton[26], we
proceeded to introduce the time–varying aspect into the multivariate dependence
model. The method consists of using the C–vine or D–vine copula to model the
multivariate structure, and then in each of the building blocks, the bivariate copula
allows the dependence parameters to be time–varying. As for the time–varying
models in our paper, we will allow the dependence parameter of the copula to
evolve according to an ARMA(1,10)–type process. The following are some of the
time–varying copula candidates.

The time–varying Gaussian copula can be defined as

ρt = Λ(ψ0 + ψ1ρt−1 + ψ2
1

10

10∑
j=1

Φ−1(ut−j)Φ
−1(vt−j)), (2.13)

where Λ = (1 − e−x)(1 + e−x)−1 is the modified logistic transformation used to
maintain the correlation coefficient, ρt, belonging to (−1, 1) at all times. For the
t–copula with the time–varying aspect, Φ−1(x) is replaced by t−1ν (x).

At the same time, the time–varying Gumbel copula also assumes the tail de-
pendence parameters to follow the ARMA(1,10)–type process. We proposed that
the time–varying Gumbel copulas could be given as follows:

δt = Λ(ψ0 + ψ1δt−1 + ψ2
1

10

10∑
j=1

|(1− ut−j)− (1− vt−j)|), (2.14)

where Λ = (1 + e−x)−1 is the logistical transformation which guarantees that τt
and δt will be in the interval (0,1) at all times.



218 P. Boonyanuphong and S. Sriboonchitta

Table 1: Data Description of Returns

Mean Std Skew Kurt JB stat

Corn 3.9e-04 0.019 0.185 5.602 0.000
Soybean 3.5e-04 0.017 -0.699 7.603 0.000
Wheat 3.2e-04 0.021 0.079 4.897 0.000
Cvl 67,175.20 58,866.12
Wvl 25,676.08 38,323.12
Svl 40,689.98 22,601.73
Coi 230,252.30 197,189.30
Woi 89,368.25 77,596.01
Soi 83,792.14 82,353.80

Notes: Cvl, Svl, and Wvl stand for the trade volumes of corn, soybean,
and wheat; Coi, Soi, and Woi stand for the open interests of corn, soy-
bean, and wheat.

3 Main Results

3.1 Data

This paper uses a daily time series data on the close futures prices of corn,
soybean, and wheat over the period from January 3, 2000, to February 28, 2013.
The data set also includes the trading volume and the open interest for corn,
soybean, and sugar, which are considered exogenous variables that contribute to
the market volatility of corn, soybean, and wheat. Moreover, we used the dummy
variable which is a proxy variable for the listing of ethanol in the Chicago Board of
Trade (CBOT) market. It takes on the value of one at and after the ethanol futures
are traded on the CBOT, and 0 for the previous dates. All the data regarding the
futures prices were collected from Datastream, where corn, soybean, and wheat
commodities are traded on the CBOT.

The descriptive summaries for corn, soybean, and wheat returns, and the
exogenous trading volume and open interests for corn, soybean, and wheat are
demonstrated in Table1. The returns for soybean and the wheat returns have
negative skewness, thus indicating that the soybean and wheat futures have longer
left tails than right tails, which is different from that of the corn futures series that
have longer right tails than left tails. With respect to the excess kurtosis statistics,
the returns for corn, soybean, and wheat show that all the return series are highly
leptokurtic with respect to the normal distribution, thus indicating that there is a
higher probability for extreme movement occurring in these futures markets. The
Jarque–Bera test results confirm non–normal distributions in the corn, soybean,
and wheat returns series.

Moreover, the results for the trading volumes and the open interests, as pre-
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sented in Table1, show that the trading volume and the open interest for the entire
grain variables are extremely volatile, relative to the futures prices. Corn has the
highest trading volume, while wheat has the lowest. In similar events, corn has
the highest open interest, while soybean has the lowest. Also, in this case, we
observed that the open interest for all the grain variables is more volatile than the
trading volume.

3.2 Results of marginal models

The findings given in Table2 present our estimation for each of the futures
returns series. We estimated several alternative EGARCH (1,1) models in order
to capture the listing effect of ethanol and the trading activity of commodity
markets on the corn, soybean, and wheat markets. The top panel reports the
estimated coefficients of the conditional mean equation; the result shows that the
trading volume is significant only in the case of the corn futures returns, and that
the sign is negative, suggesting that the trading volume of corn has also had an
indirect marginal effect on the corn prices. While the open interest is positive and
significant in the cases of corn and wheat returns and the listing dummy is also
a positive significant in the case of soybean returns, there is an indication that
the open interests of corn and soybean as well as the listing of ethanol have had a
direct marginal effect on the corn and soybean prices, respectively.

As for the bottom panel, the reports give the estimated coefficients of the
conditional variance equation. The result reveals that all of the coefficients are
significant, thus indicating that the models fit the data well. However, the coef-
ficient parameters α3 for corn and soybean returns are statistically insignificant,
whereas α3 for wheat returns is significant and α3 > 0, thus indicating that the
conditional variance does not have a leverage effect.

The sums of α1, α2, and α3 are greater than 1, thus indicating that shocks
to the conditional variance of the corn, soybean, and wheat returns during the
sample period have a long memory and are permanent. The degree of freedom
parameters of the t–distribution are found to be ranging from 7.07 to 11.15, thus
suggesting that the error terms were not normal. The listing dummy parameter
shows that there is significant and positive returns for corn, thus suggesting a
positive marginal contribution of ethanol listing on corn price volatility, which
is corresponding with the results obtained by Demirer et al.[27]. The remaining
results for the conditional variance indicate that the trading volume variable is
significant and positive for all returns series, thus indicating a positive marginal
contribution of the trading volume on the price volatility of corn, soybean, and
wheat. With regard to the open interest parameters, it has significant impacts
on the price volatility of all the returns series with the open interest having a
negative effect. The negative relationship with the open interest also indicates
active arbitrage activity in the corn, soybean, and wheat markets.

To evaluate the correct specification for the marginal models, we followed
the method proposed by Diebold et al.[28], who suggested that if marginal dis-
tributions were correctly specified, then and should be i.i.d. uniform (0,1). In
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Table 2: Parameter Estimates for Marginal Distribution Models

Corn Soybean Wheat

Mean equation
Vol -0.002

(0.0002)
Oi 0.003 0.003

(0.0002) (0.0002)
Dt 0.0008

(0.0003)
Volatility equation
α0 -0.247 -0.185 -0.108

(0.057) (0.036) (0.025)
α1 0.984 0.989 0.995

(0.006) (0.004) (0.003)
α2 0.148 0.124 0.083

(0.019) (0.016) (0.013)
α3 0.006 0.008 0.037

(0.011) (0.009) (0.008)
Vol 0.342 0.402 0.375

(0.038) (0.043) (0.032)
Oi -0.209 -0.301 -0.277

(0.029) (0.036) (0.028)
Dt 0.012

(0.007)
T-DIST. DOF. 7.077 7.437 11.153

(0.811) (0.925) (1.605)
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Table 3: Goodness–of–fit Test for Marginal Distributions

Corn Soybean Wheat

Box–Ljung test
first moment 0.065 0.663 0.421
second moment 0.362 0.861 0.295
third moment 0.167 0.143 0.462
fourth moment 0.353 0.813 0.349

K–S test 1.000 1.000 1.000

Note: The table presents p–values from the Box–Ljung tests and
the K–S tests, respectively.

accordance with Diebold et al.[28], we checked that the marginal models were
well–specified by introducing the Box–Ljung test to assess the serial correlation
for the first four moments of each return series and used the Kolmogorov–Smirnov
(K–S) test to check the density specification of the marginal distribution assump-
tion. The p–values presented in Table3 suggest that for all the series, the null
hypothesis of no serial correlation could be rejected at the 5% significance level;
also, the p–values from the K–S test show that all the marginal distribution series
can pass at the 5% significance level. Hence, the results imply that all the marginal
distribution models were in correct specification.

3.3 Results of copula models

Based on our case, we focused on the three–dimensional model which is agriculture–
related. As a result, all the three combinations of the ordering variables were
estimated for the C–vine structure and the D–vine structure. We selected the
best–fit model by performing the Vuong[29] tests. The appropriate sequential ar-
rangements of the variables for the C–vine structure and the D–vine structure are
the following: C–vine: corn, wheat, and soybean and D–vine: wheat, corn, and
soybean, respectively.

Table4 reports the estimate of the bivariate copula parameters that were se-
lected according to the AIC and BIC criteria for each of the building blocks for the
appropriate C– and D–vine structures. The sequential procedure is used to select
the appropriate C–vine copula and D–vine copula for all the related copula data.
The procedure then uses those parameters as the starting values to calculate the
corresponding maximum likelihood estimation (MLE) parameters.

The better–fit models for C– and D–vine in our analysis have the same number
of parameters. In order to determine the better–fitting vine copula model for the
data set, we employed the Vuong test by comparing both the models. The Vuong
statistics cannot reject the null hypothesis of no difference between those two
models, thus indicating that the C–vine and the D–vine copula models for our



222 P. Boonyanuphong and S. Sriboonchitta

data set cannot be different statistically.

Table 4: Structure and Parameter Estimate Results of C–vine and D–vine
Copulas for Static Cases

copula par1 par2 λL λU τ AIC BIC

Panel A: C–vine
C12 t 0.627 6.625 0.225 0.225 0.432 -1692.70 -1680.52

(0.011) (0.861)
C13 t 0.596 5.706 0.236 0.236 0.407 -1505.41 -1493.23

(0.012) (0.653)
C23|1 R-G 1.080 0.100 0.000 0.074 -55.38 -49.29

(0.012)
Panel B: D–vine
C21 t 0.627 6.625 0.225 0.225 0.432 -1692.70 -1680.52

(0.011) (0.861)
C13 t 0.596 5.706 0.236 0.236 0.407 -1505.41 -1493.23

(0.012) (0.653)
C23|1 R-G 1.080 0.100 0.000 0.074 -55.38 -49.29

(0.012)

Note: 1 = corn, 2 = wheat, 3 = soybean. The numbers in the paren-
theses are the standard errors.

The dependence parameters from Table4 are statistically significant and they
have quite a strong dependence. The corresponding values of Kendalls tau are
also strong for the pairs of corn–wheat and corn–soybean, respectively. According
to the AIC and BIC criteria, the optimal choice of copula is the t–copula for both
the pairs; the degree of freedom of the t–copula ranges from 5.71 to 6.63. These
facts imply that the co–movements and tail dependences between corn and wheat,
and between corn and soybean are in substantial extreme, especially during the
extreme market events. As for the relationship between wheat and soybean with
a conditional corn price, it has a very low Kendalls tau, 0.07, which has fallen
by 74.9% when compared to the unconditional bivariate wheat and soybean. The
best bivariate copula between wheat and soybean is t–copula with the Kendalls
tau parameter as 0.296. Therefore, it can be safely concluded that the corn price
has affected the dependence structure between wheat and soybean.

The time–varying copula was applied in all the trees within our study by
following the ARMA (1,10) process of Patton[26]. The data given in Table5 reveal
that all the time–varying copulas were able to improve the performance of the
entire static copulas in each tree, which is consistent with the AIC and BIC criteria.

The values of the autoregressive parameter ϕ1 for the pairs of corn–wheat and
corn–soybean are relatively low, which implies that the time–varying dependence
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Table 5: Parameter Estimate Results of C–vine Copula for Time–varying
Cases

copula ϕ0 ϕ1 ϕ2 AIC BIC

C12 t -0.299 0.041 2.774 -1717.40 -1707.20
(0.0002) (0.0007) (7.7e-04)

C13 t 0.1046 0.110 1.990 -1541.38 -1541.38
(0.0017) (0.0043) (0.0035)

C23|1 R-G 0.660 0.984 -0.409 -65.54 -65.54

(0.0004) (0.0028) (0.0036)

Note: 1 = corn, 2 = wheat, 3 = soybean. The numbers in the paren-
theses are the standard errors.

has low persistence, while the values of the autoregressive parameter ϕ1 for wheat
and soybean with a conditional corn price show the high autocorrelation. Mean-
while, the variability of the values of the dependence parameter (ϕ2) is significant
and displays a greater variability over time on the dependence between corn and
wheat returns, and between corn and soybean returns.

4 Discussion

Our findings show that the listing of ethanol futures causes the price volatil-
ity in the corn market and also triggers an impact price in the soybean market.
Also, the trading volume for all agricultural commodities has a positive impact
on the price volatility of the corn, soybean, and wheat markets. This evidence
is consistent with the findings of Demirer et al.[27] who reported on the effect of
ethanol listing on the returns and the volatility in the corn market. Analogous
to this, Yang et al.[30] illustrated the effect of futures trading on the agricultural
commodity prices. While, the open interest for all agricultural commodities has
significant impacts on the price volatility of the corn, soybean, and wheat prices
with a negative effect. The sign of the relationship of open interest on the price
volatility is negative, which suggests that the arbitrage activity caused an increase
in the futures price volatility of the corn, soybean, and wheat markets. The above–
mentioned results support the argument that the role of financialization and the
role of biofuel are considerably influential in determining the price and the volatil-
ity of the agricultural commodity markets.

Moreover, the empirical evidence reveals that the dependence between the
corn and wheat returns, and between the corn and soybean returns are relatively
strong. In addition, it was discovered that corn price has more influence to examine
the dependence structure between the wheat and soybean returns. The results
indicate that the high price volatility in the corn markets leads to an increase in
the soybean and wheat price volatility. The reason is that grains are shared in
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the planted acreage and are closer substitutes for animal fodder. Interestingly, we
do observe that the agricultural markets have become more interdependent in the
present times, in consistency with the apparent higher financial market integration
of agricultural commodities.

Additionally, there exists extreme tail dependence between the corn and wheat
prices, and between the corn and soybean prices. The symmetry tail dependence
generally implies that corn price and related agricultural commodity prices are
likely to move together during the boom and bust marketing periods. This evi-
dence argues that policy makers should consider the effects that will be manifested
on the price volatility in a situation of high trading activity in the agricultural com-
modities markets and an ensuing biofuel policy. For investors, the co–movement
between the corn price and the closely related grains prices may worsen when there
is use of related agricultural markets as an alternative for portfolio diversification.

5 Conclusion

This paper has examined the price volatility and the dependence structure
among agricultural commodity markets, especially among corn, soybean, and
wheat markets by using vine copula based GARCH models. The vine copula
is a very flexible multivariate copula, which can measure asymmetry and time
variation in the dependence structures of multivariate series of financial returns.
The main purpose of this paper is to analyze the impacts of the ethanol listing
and the trading activity of agricultural commodity markets on price level and
price volatility of corn, soybean, and wheat. From this study, we constructed the
dependence structure among these three main agricultural commodities markets.

The empirical evidence shows that the ethanol listing and the trading activity
do have an impact on the price level and price volatility of corn, soybean, and
wheat. These results confirm the concern regarding the increased price volatility
in agricultural markets due to the role of financialization and the role of biofuel.
Moreover, the dependencies between the corn and wheat returns, and between
corn and soybean returns are significant in variability over time and have a higher
variation of dependence with symmetrical tail dependences. The higher time–
varying dependence and the symmetric tail dependences between the corn and
wheat returns, and between the corn and soybean returns are an indication that
the main agricultural commodities are most likely to move together during the
boom and bust marketing periods. It reduces the alternative of use in related
agricultural markets for portfolio diversification purpose.
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