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1 Introduction

The observation "world oil market, like the world ocean, is one great pool"
was proposed by Adelman [1, 2]. This assumption implies that the crude oil mar-
kets in each region are linked together or have integration. Moreover, Adelman
[3] said that the transportation of oil between nations was relatively easy; oil ex-
porters tend to seek the markets that make it more profitable for them and, thus,
cause those oil markets to become "a single world market". As for the point of
view of Adelman [1, 2], there were different empirical studies that supported the
"one great pool" assumption. The crude oil benchmark prices in the international
market (e.g., Brent, West Texas Intermediate [WTI], Dubai, Oman, and Maya)
were used for the studies and several types of econometric models were utilized to
analyze the data. Starting with Hammoudeh et al. [4], they used the threshold
cointegration method to study the relationship between pairs of crude oil bench-
mark prices. They found out that there was a long-run equilibrium relationship
between different crude oil benchmark prices. Reboredo [5] used copula based
GARCH model to study the dependence structure between the crude oil bench-
mark prices in international crude oil markets. It was found that in times of crude
oil market stress, the crude oil price in each market tends to have co-movement
with the same intensity. AlMadi and Zhang [6] used vector error correction model
(VECM) and Granger causality tests. The empirical results showed that the four
crude oil benchmarks prices were found to be cointegrated; in addition, the follow-
ing facts were identified: WTI significantly leads Brent, Dubai, and Oman; Brent
significantly leads Dubai and Oman; and Oman moderately leads Dubai. There-
fore, we can definitely say that if a market has supply and demand shocks/price
shock, then it has an impact on other regional markets.

For analyzing the relationship of crude oil prices between the markets, most
of the studies in the previous works (see [4, 5, 6]) used the bivariate model. In
fact, the random variables that were used in those studies were also related to
other variables. For hypothesis testing, in the context of world crude oil, the
market is globalized or regionalized? Clearly, it is a multivariate model that we
need in order to analyze the relationship between several markets (where there are
more than two random variables) or to analyze the multivariate joint probability
in higher dimensions. As a result, we are convinced that this model would be
more appropriate than the bivariate model because the multivariate model can
take all the variables to be considered into account. In order to fill the gap of
bivariate model, this paper proposes the vine copula model [7, 8] to study the
dependence structure between the prices of crude oil in three continents, namely,
North America, Europe, and Asia, which are likely to share significant relationship,
as is evident from Figure 1.

The vine copula model is a flexible tool to analyze the dependence structure
in a multivariate setting. It allows us to define the relationship structure between
the variables by using expert knowledge or concordance of data, or both, and it
can describe the relationship between the variables through the graphical model,
or through what are called pair-copulas, as shown in Figure 2.
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Figure 1 displays the graph of crude oil futures prices and presents the major
events which affected the prices during the period from 1 June 2007 to 28 June
2013. In this study, we used the crude oil futures prices which represented the

Figure 1: The crude oil futures prices of the NYMEX, ICE, and DME
(sources: Ecowin database, Hamilton [9], OECD [10], Australian Institute
of Petroleum [11])

crude oil prices of each continent: Light crude futures 1-Pos of the New York
Mercantile Exchange (NYMEX), for North America; Brent crude futures 1-Pos of
the Intercontinental Exchange (ICE), for Europe; and Oman crude futures 1-Pos of
the Dubai Mercantile Exchange (DME), for Asia. The daily closing prices during
the period from 26 December 2008 to 28 June 2013 were used for the analysis.
We used the data of this period because it is a period in which the oil prices have
rebounded from being the lowest after the shocks from the global financial crisis.

The vine copula model is used to analyze the dependence structure between
three random variables of the crude oil futures prices. More specifically, we want
to examine the following: (1) the order of the relationship of the three crude oil
markets through an appropriate vine tree structure and (2) the particular market
that is a key variable that governs the interactions within these three markets.
The research results from this study will provide more understanding regarding
the relationships between crude oil markets and their dependence structure, which
will be useful for policy makers in that they will be able to monitor the changes
in the crude oil prices for risk prevention, in the energy security context, and risk
management, for investment in the commodity market; furthermore, the results
will be useful for an improved understanding of the "one great pool" hypothesis.

The remainder of this work is organized as follows: part two is the methodol-
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ogy, and part three consists of the data and the empirical findings. Finally, part
four makes up the conclusions.

2 Methodology

The objective of the study is to analyze the relationships between three crude
oil prices: the NYMEX, ICE, and DME. First, we have to give the definitions of
the variables, which are as follows: the NYMEX is the Light crude futures 1-Pos
price, the ICE is the Brent crude futures 1-Pos price, and the DME is the Oman
crude futures 1-Pos price. The ARMA-GARCH model is used to find out the
"marginal distributions" for the copula model since this model has been widely
used for modeling the volatility of the time series data in the financial field. The
residuals (εt) from the appropriate marginal models of the three data series will be
standardized. The standardized residuals (zt) will then be transformed using the
empirical distribution function and, thereafter, we obtain the marginals. These
marginals are then used as inputs to the copula data (F1(x1), F2(x2), F3(x3)).
Next, the vine copula model is used to analyze the dependence structure; also
used are two approaches for specifying the structure of the D-vine model: (1) the
empirical Kendall’s tau, which is rank correlation, and (2) the distance measure
that is based on the idea of information-theoretic entropy.

2.1 Marginal distribution model

Different models are appropriate for different time series data. Therefore, we
adopt ARMA(p,q)-GARCH(1,1) model [12] with skewed student-T distribution

residual (SkT ) for the marginal distribution of the log-difference ln
Pt

Pt−1
of the

crude oil future prices 1-Pos (yt): the NYMEX, ICE, and DME.

2.1.1 ARMA(p,q)-GARCH(1,1)

yt = a0 +

p∑
i=1

aiyt−i +

q∑
i=1

biεt−i + εt (2.1)

εt = zt
√
ht, zt ∼ SkT (ν, λ) (2.2)

ht = ωt + αε2t−1 + βht−1 (2.3)

In equation (2.1) is presented the ARMA(p,q) process, where yt−i is an au-
toregressive term of yt and εt is an error term. Equation (2.2) then defines this
residual as the product between the conditional variance ht and a random variable
zt. The residual εt will be standardized by εt/

√
ht to be a standardized residual

zt. The zt is assumed to follow the skewed student-T (SkT ) distribution with the
shape parameter ν and the skewness parameter λ. Equation (2.3) presents the
GARCH(1,1) process, where ωt > 0, α ≥ 0, β ≥ 0 are sufficient to ensure that the
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conditional variance ht > 0. The αε2t−1 represents the ARCH term and α refers
to the short-run persistence of shocks, while βht−1 represents the GARCH term
and β refers to the contribution of shocks to the long-run persistence (α+β). The
second moment condition is α+ β < 1.

In this study, the R-package fGarch by Wuertz and Chalabi [13] is used to
estimate the parameters of the ARMA(p,q)-GARCH(1,1) model.

2.2 Copula functions

The fundamental theorem of copula is the Sklar’s theorem, which was proposed
by Sklar [14].

Let F be an n-dimensional distribution function with marginal distributions
F1, ..., Fn. Then there exists a copula C for all x = (x1, ..., xn)

′ ∈ [−∞,∞]n, such
that

F (x) = C(F1(x1), ..., Fn(xn)) (2.4)

If F1, ..., Fn are continuous, then C is unique. Conversely, if C is a copula and
F1, ..., Fn are distribution functions, then the above function F (x) in equation
(2.4) is a joint distribution function with marginal distribution F1, ..., Fn. C can
be interpreted as the distribution function of an n-dimensional random variable
on [0, 1]n with uniform margins [7].

We used the various copula families contained in the R-package CDVines to
measure the dependence of the pair-copula, including Gaussian, Student’s T, Clay-
ton, Gumbel, Frank, Joe, BB1, Rotated Clayton 180◦, Rotated Gumbel 180◦,
Rotated Joe 180◦, Rotated BB1 180◦.

2.3 Vine copula modeling

Modeling dependencies in high dimension by the standard multivariate copula
is inflexible because they do not allow for different dependency structures between
pairs of variables [15]. Vine copulas can cross over this restriction; vine copulas
are a flexible tool for illustrating the multivariate copulas through graphical mod-
els. The multivariate copulas are constructed from a cascade of bivariate copulas
(called pair-copulas), as a result of which we are able to select bivariate copulas
from a wide range of families.

This study used D-vine copula modeling to analyze the dependence between
the crude oil futures prices of the NYMEX, ICE, and DME. The modeling of the
D-vine copula is as follows: first an appropriate D-vine tree structure has to be
specified; next, adequate copula families have to be selected and estimated [7].

2.3.1 Structure of D-vine

We let the structure of D-vine be given by the data itself. To construct a
D-vine structure, we need to select the order of the variables in the first tree, as
the first step. There are many approaches to ordering the sequences of variables,
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such as the empirical Kendall’s tau, the Spearman’s rho, the distance measure
[15], and the degree of freedom parameters of the Student’s T copula [16]. This
paper used the empirical Kendall’s tau and the distance measure, and compared
the results from these two approaches.

Empirical Kendall’s tau

The Kendall’s rank correlation, or the empirical Kendall’s tau (τn), as in
equation (2.5), is used to measure the degree of dependence in each pair of the
transformed standardized residuals of the data set. A high value of τn means that
there is high dependency between the two variables. The strongest dependencies,
in terms of absolute empirical values of pairwise Kendall’s tau, are used as the first
pair in the first, and is subsequently followed by the next. The selection of the
D-vine structure is based on the one that maximizes the sum of the corresponding
absolute value of τn in the first tree.

τn =
Pn −Qn

(
n

2
)

=
4

n(n− 1)
Pn − 1 (2.5)

where Pn and Qn are the number of concordant and discordant pairs, respec-
tively. The two pairs, (Xi, Yi) and (Xj , Yj), can be said to be concordant when
(Xi −Xj)(Yi − Yj) > 0, and discordant when (Xi −Xj)(Yi − Yj) < 0 [17].

Distance Measure

There are many approaches to measuring the distance between probability
distributions or data set. This study used the approach to distance measure which
is closely related to divergence measures based on the idea of information-theoretic
entropy first presented by Shannon [18]. This divergence measure is symmetric
and is referred to as the non-directional divergence measure. It qualifies as distance
measure [19]. The formula can be written as given in equation (2.6).

I(f1, f2) = K(f1, f2) =

∫
(f1 − f2) log

f1
f2
dy (2.6)

where I(f1, f2) is the distance measure between the probability functions f1
and f2 of the standardized residual. A low value of I(f1, f2) means that there is
high association, or high affinity between f1 and f2. For ordering variables, the
lowest I(f1, f2) is used as the first pair in the first tree, and is subsequently fol-
lowed by the next. The selection of the D-vine structure is based on the one that
minimizes the sum of the corresponding absolute value of I(f1, f2) in the first tree.

D-vine tree

Thereafter, we order the sequences of the variables in the first tree by the
empirical Kendall’s tau and the distance measure. We can construct the D-vine
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structure for three variables as shown in Figure 2.

Figure 2: The pair-copulas of three-dimensional D-vine trees
 

1,2 2,3 
1,3 | 2 

2 3 
2,3 1,2 Tree 1 1 

Tree 2 

2.3.2 Density function of D-vine

We present the three dimensions case in our study. Let X = (X1, X2, X3) ∼ F
with corresponding densities f1, f2, f3. Then (see [8]):

f(x1, x2, x3) = f(x1) · f(x2) · f(x3) · c1,2(F1(x1), F2(x2)) · c2,3(F2(x2), F3(x3))

·c1,3|2(F1|2(x1 | x2), F3|2(x3 | x2))
(2.7)

where c1,2, c2,3, and c1,3|2 denote the densities of bivariate copulas C1,2, C2,3,
and C1,3|2, respectively. F1|2 and F3|2 are the marginal conditional distributions
that can be derived from formula (2.8).

The vine copulas involve marginal conditional distributions. The general form
of a conditional distribution function is F (x | v), given by

F (x | v) =
∂Cx,vj |v−j

(F (x | v−j), F (vj | v−j))
∂F (vj | v−j)

(2.8)

where v denotes all the conditional variables and Cx,vj |v−j
is a bivariate copula

distribution function. When v is univariate, the marginal condition distribution,
for example, F1|2 can be presented as

F1|2(x1 | x2) =
∂C12(F1(x1), F2(x2))

∂F2(x2)
(2.9)

2.4 D-vine copula estimation

In the R-package CDVines, the maximum likelihood was used to estimate the
parameters of the copulas. The log-likelihood of the D-vine copula with three
dimensions in equation (2.7) can be written as∑T

t=1 log[c1,2(F1(x1,t), F2(x2,t)) · c2,3(F2(x2,t), F3(x3,t))

·c1,3|2(F1|2(x1,t | x2,t), F3|2(x3,t | x2,t))]
(2.10)
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3 Data and Empirical Results

This study used the oil prices from three major markets, the NYMEX, ICE,
and DME, to analyze the dependence structure. The observations regarding the
three data series were obtained from the EcoWin database during the period from
26 December 2008 to 28 June 2013.

We used the crude futures 1-Pos of daily closing prices and each data series
was transformed into the log-difference (lnPt − lnPt−1), before it was used for
analysis using the GARCH model and the vine copula.

Table 1 presents the descriptive statistics of the log-difference of three crude
futures 1-Pos: the NYMEX, ICE, and DME. All of the three data series have
a positive average growth rate, exhibiting positive skewness. If there is positive
skewness, it means that the market has an upward trend, or that there is substan-
tial probability of a big positive return. The kurtosis of these data is greater than
3. Hence, this kurtosis can be said to be super Gaussian and leptokurtic. This
means that the growth rates of the empirical data have a typically spiky probabil-
ity distribution function with heavy tails. The null hypotheses of normality of the
Jarque-Bera tests are rejected in all the data series. The Augmented Dickey-Fuller
test shows that these data series are stationary at p-value less than 0.01.

Table 1: Data Descriptive Statistics for Log-difference of Crude Oil Futures
Price 1-Pos

NYMEX ICE DME
Mean 0.001 0.001 0.001
Median 0.001 0.001 0.001
Maximum 0.133 0.127 0.134
Minimum -0.131 -0.097 -0.091
Std. Dev. 0.023 0.020 0.019
Skewness 0.188 0.006 0.088
Kurtosis 8.276 7.141 7.649
p-value of Jarque-Bera (0.01) (0.01) (0.01)
p-value of ADF test (< 2.2e-16) (< 2.2e-16) (< 2.2e-16)
No. of Observations 1135 1135 1135

Table 2 presents the appropriate marginal models for the log-difference of three
crude futures 1-Pos data: The ARMA(3,2)-GARCH(1,1) with skewed student-
T residual for the NYMEX data and the ARMA(1,1)-GARCH(1,1) with skewed
student-T residual for the ICE and DME data. The models are selected by using
the AIC criterion. For the NYMEX, the α+β is 0.986, for the ICE and the DME,
the α + β are 0.992 and 0.994, respectively; this implies that their volatilities
have a long-run persistence. For the short-run effect of the unexpected factors,
we considered the event from the α parameters of the NYMEX, the ICE and the
DME. The results showed that they have the values 0.073, 0.056 and 0.049, and
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Table 2: Results of ARMA(p,q)-GARCH(1,1) with Skewed Student-T
Residual for Log-difference of Crude Oil Futures Price 1-Pos

NYMEX SE ICE SE DME SE
(p-value) (p-value) (p-value)

mu 8.06e-06 4.27e-07 7.207e-05 8.82e-05 6.638e-05 8.22e-05
(<2e-16***) (0.414) (0.419)

ar1 2.42e-01 2.40e-05 8.135e-01 9.69e-02 8.170e-01 9.37e-02
(<2e-16***) (<2e-16***) (<2e-16***)

ar2 6.96e-01 2.48e-05 - - - -
(<2e-16***)

ar3 9.91e-03 2.56e-05 - - - -
(<2e-16***)

ma1 -3.07e-01 3.18e-05 -8.356e-01 9.20e-02 -8.436e-01 8.90e-02
(<2e-16***) (<2e-16***) (<2e-16***)

ma2 -7.14e-01 3.19e-05 - - - -
(<2e-16***)

ω 5.64e-06 3.56e-06 2.96e-06 2.07e-06 2.54e-06 1.84e-06
(0.113) (0.152) (0.168)

α 7.27e-02 2.32e-02 5.64e-02 1.81e-02 4.87e-02 1.69e-02
(0.002**) (0.002**) (0.004**)

β 9.14e-01 2.75e-02 9.36e-01 2.04e-02 9.46e-01 1.85e-02
(<2e-16***) (<2e-16***) (<2e-16***)

ν 8.13 1.69e+00 6.79 1.34e+00 4.77 6.94e-01
(shape) (1.47e-06***) (3.66e-07***) (6.61e-12***)

λ 8.55e-01 4.19e-02 9.00e-01 3.74e-02 9.06e-01 3.68e-02
(skewness) (<2e-16***) (<2e-16***) (<2e-16***)

LL 2,888.76 2,986.98 3,042.67

Note: Significant codes: 0 "***"; 0.001 "**"; 0.01 "*" 0.05.

that this has a small impact on volatility.

Next, we transformed the standardized residuals from the ARMA-GARCH
model into the uniform [0,1] by using the empirical distribution function Fn(x) =

1

n+ 1

∑n
i=1 1(Xi ≤ x), where Xi ≤ x is the order statistics and 1 is the indicator

function. The transformed data were used in the Kolmogorov-Smirnov (K-S) test
for uniformity [0,1] and the Box-Ljung test for serial correlation. The results
showed that these marginal distributions are uniform and i.i.d. so our marginal
distributions were not misspecified and can be used for the copula model.

Figure 3 illustrates the scatter plots of the three bivariate margins, NYMEX–
ICE, NYMEX–DME, and ICE–DME. The data show the clustering in both the up-
per and the lower tail dependences. The pair-copula of ICE–DME shows stronger
dependence in both the upper and the lower tails, compared to the other pairs.

In order to better understand the relationship between these pair copulas, the
results of the dependence structure were analyzed by using the bivariate copula
model, as presented in Table 3.

The analysis is performed by taking into consideration the results of the AIC,
the BIC, and the goodness-of-fit tests of the Cramér-von Mises (CvM) and the
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Figure 3: The scatter plots of NYMEX–ICE, ICE–DME, and NYMEX–
DME

Kolmogorov-Smirnov (K-S) tests in Table 4. As for the first pair-copula, NYMEX–
ICE, the Rotated BB1 180◦ copula is appropriate to explain the dependence struc-
ture of this pair-copula. The Kendall’s tau correlation (τ) is 0.646, and the lower
(TL) and upper tail (TU ) dependences are 0.680 and 0.758.

As far as the second pair-copula, NYMEX–DME, is concerned, the Rotated
BB1 180◦ copula is appropriate for explaining the dependence structure of this
pair-copula. The Kendall’s tau correlation is 0.594, and the lower and upper tail
dependences are 0.644 and 0.737.

As for the last pair-copula, ICE–DME, the BB1 copula is appropriate to ex-
plain the dependence structure of this pair-copula. The Kendall’s tau correlation
is 0.741, and the lower and upper tail dependences are 0.767 and 0.688.

The results demonstrate that the NYMEX, ICE, and DME have relatively
strong dependence. Hence, we can safely infer that these crude oil futures prices
move closely together, especially the ICE and the DME.

Next, we used the D-vine copula model to analyze the dependence structure
between the crude oil futures prices and especially to examine which oil market is
a key variable that governs the interactions within these three markets.

3.1 D-vine Structure

The empirical Kendall’s tau τn and the distance measure I(f1, f2) were used
to select the order of the variables in the first tree. Table 5 shows the empirical
Kendall’s tau matrix, which was computed from the transformed standardized
residuals of the NYMEX, ICE, and DME. A high value of τn means that there
is "high dependency". The strongest dependencies in terms of absolute empirical
values of τn are used as the first pair in the first tree, which is subsequently
followed by the next. The selection of the D-vine structure is based on the one
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Table 3: Bivariate Copula Analysis of NYMEX–ICE, NYMEX–DME, and
ICE–DME

Pair Copula Para- SE τ TL TU AIC BIC
copula family meter (p-value)

NYMEX Rotated θ = 0.264 0.062 0.646 0.680 0.758 -1,478.90 -1,468.80
–ICE BB1 180◦ (0.000)

δ =2.496 0.090
(0.000)

NYMEX Rotated θ = 0.165 0.058 0.594 0.644 0.737 -1,205.20 -1,195.10
–DME BB1 180◦ (0.002)

δ =2.276 0.079
(0.000)

ICE BB1 θ = 1.023 0.104 0.741 0.767 0.688 -2,074.50 -2,064.40
–DME (0.000)

δ = 2.552 0.111
(0.000)

Note: For the CvM and K-S tests, the critical value α = 5%. If p-value > 0.05, it
means that the dependence structure of the data series is appropriate for the chosen

family of copulas.

Table 4: P-value of CvM and K-S tests of Goodness-of-fit test based
Kendall’s process

NYMEX–ICE, NYMEX–DME, ICE–DME,
Rotated BB1 180◦ Rotated BB1 180◦ BB1

P-value of CvM 0.64 0.73 0.09
P-value of KS 0.39 0.77 0.16

Table 5: Empirical Kendall’s tau Matrix
NYMEX ICE DME

NYMEX 1 0.643 0.597
ICE 0.643 1 0.752

DME 0.597 0.752 1

that maximizes the sum of the corresponding absolute value of τn in the first tree,
as can be understood from Figure 4.

Table 6 presents the distance measure matrix, which was computed from the
skewed student-T distribution of the standardized residuals of the NYMEX, ICE,
and DME. A low value of I(f1, f2) means that there is "high association", or "high
affinity" between f1 and f2. The lowest I(f1, f2) is used as the first pair in the
first tree, which is subsequently followed by the next. The selection of the D-vine
structure is based on the one that minimizes the sum of the corresponding absolute
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Figure 4: The order of the variables in the first tree of the D-vine structure
by the empirical Kendall’s tau

 

 

 = 0.752 
NYMEX ICE DME 

 = 0.643 
Tree 1 

Table 6: Symmetric Distance Measure Matrix
NYMEX ICE DME

NYMEX 0 0.006 0.021
ICE 0.006 0 0.007

DME 0.021 0.007 0

Figure 5: The order of the variables in the first tree of the D-vine structure
by the symmetric distance measure

 

 
Tree 1 

DME ICE NYMEX 
I = 0.006 I = 0.007 

value of I(f1, f2) in the first tree, as can be seen from Figure 5.
The findings as displayed in Figure 4 and Figure 5 demonstrate that for the

three variables of the crude oil prices chosen for this study, the order of variables
in the first tree of D-vine by the empirical Kendall’s tau approach is different from
that by the distance measure approach, in reversed direction. In addition, the
NYMEX and the DME were linked by ICE in both the structures.

3.2 Results of D-vine models

As the next step, the appropriate D-vine tree structures were specified by the
empirical Kendall’s tau (Figure 4) and the distance measure (Figure 5). Then, ade-
quate copula families were selected and estimated. For the estimation of the copula
parameters, we followed the process as presented in Aas et al. [8] and Brechmann
and Schepsmeier [7]. First, we estimated the parameters of the three copulas
involved by a sequential procedure that involved only the bivariate estimation for
each individual pair-copula. Next, we used the parameters from the sequential
estimation as the starting value to maximize the full log-likelihood procedure, or
what is called a joint MLE estimation. Thereafter, the copula parameters of each
pair can be obtained from the joint MLE estimation.

Figure 6 presents the results of Model 1: D-vine model by the empirical
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Figure 6: The Model 1: D-vine model by the empirical Kendall’s tau se-
quencing
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AIC model = -3,590.140 

Figure 7: The Model 2: D-vine model by the distance measure sequencing
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Kendall’s tau sequencing. Each pair-copula consists of the copula families and
their Kendall’s tau correlations that are transformed from the copula parameters
by a joint MLE estimation.

Figure 7 presents the results of Model 2: D-vine model by the distance measure
sequencing. When we compare these results with the results from the empirical
Kendall’s tau, it can be seen that this three dimensional model provides the same
estimates of the parameters of interest and the value of AIC.

In addition, we also fitted Model 3 and Model 4, the D-vine models with
different orders of the variables to determine the better appropriate structure of
the D-vine model for our data, and the results from the joint MLE estimation are
shown in Figure 8 and Figure 9.

By taking into consideration the Akaike Information Criterion (AIC) value
of each model, we found that Model 1 and Model 2, the D-vine models by the
empirical Kendall’s tau and by the distance measure sequencing, provide better
fit than Model 3 and Model 4.
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Figure 8: The Model 3: D-vine model with different orders of the variables:
the DME, NYMEX, and ICE
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Figure 9: The Model 4: D-vine model with different orders of the variables:
the NYMEX, DME, and ICE
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Model 1 and Model 2 provide the same estimates of the parameters of interest,
which is that the DME and the NYMEX are linked by the ICE, as demonstrated
in Figure 6 and Figure 7. For this reason, we will explain the results of only one
model.

Model 2: D-vine copula model, which is modeled by the distance measure,
reveals that there exists a positive dependence for each pair-copula, which esti-
mated by a joint MLE. The first pair is the NYMEX–ICE, for which the rotated
BB1 180◦ copula is the best fit, with two copula parameters, 0.267 and 2.530, a
Kendall’s tau correlation of 0.651, and the lower and upper tail dependences of
0.685 and 0.760, respectively.

The second pair is the ICE–DME, and the BB1 copula is chosen to explain
the dependence structure of this pair-copula with two copula parameters, 1.083
and 2.505, a Kendall’s tau correlation of 0.741, and the lower and upper tail
dependences of 0.775 and 0.681, respectively.
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The last conditional pair-copula of NYMEX–DME given ICE in Tree 2 pro-
vides that the BB1 copula is its best fit with two copula parameters, 0.069 and
1.053, a Kendall’s tau correlation of 0.082, and the lower and upper tail depen-
dences of 0.000 and 0.069, respectively. This Kendall’s tau correlation by the
conditional pair-copula of NYMEX–DME given ICE is less than those that are
obtained by using the bivariate copula analysis of NYMEX–DME, which is 0.594,
as presented in Table 6. This implies that the ICE has an influence on the depen-
dence between the NYMEX and the DME, and that it is an important variable
that governs the interactions within these variables.

4 Conclusions

This study used the GARCH model and the D-vine copula model to analyze
the relationships between three random variables which we used to represent the
crude oil prices of three different continents: Light crude futures 1-Pos of the New
York Mercantile Exchange (NYMEX) for North America, Brent crude futures 1-
Pos of the Intercontinental Exchange (ICE) for Europe, and Oman crude futures
1-Pos of the Dubai Mercantile Exchange (DME) for Asia. The daily closing prices
during the period from 26 December 2008 to 28 June 2013 of three crude futures
1-Pos were used to conduct the analysis.

We found that the log-difference of the crude futures 1-Pos of the NYMEX
data was appropriate with the ARMA(3,2)-GARCH(1,1) with skewed student-T
residual. As for the log-differences of the crude futures 1-Pos of the ICE and
the DME data, they were appropriate with the ARMA(1,1)-GARCH(1,1) with
skewed student-T residuals. Moreover, it was observed that the three data series
had long-run persistence.

The results from the bivariate copula analysis of and comparison between the
crude futures 1-Pos of these three markets revealed that the relationships between
the NYMEX–ICE pair, the NYMEX–DME pair, and the ICE–DME pair had co-
movement. These findings correspond to the findings obtained in a previous study
conducted by Reboredo [5]. In addition, we discovered evidences of asymmetric tail
dependence in each pair. The NYMEX–ICE and NYMEX–DME pairs showed that
the upper tail dependence was greater than the lower tail dependence, with the
rotated BB1 copula families. As for the ICE–DME pair, it presented that the lower
tail dependence was greater than the upper tail dependence, with the BB1 copula
family. However, the values of the upper tail and the lower tail dependences of
the three pair-copulas were quite close to each other. Furthermore, these findings
support the "one great pool" hypothesis propounded in Adelman [1, 2], which,
again, corresponds to the research studies of Hammoudeh et al. [4], Reboredo [5],
and AlMadi and Zhang [6].

As far as specifying the D-vine structures in the cases of the three variables
are concerned, we found that the D-vine models by the empirical Kendall’s tau
and the distance measure provided the best fit by giving better AIC values. In
addition, these two models with the three dimensional copula provided the same
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estimates of the parameters of interest as well as the AIC values. The results of the
bivariate and the D-vine copula models indicated that the ICE had an influence
on the dependence between the crude oil prices of the NYMEX and the DME, and
that it was an important variable that governs the interactions within these crude
oil markets.

From the findings, it can be concluded that the crude oil prices of North
America, Europe, and Asia in the case of crude futures 1-Pos have relatively strong
dependence, and that regardless of whether it is an upward or a downward trend,
their prices tend to move together. This finding is useful for decision planning
of energy security in many countries in each of these regions. In addition, the
evidence of the upper and the lower tail dependences between these three markets
can be useful in risk management for investment in the commodity market. This
information can tell us about the probability of joint occurrence of extreme events
in crude oil prices.

Moreover, the best and the most advantageous finding of this study is it has
given us the knowledge that among the three crude oil markets, the ICE is a crude
oil market that has much influence. In other words, the change in oil prices in the
ICE will impact quite significantly the oil prices in the NYMEX and the DME,
in the same direction. Therefore, the price of the crude futures 1-Pos of the ICE
is the appropriate information, or should be used as the indicator for monitoring
the change in the oil prices of the NYMEX and the DME.

Regarding further studies in this field, we recommend that they include more
of the related variables that represent the oil price movements in other crude oil
markets also in the different regions of the world for a better understanding of the
"one great pool" hypothesis.
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