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positive dependency of unobserved factors between two error terms, which implies
that the selectivity bias exists and also that the unobserved factors that increase
(decrease) the propensity to participate in the labor force of older workers also
increase (decrease) the working hours. In addition, the policy recommendation
is that the stakeholders should consider on having a program that can increase
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1 Introduction

Labor supply is a key component in economic growth, especially, in the labor
force participation of workers aged 15–59. However, at the present, the demo-
graphic structure is undergoing a change because of an aging society. In Thailand,
between 2000 and 2010, the proportion of people aged 0–14 shows that it is de-
clining, while the proportion of people aged 60 and above shows an increase. The
proportion of the latter was 12.0 percent in 2011 (National Statistical Office [1]).
These data point out that in the future, older workers will inevitably become
significant contributors to Thailand’s economic activity. Nevertheless, the Labor
Force Survey of Whole Kingdom found that the older worker participation rate
was only 38.6 percent (National Statistical Office [1]). Therefore, an increase in
the participation rate of older workers should be taken into consideration, espe-
cially when the country is on the verge of becoming an absolutely aging society.
Also, in order to increase the participation rate, the predominant questions about
the factors that determine the participation decisions and working hours should
be identified. Thus, the purpose of this paper is to investigate the determinants
of older worker participation decisions and working hours in Thailand. The re-
sults will be useful for policy makers to adjust the policies that can stimulate the
participation of older workers.

Since not all older workers participate in the labor market, it is inevitable that
the study of participation decisions is associated with sample selection problems.

The sample selection model has been widely used in the microeconomics field
for a long time. Since economic applications have frequently encountered the non-
random sampling, this causes selectivity bias, which leads to the inconsistency
of the OLS estimator (see Wooldridge [2, p. 560–563]). Thus, the econometri-
cians have tried to correct the sample selection bias by using various methods.
Two correction methods have been proposed by Heckman [3], [4]: the first is full
information maximum likelihood method (FIML), in 1974, and the second is Heck-
man’s [4] two-step estimation. The latter is usually used instead of the former (see
Greene [5, p.784]; Vella [6]). Nevertheless, the latter method of estimation may
address the collinearity problem between the regressors in the selection equation
and the outcome equation (see Puhani [7]). In addition, most empirical studies
point out that the ML estimator is more efficient and outperforms when it is com-
pared to the two-step estimator (see Nawata [8]; Nawata and Li [9]). However,
the ML estimator has some crucial drawbacks, namely, it has strong assumptions
of bivariate normality for the joint distribution, which leads to incorrect conclu-
sion about the existence of sample selection bias. Therefore, econometricians have
tried to find the best procedure which can relax the above assumptions and attain
the robust estimators. A particular mainstream procedure used nonparametric
or semi-parametric methods to relax this strong assumption. Unfortunately, this
method has some significant drawbacks. For example, it cannot identify the in-
tercept in the outcome equation (see Genius and Strazzera [10]). In addition,
the difficulty in implementation and in the estimation of the associated covari-
ance matrices required for inference causes the semi-parametric methods to have
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been less frequently employed in empirical work (see Vella [6]). Another procedure
that still used FIML, but relaxes the normality assumption of the marginal, is the
model had been proposed by Lee [11], [12]. Lee allowed the marginal distribu-
tion of the disturbances to be non–normal, and then transformed it into normal
distribution. But he still used the bivariate normal distribution to capture the de-
pendence between the transformed disturbances. Although Lee tried to avoid the
strong assumption, this method still maintains the bivariate normal distribution,
which implies linear dependence between the disturbances.

In recent times, the copula approach has been widely used in the sample selec-
tion framework. Trivedi and Zimmer [13] pointed out the many reasons that lead
to an interest in the copulas. First, the joint distributions can be derived when the
marginal distributions are given, especially for non–normal margins. Second, the
concepts and measures of dependence that goes beyond correlation or linear asso-
ciation can be developed. The copula approach is very useful for the topics that
relate to the joint distribution as the sample selection framework. Thus, when the
researchers apply the copula approach to the sample selection framework, not only
can they allow different specifications for the marginal, but also use wide ranges of
distribution shapes, both symmetric and asymmetric. Actually, Lee’s [12] method
is among the early work in the copula framework, but the term ”copulas” is not
explicitly used (see Trivedi and Zimmer [13]). Nonetheless, the properties of the
copulas have obviously been employed in Smith’s [14] paper which suggests the
general form for the self–selection model using the properties of copula to mea-
sure the dependence of the disturbances in the FIML. There are several papers
which have applied the copula approach and followed Smith’s [14]procedure (for
example, Genius and Strazzera [10]; Eberth and Smith [15]; Hasebe and Vijver-
berg [16]; Chinnakum, Sriboonchitta and Pastpipatkul [17];Sirisrisakulchai and
Sriboonchitta [18] etc.). Although these studies have the same framework for cop-
ula sample selection, the marginal distribution and the joint distribution that have
been used are different, depending on the empirical distribution of the data. Since
the researcher does not have prior knowledge about the dependence structure,
most studies have tried to test the various copulas functions, except with the work
by Dancer et al. [19] which used only Gaussian and Frank copulas. Eberth and
Smith’s study [15], which used only the Gaussian copula. Consider the marginal
distributions of the error terms. Dancer et al. [19], Bhat and Eluru [20], and Chin-
nakum, Sriboonchitta and Pastpipatkul [17] used normal distribution. However,
the marginal distributions were not needed simultaneously. For examples, Ge-
nius and Strazzera [10] estimated models based on different marginal distributions
such as the logistic and the Student–tv distributions. Sener and Bhat [21] used
four possible combinations for the marginal distribution, namely, normal–normal,
logistic–logistic, normal–logistic and logistic–normal. On the other hand, Hasebe
and Vijverberg [16] argued that it is not usually known as a priori on marginal
distribution. Thus they proposed a new flexible distribution, Generalized Tukey
lambda (GTL) which is used for each margin.

Finally, the copula approach is very useful for the context where one does not
have prior knowledge about the dependence structure that holds between two un-
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observed factors, and to relax the strong assumptions of bivariate normality for the
joint distribution. Therefore, in this current paper, we try to show that the cop-
ula approach to sample selection works and performs better than the traditional
method in the context of labor participation. To attain this purpose, we apply the
copula approach to a sample selection modeling to determine the factors affect-
ing the labor force participation and working hours of older workers in Thailand.
Importantly, we attempt to relax the joint normality assumption and test differ-
ent functional form of copula that are both radially symmetric and asymmetric
copulas, such as, the Gaussian, FGM, and Archimedean copulas (AMH, Clayton,
Frank, Gumbel and Joe copulas) in order to compare with the results of the stan-
dard Heckman’s method (or bivariate normal model, BVN), which is restricted
to bivariate normal distributional assumption. To our knowledge, this is the first
application of a copula framework to focus on a context of labor participation in
Thailand.

This paper is organized as the following: Section 2 describes the copula theory,
the definitions, and the main properties, bounds of copulas, related measures of
dependence, and some examples of copula. Section 3 describes the sample selection
model as well as on explaining how to apply the copula functions to the sample
selection model. Section 4 describes the data. Section 5 is devoted to the applica-
tion of the copula sample selection model to investigate the factors that determine
the working hours of older workers. Finally, section 6 provides the conclusion for
the work.

2 Copula Theory

2.1 Definition and Properties

The term ”copula” is defined as functions that link or connect multivariate
distributions to their one-dimensional margins (see Schweizer [22]; Trivedi and
Zimmer [13]). We begin with a bivariate copula function, which is defined as
follows (see Nelsen [23, p.10]):
Definition:A copula is a function C : [0, 1]2 → [0, 1] with the following properties

1. For every u, v in [0, 1],
C(u, 0) = 0 = C(0, v) and C(u, 1) = u and C(1, v) = v
2. For every u1, u2, v1, v2 in [0,1] such that u1 6 u2 and v1 6 v2,
C(u2, v2)–C(u2, v1)–C(u1, v2)+C(u1, v1) > 0.
Essentially, the theoretical foundation is provided by Sklar’s theorem, as given

below (see Nelsen [23, p. 18]):
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Sklar’s theorem: Let X and Y be random variables and H be a joint dis-
tribution function with margins F and G, which are the cumulative distribution
functions of the random variables X and Y , respectively. Then, there exists a
copula C such that for all x, y in R.

H(x, y) = C(F (x), G(y)) (2.1)

If F and G are continuous, then C is unique; otherwise, C is uniquely deter-
mined on RanF×RanG. Conversely, if C is a copula and F and G are distribution
functions, then the function H defined by (2.1) is a joint distribution function with
margins F and G.

By Sklar’s theorem and the method of inversion, the corresponding copula
can be generated by using the unique inverse transformations x = F−1(u) and
y = G−1(v). Therefore,

C(u, v) = H(F−1(u), G−1(v)), (2.2)

where u and v are standard uniform variates.

In practical implications, copulas allow researchers to piece together joint dis-
tributions when only marginal distributions are known with certainty. For a two–
variate function with margins F and G, the copula associated with H is a distri-
bution function C : [0, 1]2 → [0, 1] that satisfies

H(x, y) = C(F (x), G(y); θ), (2.3)

where θ is a parameter of the copula called the dependence parameter, which
measures the dependence between the marginals (see Trivedi and Zimmer [13]).

Furthermore, the dependence parameter can be used to denote the families of
the copulas as notation Cθ(u, v). There are several examples of families of copulas,
such as the Gaussian (Normal) copula, the FGM (Farlie–Gumbel–Morgenstern)
copula, the Plackett copula, etc.

In recent times, the bivariate copula has been widely used in several of eco-
nomics research fields such as financial economics (for examples: Patton [24];
Boonyanuphong and Sriboonchitta [25] etc.), tourism economics (for examples
Puarattanaarunkorn and Sriboonchitta [26] etc.) and agricultural economics (for
examples Sriboonchitta et al [27]; Xue and Sriboonchitta [28] etc.).

2.2 Bounds of Copula

The additional property that relates to copulas is the Fréchet–Hoeffding bounds.
Application of the Fréchet–Hoeffding bounds to a copula in the bivariate case, for
any copula C and for all u, v in [0,1], is given by

W (u, v) = max(u + v − 1, 0)6C(u, v)6min(u, v) = M(u, v), (2.4)
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where W is the Fréchet–Hoeffding lower bound, and M is the Fréchet–Hoeffding
upper bound. Usually, the copula lies between these bounds. The copula attain-
ing the the Fréchet–Hoeffding lower bound corresponds to negative dependence.
The copula attaining the Fréchet–Hoeffding upper bound corresponds to positive
dependence. And, in special cases of copulas, the product copula can be defined
if the margins are independent (see Schmidt [29]; Trivedi and Zimmer [13]). In
addition, the families of copulas are called comprehensive if they include both
Fréchet–Hoeffding bounds and product copula.

The copulas such as the Gaussian and the Frank copulas are comprehensive,
while the FGM, Clayton, Gumbel, and Joe copulas are not comprehensive, which
makes it necessary to calculate the measures of dependence, as described below.

2.3 Measures of Dependence

As mentioned above, some families of copulas are not comprehensive; thus,
in such cases the measure of dependence can be used to assess the coverage of
the copula. The measures of dependence can be determined using several alterna-
tive methods. The most familiar and often used method is the linear correlation,
such as the Pearson’s product moment correlation coefficient. But this measure
has some drawbacks: first, in general zero correlation, it does not imply inde-
pendence. Second, it is not defined for heavy–tailed distributions whose second
moments do not exist. Third, it is not invariant under strictly increasing non–
linear transformations (see Trivedi and Zimmer [13]). Therefore, the alternative
methods to compute measures of dependence have come up–such as the concor-
dance measures–which the statistician usually uses as Kendall’s τ and Spearman’s
ρS . The former is defined as follows:

τ = P ((X −X ′)(Y − Y ′) > 0)− P ((X −X ′)(Y − Y ′) < 0), (2.5)

and the latter is defined as follows:

ρS = 3(P ((X −X ′)(Y − Y ′′) > 0)− P ((X −X ′)(Y − Y ′′) < 0)), (2.6)

where (X,Y ),(X ′, Y ′),and (X ′′, Y ′′) are independent random vectors, and each
vector has a joint distribution function F (..., ...) whose margins are F1 and F2.

Since (X ,Y ) are continuous random variables whose copula is Cθ(u, v), the
Kendall’s τ can be expressed in terms of copulas (see Nelson [30, p.129]):

τ = 4

∫ ∫
[0,1]2

Cθ(u, v)dCθ(u, v)− 1 = 4E(Cθ(U, V ))− 1, (2.7)

where the second expression is the expected value of the function Cθ(U, V ) of
uniform (0,1) random variables U and V with a joint distribution function C.

Also, Spearman’s ρS can be simplified thus, in terms of copulas:

ρS = 12

∫ ∫
[0,1]2

uvdCθ(u, v)− 3 = 12E(UV )− 3, (2.8)
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where U = F (X) and V = F (Y ) are uniform (0,1) random variables with joint
distribution function Cθ(u, v). Both of the concordance measures are bounded
between –1 and 1, and zero under the product copula.

2.4 Some Bivariate Copulas

There are several examples of copulas, such as product copulas, Farlie–Gumbel–
Morgenstern (FGM) copulas, Gaussian copulas, and the Archimedean class of
copulas, which are as defined:

2.4.1 Product copulas

Product copulas have the form

C(u, v) = uv, (2.9)

where (u, v) is in [0, 1]2. This copula is in correspondence with the independence
of the random variables.

2.4.2 Gaussian copulas

The Gaussian, or Normal copula, was proposed by Lee [12] for selectivity
models, and is given by

Cθ(u, v) = Φ2(Φ
−1(u),Φ−1(v); θ), (2.10)

where Φ(.) is the cumulative distribution function of a standard normal variate,
and Φ2(.) is the bivariate cumulative distribution function with Pearson’s corre-
lation parameter θ(−1 6 θ 6 1). The Gaussian copula is comprehensive since
it includes the product copula and both of the Fréchet–Hoeffding bounds, and
captures both positive and negative dependences. However, it is radially symmet-
ric in its dependence structure and strong central dependency. The concordance
measures for the Gaussian copula can be given in terms of the dependence pa-
rameter (θ) as τ = (2/π)sin−1(θ) for Kendall’s τ and ρS = (6/π)sin−1(θ/2) for
Spearman’s ρS

2.4.3 The Farlie–Gumbel–Morgenstern (FGM) copulas

This copula has a simple form, which is given by

Cθ(u, v) = uv(1 + θ(1− u)(1− v)), (2.11)

where −1 6 θ 6 1.
If the dependence parameter(θ) equals zero, then it leads to the product copula.

Although the FGM copula has a simple form, it is not comprehensive because
it includes only the product copula, and not the Fréchet–Hoeffding lower and
upper bounds. This copula is radially symmetric in its dependence structure to
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the Gaussian copula, but the dependence structure is weaker than that of the
Gaussian. In addition, this copula is only useful in cases of moderate dependency
(see Trivedi and Zimmer [13]).The concordance measures for the FGM copula can

be given in terms of the dependence parameter (θ) as τ =
2

9
θ for Kendall’s τ and

ρS =
1

3
θ for Spearman’s ρS .

2.4.4 The Archimedean copulas

The Archimedean copulas are popular in empirical works for several rea-
sons. These copulas can display a wide range of dependence properties for dif-
ferent choices of generator function (see Trivedi and Zimmer [13]). Furthermore,
Smith [14] pointed out that it makes estimation of the maximum likelihood and
calculation of the score function relatively easy. In order to better understand the
Archimedean copulas, we need to mention some properties of these copulas. The
bivariate Archimedean copulas can be generated in the following form:

Cθ(u, v) = ϕ−1[ϕ(u) + ϕ(v)], (2.12)

where ϕ : [0, 1] → [0, α] is a generator function which satisfies the following prop-
erties: ϕ(1) = 0, ϕ′(t) < 0, and ϕ′′(t) > 0 for 0 < t < 1. In addition, if ϕ(0) = α,
then the inverse function ϕ−1exists.

The above form can be written as follows:

ϕ(Cθ(u, v)) = ϕ(u) + ϕ(v), (2.13)

Taking the differential with respect to v in the above equation, we obtain the
result which will be used in the sample selection model, which can be given as

∂(C(u, v))

∂(v)
=

ϕ′(v)

ϕ′(C(u, v))
, (2.14)

Also, for the Archimedean copula, Kendall’s τ can be described in simple form, as
follows:

τ = 1 + 4

1∫

0

ϕ(t)

ϕ′(t)
dt, (2.15)

where ϕ′(t) = ∂ϕ(t)/∂(t); The Clayton, Frank, Gumbel and Joe copulas are the
Archimedean copulas, and they have been extensively used in empirical work (for
example, Genius and Strazzera [10]; Sener and Bhat [21]; Hasebe and Vijver-
berg [16]; Chinnakum, Sriboonchitta and Pastpipatkul [17]). These copulas are
different in the generate function, which leads to a difference in the functional
form (which is demonstrated in Table 1) and an essential dependence structure.
A description is provided below.
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Table 1: Functional Form and Characteristics of Bivariate Copulas
Copula Function C(u,v) Generation function Range of θ Range of

Kendall’s τ

Gaussian Φ2(Φ
−1(u),Φ−1(v); θ) - −1 6 θ 6 1 −1 6 τ 6 1

FGM uv(1 + θ(1 − u)(1 − v)) - −1 6 θ 6 1 −2/9 6 τ 6 2/9

AMH uv/(1 − θ(1 − u)(1 − v)) log
1 − θ(1 − t)

t
−1 6 θ 6 1 −0.18 6 τ < 1/3

Clayton (u−θ + v−θ − 1)−1/θ (1/θ)(t−θ − 1) 0 < θ < α 0 < τ < 1

Frank −
1

θ
ln{1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1
} −ln[(eθt − 1)(eθ − 1)] −α < θ < α −1 6 τ 6 1

Gumbel exp(−[(−lnu)θ + (−lnv)θ ]1/θ) (−lnt)θ 1 6 θ < α 0 6 τ < 1

Joe 1 − [(1 − u)θ + (1 − v)θ − (1 − u)θ(1 − v)θ ]1/θ −ln[1 − (1 − t)θ] 1 6 θ < α 0 6 τ < 1

Source: The copula functions are given as presented in Trivedi and Zimmer [13] and

Smith [14]

Frank copula

The first example of the Archimedean copulas is the Frank copula, which was
proposed by Frank [31]. This copula attains the Fréchet–Hoeffding upper and lower
bounds and corresponds to independence, and so it is comprehensive as a Gaussian
copula. This property implies that this copula can account for both positive and
negative dependences. Furthermore, this copula is radially symmetric to Gaussian
and FGM copulas, but has stronger central dependence than the Gaussian copula.
Thus, Frank copula is most appropriate for data that exhibit very strong central
dependence and weak tail dependence. (see Trivedi and Zimmer [13]; Bhat and
Eluru [20]). Kendall’s τ may be taken in the form given below (see Nelson [13,
p.171]):

τ = 1− 4

θ
[1−DF (θ)], DF (θ) =

1

θ

θ∫

t=0

t

et − 1
dt, (2.16)

The range of τ is −1 6 τ 6 1.

Clayton copula

The second example is the Clayton copula, which was proposed by Clay-
ton [32]. This copula is not comprehensive since it only attains the Fréchet–
Hoeffding upper bound and corresponds to independence when θ → 0, which
implies that it cannot account for negative dependence. In addition, this cop-
ula exhibits asymmetry in the sense that there is a strong left tail dependence.
Kendall’s τ can be given in the simple form of the dependence parameter (θ) as
τ = θ/(θ + 2). Therefore, τ is restricted on the region (0,α) or 0 < τ < 1.

Joe copula

Another example of the Archimedean copulas is the Joe copula, which was
proposed by Joe [33]. This copula exhibits asymmetry and cannot account for
negative dependence, just like the Clayton copula. However, it is opposite to the
Clayton copula in dependence, that is, there is a strong right tail dependence. The
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Kendall’s τ may be taken in the form that is given below:

τ = 1 +
4

θ
DJ(θ), DJ (θ) =

1∫

t=0

[ln(1− tθ)](1 − tθ)

tθ−1
dt, (2.17)

The range of τ is 0 6 τ < 1, and corresponds to independence as θ = 1.
The characteristics for each of the copulas are given in Table 1.

3 Copula Approach to Sample Selection Model

3.1 Sample Selection Model

The sample selection model has several forms; however, in this paper, we ana-
lyze the form that Amemiya [34] called the type 2 Tobit model (see Amemiya [34]),
for the general framework) which takes the form that relates to this context, and
is as given below:

y∗i = z
′

iγ + ui, yi = 1[y∗i > 0] selection equation

h∗
i = x

′

iβ + εi, hi = 1[y∗i > 0]h∗
i outcome equation (3.1)

The notation 1[y∗i > 0] denotes the indicator function, which takes the value 1
if event y∗i > 0 and the value 0 if otherwise. The selection equation represents the
binary decision of older workers regarding the question of whether to participate in
the labor force or not, and it is equal to 1 if the older worker decides to participate
in the labor force and equal to 0 if otherwise. y∗i is the latent decision variable,
which is a function of the vector zi of the regressors that affect the participation.
The outcome equation represents the continuous outcome variable of hours per
month of older workers (hi), which is observed only when yi = 1. xi represents
the regressors that affect the working hours. γ and β are vectors of unknown
parameters, ui and εi are error terms with i.i.d. drawings from a bivariate normal
distribution with zero mean, variances σ2

u and σ2
ε , and covariance σuε.

The mechanism of the model is that when, y∗i 6 0, yi = 0 and hi cannot be
observed, it is defined to be of value 0, and hi can be observed only when y∗i > 0.
The likelihood function of the bivariate sample selection model in the empirical
context is given by (see Amemiya [34, p.385])

L =
∏
0

Pr(y∗i 6 0)
∏
1

fε|u(hi | y∗i > 0)Pr(y∗i > 0), (3.2)

where
∏

0 stands for the product over those values of i for which hi = 0,
∏

1
stands for the product over those value of i for which hi = 1, and fε|u(hi | y∗i > 0)
stands for the conditional density of hi given y∗i > 0.

In the current paper, we will perform the estimation by using two main estima-
tions which are, by making use of the bivariate normal model (BVN), which was
first proposed by Heckman [3], and by applying the copula approach to the sample
selection model. The likelihood functions in the former case are as followed:
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3.2 Standard Heckman’s Model (or BVN)

Let the Fu and Fε be the cumulative distribution functions of the error terms
ui and εi, and let both the margins be assumed to be normally distributed:
y∗∼N(z′γ, 1) and h∗∼N(x′β, σε), respectively. Then the likelihood function in
equation (3.2) can be rewritten as follows (see Amemiya [34, p.386]):

L =
∏
0

Φ(−z′γ)
∏
1

1

σε

φ(
h− x′β

σε

)Φ(
z′γ + θ(h− x′β)/σε√

1− θ2
), (3.3)

where Φ and φ are cdf and pdf, respectively, of the normal distribution, and θ is
the dependence parameters.

3.3 Apply Copula Functions to the Sample Selection Model

The estimation of the conditional density function from equation (3.2), however,
is complicated. For that reason, Smith [14] applied the copula framework for this
model in order to capture it. With that the general form of the likelihood for the
sample selection model can be derived as the following (see Smith [14]):

L =
∏
0

Fu(0)
∏
1

{fε(εi)−
∂

∂ε
F (ui, εi)}, (3.4)

where Fu(0) = Pr(y∗i 6 0) and fε(εi) = ∂(Fε)/∂ε,and by using the equation
(2.14), we can evaluate the component ∂F (ui, εi)/∂ε, which becomes

∂

∂ε
F (ui, εi) =

ϕ′(Fε)

ϕ′(Cθ)
× fε, (3.5)

Now we substitute equation (3.5) in equation (3.4). Thereafter, the likelihood
function can be simplified to

L =
∏
0

Fu(0)
∏
1

{1− ϕ′(Fε)

ϕ′(Cθ)
}fε, (3.6)

Equation (3.6) is the likelihood function of the copula sample selection model, in
which the expression for the component of (1 − ϕ′(Fε)/ϕ

′(Cθ)) is given by the
selected families of copulas, as presented in Table 2.
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Table 2: Expressions for (1− ϕ′(Fε)/ϕ
′(Cθ))

Copula Expression for (1− ϕ′(Fε)/ϕ
′(Cθ))

Product copula 1− Fu

Gaussian 1− Φ{(Φ−1(Fu)− θΦ−1(Fε))/
√
1− θ2)

AMH 1− (1− θ)Fu + θF 2
u

(1− θ(1− Fu)(1− Fǫ))2

FGM (1− Fu)(1− θFu(1− 2Fε))

Clayton 1− F
−(θ+1)
ε (F−θ

u + F−θ
ε − 1)

−
1 + θ

θ

Frank
eθFu(eθFu − eθ)

eθ(Fu+Fε) + eθ(1− eθFu − eθFε)
Gumbel 1− Cθ(Fu, Fε){(−logFu)

θ + (−logFε)
θ}−1+1/θ{−logFε}θ−1F−1

ε

Note: 1.Fu denotes Pr(y∗
i 6 0) and Fε denotes Pr(y∗

i > 0).

2.Fu = 1− Fu and Fε = 1− Fε

3.This expressions are given as presented in Smith [14]

In the current paper, we apply various copulas to the sample selection
model both radially symmetric and asymmetric copulas, such as, the Gaussian,
FGM, and Archimedean copulas (AMH, Clayton, Frank, Gumbel and Joe copu-
las) due to the researcher lacking prior knowledge about the dependence structure.
Moreover, we considered different functional forms for margins Fε and Fu such as
normal, logistic, and Student’s t distributions. And, at last but not the least, the
AIC (Akaike information criterion) and the BIC (Bayesian information criterion)
can be used to select between the competing copula models. The AIC and the
BIC values are equal to −2(ln(L) − K)/Q and −2(ln(L) + Kln(Q))/Q, respec-
tively, where ln(L) is the log–likelihood value at convergence, K is the numbers
of parameters, and Q is the number of observations. The better copula model is
identified by the lowest values of AIC or BIC.

4 Data

The data set used for this analysis is a sample from the ”The Labor Force
Survey Whole Kingdom Quarter 3: July– September 2012” conducted by the
National Statistical Office. The sample used consists of 2655 observations of older
workers, 1512 of whom were employed. This study uses work participation decision
(which takes the value 1 if the older worker decides to participate in the labor
force, and the value 0 if otherwise) and working hours per month of the older
worker (hrpm) as dependent variables for the selection and the outcome equations,
respectively. In the selection equation, this study uses the following variables:
Education (years of education), Relation (whether the respondent is the head of
household), and Marital Status. The regressors of the outcome equation are as
follows: Age (age in years), Gender, Education (years of education), and Region.
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Table 3: Probit Regression for Selection Equation

Variable Coefficient z-Statistic

Constant 0.359***(0.097) 3.707787
Education 0.019***(0.006) 2.971605
Relation 0.469***(0.052) 9.052967
Marital Status -0.237***(0.036) -6.656417
McFaddenR2 0.036350
S.E.of regression 0.483131
Log-likelihood -1748.620

Note: The dependence variable is work,the symbol ”***”
indicates significance at the 1 percent level and SEs are given in parentheses.

Table 4: Least Squares Regression without Controls for Selection Bias

Variable Coefficient t-Statistic

Constant 268.895***(21.322) 12.611
Gender -7.889***(2.936) -2.687
Age -0.966***(0.322) -3.001
Education -2.176***(0.329) -6.611
Region -5.242***(1.225) -4.279
Adjusted R2 0.040613
S.E.of regression 54.84088
Log-likelihood -8197.638
D.W.stat 1.877620
F-stat 16.99114***

Note: The dependence variable is work,the symbol ”***”

indicates significance at the 1 percent level and SEs are given in parentheses.

5 Results

First, let us estimate the parameters of the marginal distribution models such
as the probit model and the least squares regression for the selection and the out-
come equations, respectively, which are presented in Table 3 and Table 4. The
results of the probit regression, as presented in Table 3, show that whereas educa-
tion and relation have a significantly positive effect on the labor force participation
of older workers, marital status has a negative effect on it. The maximized value
of the log–likelihood at convergence is –1748.620. Consider the result of the least
square regression without controls for selection bias, as given in Table 4. The re-
sults indicate that gender, age, education and region have significantly a negative
effect on the working hours per month of the older worker. The maximized value
of the log–likelihood at convergence is –8197.638.

Second, in the current paper we consider different functional form for mar-
gins Fu and Fε such as normal, logistic, and Student’s t distributions. However,
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based on the Jarque–Bera test [36] and Shapiro–Wilk test [37]we rejected the
null hypothesis that residuals of selection and outcome equations are normally
distributed (see Appendix). Moreover, Hasebe [38] have recommended the Stu-
dent’s t distribution as marginal distributions for the outcome equation due to it
being the most flexible among the three marginal distributions. Thus, we specify
logistic distribution for margins Fu and Student’s t distribution for margin Fε.
These ideas differ from the paper of Smith [14] who fixed the margin as a normal
distribution.

Third, we considered the sample selection model, which relates to the work
participation decision and working hours for older workers in Thailand. We esti-
mated the parameters by using FIML for two main models such as the bivariate
normal model (BVN) and by applying the copula approach to the sample selec-
tion model such as the Gaussian copula, and the Archimedean families of copulas
(AMH, Clayton, Frank, Gumbel and Joe copula). Thus we estimated model with
seven different copula functions that were mentioned above and specified the lo-
gistic distribution for margins Fu and Student’s t distribution for margin Fε. The
results are illustrated in Table 5, where there are 4 good candidate copula based
models.

The main result shows that based on AIC and BIC criteria, all of copula based
models perform better than the BVN model which restricts the bivariate normality
for the joint distribution, especially Frank (L–t) copula. The log–likelihood value
at convergence and the BIC value are –9888.156 and 19870.922, respectively (as
shown in Table 5). Usually, this copula is radially symmetrical and has strong
central dependence, thereby implying that there is no clustering of values in the
tail dependence, whether it is left or right tail dependence. The results show that
the dependence parameters (θ) which indicates the dependence between the work
participation error terms (ui) and the working hours error term (εi) is significantly
different from zero in all of the models. This implies that there exists significant
dependence between these two error terms, which explains the existence of the
selectivity bias. In addition, the parameter υ of the Student–tv distribution for
Frank (L–t) copula is estimated simultaneously. The results show that the value
of υ is about 5. This indicates very thickly tails in the distribution, this guarantee
the result of the Jarque–Bera test.

Table 5 shows the similarity of coefficients for all of the models, which is the
same as the results obtained in several previous studies (Prieger [35]; Smith [14];
Bhat and Eluru [20]; Genius and Strazzera [10]; Chinnakum, Sriboonchitta and
Pastpipatkul [17];Sirisrisakulchai and Sriboonchitta [18]). The selection equation
corresponding to the Frank (L–t) copula shows that education and relation have
1 percent significant positive effect on labor force participation of older workers,
while marital status has 1 percent significant negative effect on the same. These
results indicate that older workers, who are generally the heads of their households,
or single or highly educated, are more likely to participate in the labor force. In
the outcome equation, all of the variables, namely, age, gender, education, and
region were observed to have 1 percent significant negative effect on the working
hours per month of the older workers. These results indicate that the older workers
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Table 5: Estimates of BVN, Gaussian Copula and the Archimedean Fami-
lies of Copulas

standard(N–N) Guassian(N–N) Amh(L–t) Gumbel(L–t) Frank(L–t)
Variable Coeff. SE Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Selection

equation

Constant .273*** .088 .273*** .088 .584*** .159 .528*** .161 .565*** .159
Education .015*** .006 .015*** .006 .029*** .010 .031*** .010 .028*** .010
Relation .447*** .049 .447*** .049 .775*** .084 .780*** .083 .786*** .083
Marital Status -.189*** .033 -.189*** .032 -.389*** .060 -.370*** .060 -.383*** .059
Outcome

equation

Constant 246.837*** 21.066246.837*** 21.066259.593*** 19.651257.773*** 20.091255.608*** 19.842
Gender -13.114*** 2.976 -13.114*** 2.976 -7.621*** 2.680 -8.726*** 2.917 -8.596*** 2.755
Age -1.117*** .319 -1.117*** .319 -.910*** .298 -.934*** .300 -.920*** .299
Education -1.499*** .373 -1.499*** .373 -2.335*** .276 -2.175*** .316 -2.220*** .287
Region -4.943*** 1.214 -4.943*** 1.214 -4.830*** 1.096 -4.879*** 1.104 -4.777*** 1.099
σ 63.967*** 2.364 63.967*** 2.364 42.409*** 1.732 41.740*** 1.648 43.261*** 1.924
υ - - - - 4.547*** .607 4.704*** .623 4.802*** .686
Dependence

parameters

θ .693*** .056 .693*** .056 .375*** .181 1.202*** .146 1.608*** .668
Kendall’sτ - - .488*** .049 .092*** .050 .168*** .101 .174*** .072
Log-likelihood -9938.119 -9938.119 -9889.354 -9888.843 -9888.156
AIC 19898.238 19898.238 19802.708 19801.686 19800.312
BIC 19962.964 19962.964 19873.318 19872.297 19870.922

Note: 1)The symbol ”***” denotes significance at the 1 percent level, ”**” denotes

significance at the 5 percent level, and ”*” denotes significance at the 10 percent level.

2)N–N denotes normal distribution for margins Fu and Fε. L–t denotes logistic

distribution for margin Fu and Student–tv distribution for margin Fε

who are younger, or male, or highly educated, or stay in the Bangkok province are
likely to have more working hours per month.

The dependence parameters (θ) between the work participation error terms
(ui) and the working hours error term (εi) is positive and highly significant at
1 percent level in this application for the Frank (L–t) copula model, with a cor-
responding Kendall’s τ value of 0.174. This positive dependency implies that
unobserved factors which increase (decrease) the propensity of older workers to
participate in the labor force also increase (decrease) their working hours. This
means that after controlling all the other observed characteristics, the individual
who chooses to participate in the labor force will work the higher working hours
than an individual who chooses not to participate.

Finally, the copula approach to sample selection, which allows flexibility in the
dependence structure, had performed well. This was especially so in the case of the
Frank (L–t) copula which provides the best fit. In addition, it performed better
than the standard Heckman’s method which is restricted to linear dependence.
This finding implies that this application is suitable for central dependence, and is
not suitable in cases of clustering of values in the tail dependence, whether it is left
or right tail dependence. Moreover, the logistic and Student–tv distribution could
be a good distribution for the margins Fu and Fε in this application respectively.
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6 Conclusion

In this paper, we applied the copula approach to a sample selection model
to determine the factors affecting the labor force participation and the working
hours of older workers in Thailand by using the ”The Labor Force Survey of
Whole Kingdom Quarter 3: July–September 2012” data set. Importantly, we
considered various copulas both radially symmetric and asymmetric copulas, such
as, the Gaussian, FGM, and Archimedean copulas (AMH, Clayton, Frank, Gumbel
and Joe copulas) due to the researcher not having prior knowledge about the
dependence structure. Also, we considered different distributions for margins Fε

and Fu such as normal, logistic, and Student’s t distributions.
The main results are the following: first, the copula approach to sample se-

lection model, which allows for flexibility in dependence structure and relax the
joint normality assumption, works in the context of the labor force participation
and the working hours of older workers in Thailand. Based on the criteria of
log–likelihood value, AIC and BIC, the Frank (L–t) copula provides the best fit
and performs better than the standard Heckman’s method which is restricted to
linear dependence. This finding implies that this application is suitable for cen-
tral dependence, and is not suitable in cases of clustering of values in the tail
dependence, whether it is left or right tail dependence. Second, these results show
the presence of significant positive dependency of unobserved factors between the
two error terms. This implies that selectivity bias exists and that the unobserved
factors that increase (decrease) the propensity of older workers to participate in
labor force also increase (decrease) the working hours. Third, the results of the
coefficient indicate that the concerned policy makers should run campaigns that
encourage the various groups of older workers – such as older workers who are
not single, who are not heads of households or who have lesser education – to
participate in labor force. Furthermore, female workers, or workers who are not
single or workers who do not stay in the Bangkok province are likely to register
fewer working hours; thus it is imperative that the concerned stakeholders design
programs that can increase the working hours of such workers.

7 Appendix

We used the Jarque–Bera normality test and the Shapiro–Wilk normality test
for the both residuals of selection and outcome equations. The results of the
Jarque–Bera normality test, as given in Table 6, show that the residuals of selection
and outcome equations are rejected at 1 percent level of significance. The results
of the Shapiro–Wilk test, as given in Table 7, show that the p–value is less than
0.05. Thus we rejected the null hypothesis that residuals of selection and outcome
equations are normally distributed.
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Table 6: Descriptive statistics
Residual of selection equation Residual of outcome equation

Mean -0.000592 -3.91E-14
Median 0.301140 1.240620
Maximum 0.843356 224.3371
Minimum -0.754498 -175.8567
Std.Dev. 0.482858 55.27222
Skewness -0.252447 0.354573
Kurtosis 1.270388 4.711226
Jargue–Bera 359.1415 216.7364
Probability 0.000000 0.000000
Observations 2655 1516

Table 7: The Shapiro–Wilk test for normal data
Variable Obversations W V Z p–value

Residual of selection equation 2655 0.82023 275.738 14.440 0.00000
Residual of outcome equation 1516 0.97163 26.139 8.216 0.00000
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